Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.542
Filtrar
1.
Sci Eng Ethics ; 30(3): 17, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720094

RESUMEN

Wandering is a symptom of dementia that can have devastating consequences on the lives of persons living with dementia and their families and caregivers. Increasingly, caregivers are turning towards electronic tracking devices to help manage wandering. Ethical questions have been raised regarding these location-based technologies and although qualitative research has been conducted to gain better insight into various stakeholders' views on the topic, developers of these technologies have been largely excluded. No qualitative research has focused on developers' perceptions of ethics related to electronic tracking devices. To address this, we performed a qualitative semi-structured interview study based on grounded theory. We interviewed 15 developers of electronic tracking devices to better understand how they perceive ethical issues surrounding the design, development, and use of these devices within dementia care. Our results reveal that developers are strongly motivated by moral considerations and believe that including stakeholders throughout the development process is critical for success. Developers felt a strong sense of moral obligation towards topics within their control and a weaker sense of moral obligation towards topics outside their control. This leads to a perceived moral boundary between development and use, where some moral responsibility is shifted to end-users.


Asunto(s)
Cuidadores , Demencia , Entrevistas como Asunto , Obligaciones Morales , Investigación Cualitativa , Humanos , Demencia/terapia , Cuidadores/ética , Conducta Errante/ética , Teoría Fundamentada , Participación de los Interesados , Electrónica/ética , Femenino , Motivación/ética
2.
Sci Adv ; 10(18): eadl5067, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701201

RESUMEN

Airborne pathogens retain prolonged infectious activity once attached to the indoor environment, posing a pervasive threat to public health. Conventional air filters suffer from ineffective inactivation of the physics-separated microorganisms, and the chemical-based antimicrobial materials face challenges of poor stability/efficiency and inefficient viral inactivation. We, therefore, developed a rapid, reliable antimicrobial method against the attached indoor bacteria/viruses using a large-scale tunneling charge-motivated disinfection device fabricated by directly dispersing monolayer graphene on insulators. Free charges can be stably immobilized under the monolayer graphene through the tunneling effect. The stored charges can motivate continuous electron loss of attached microorganisms for accelerated disinfection, overcoming the diffusion limitation of chemical disinfectants. Complete (>99.99%) and broad-spectrum disinfection was achieved <1 min of attachment to the scaled-up device (25 square centimeters), reliably for 72 hours at high temperature (60°C) and humidity (90%). This method can be readily applied to high-touch surfaces in indoor environments for pathogen control.


Asunto(s)
Desinfección , Electrónica , Grafito , Desinfección/métodos , Electrónica/métodos , Grafito/química , Viabilidad Microbiana , Bacterias
3.
Acc Chem Res ; 57(9): 1398-1410, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652467

RESUMEN

ConspectusElectrical neuromodulation has achieved significant translational advancements, including the development of deep brain stimulators for managing neural disorders and vagus nerve stimulators for seizure treatment. Optoelectronics, in contrast to wired electrical systems, offers the leadless feature that guides multisite and high spatiotemporal neural system targeting, ensuring high specificity and precision in translational therapies known as "photoelectroceuticals". This Account provides a concise overview of developments in novel optoelectronic nanomaterials that are engineered through innovative molecular, chemical, and nanostructure designs to facilitate neural interfacing with high efficiency and minimally invasive implantation.This Account outlines the progress made both within our laboratory and across the broader scientific community, with particular attention to implications in materials innovation strategies, studying bioelectrical activation with spatiotemporal methods, and applications in regenerative medicine. In materials innovation, we highlight a nongenetic, biocompatible, and minimally invasive approach for neuromodulation that spans various length scales, from single neurons to nerve tissues using nanosized particles and monolithic membranes. Furthermore, our discussion exposes the critical unresolved questions in the field, including mechanisms of interaction at the nanobio interface, the precision of cellular or tissue targeting, and integration into existing neural networks with high spatiotemporal modulation. In addition, we present the challenges and pressing needs for long-term stability and biocompatibility, scalability for clinical applications, and the development of noninvasive monitoring and control systems.In addressing the existing challenges in the field of nanobio interfaces, particularly for neural applications, we envisage promising strategic directions that could significantly advance this burgeoning domain. This involves a deeper theoretical understanding of nanobiointerfaces, where simulations and experimental validations on how nanomaterials interact spatiotemporally with biological systems are crucial. The development of more durable materials is vital for prolonged applications in dynamic neural interfaces, and the ability to manipulate neural activity with high specificity and spatial resolution, paves the way for targeting individual neurons or specific neural circuits. Additionally, integrating these interfaces with advanced control systems, possibly leveraging artificial intelligence and machine learning algorithms and programming dynamically responsive materials designs, could significantly ease the implementation of stimulation and recording. These innovations hold the potential to introduce novel treatment modalities for a wide range of neurological and systemic disorders.


Asunto(s)
Nanoestructuras , Humanos , Nanoestructuras/química , Nanotecnología/métodos , Animales , Electrónica
4.
Nature ; 629(8011): 335-340, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658759

RESUMEN

Flexible and large-area electronics rely on thin-film transistors (TFTs) to make displays1-3, large-area image sensors4-6, microprocessors7-11, wearable healthcare patches12-15, digital microfluidics16,17 and more. Although silicon-based complementary metal-oxide-semiconductor (CMOS) chips are manufactured using several dies on a single wafer and the multi-project wafer concept enables the aggregation of various CMOS chip designs within the same die, TFT fabrication is currently lacking a fully verified, universal design approach. This increases the cost and complexity of manufacturing TFT-based flexible electronics, slowing down their integration into more mature applications and limiting the design complexity achievable by foundries. Here we show a stable and high-yield TFT platform for the fabless manufacturing of two mainstream TFT technologies, wafer-based amorphous indium-gallium-zinc oxide and panel-based low-temperature polycrystalline silicon, two key TFT technologies applicable to flexible substrates. We have designed the iconic 6502 microprocessor in both technologies as a use case to demonstrate and expand the multi-project wafer approach. Enabling the foundry model for TFTs, as an analogy of silicon CMOS technologies, can accelerate the growth and development of applications and technologies based on these devices.


Asunto(s)
Silicio , Transistores Electrónicos , Silicio/química , Electrónica/instrumentación , Indio/química , Galio/química , Óxido de Zinc/química , Diseño de Equipo , Semiconductores
5.
Zhongguo Zhong Yao Za Zhi ; 49(4): 924-931, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621899

RESUMEN

Odor is one of the important indicators evaluating the quality of traditional Chinese medicines. Research data has shown that there are increasing methods available for evaluating the odors of traditional Chinese medicines. Compared with conventional odor sensing techniques, electronic noses stand out for their convenience, high speed, and objectivity. The progress in the pharmaceutical technology of traditional Chinese medicines has provided new formulas and dosage forms for the innovative development in this field. The electronic nose with versatility can be customized to be equipped with a variety of cross-sensors, which can well satisfy the needs of the traditional Chinese medicine preparation technology. This study summarizes the characteristics, application status, and representative products of the current electronic nose, and analyzes the application and feasibility of electronic nose in the production of traditional Chinese medicine preparations based on the current status of odor evaluation. This review is expected to provide new methods, techno-logies, and ideas for electronic nose to play its unique role in the whole-process quality control and pharmaceutical process of traditional Chinese medicine preparations.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Nariz Electrónica , Control de Calidad , Electrónica
6.
Biosens Bioelectron ; 257: 116302, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648705

RESUMEN

This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.


Asunto(s)
Técnicas Biosensibles , Prótesis e Implantes , Técnicas Biosensibles/instrumentación , Humanos , Electrónica/instrumentación , Impresión Tridimensional , Diseño de Equipo , Nanoestructuras/química , Atención a la Salud/tendencias
7.
ACS Biomater Sci Eng ; 10(5): 2784-2804, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38597279

RESUMEN

Flexible electronics, applicable to enlarged health, AI big data medications, etc., have been one of the most important technologies of this century. Due to its particular mechanical properties, biocompatibility, and biodegradability, cocoon silk (or SF, silk fibroin) plays a key role in flexible electronics/photonics. The review begins with an examination of the hierarchical meso network structures of SF materials and introduces the concepts of meso reconstruction, meso doping, and meso hybridization based on the correlation between the structure and performance of silk materials. The SF meso functionalization was developed according to intermolecular nuclear templating. By implementation of the techniques of meso reconstruction and functionalization in the refolding of SF materials, extraordinary performance can be achieved. Relying on this strategy, particularly designed flexible electronic and photonic components can be developed. This review covers the latest ideas and technologies of meso flexible electronics and photonics based on SF materials/meso functionalization. As silk materials are biocompatible and human skin-friendly, SF meso flexible electronic/photonic components can be applied to wearable or implanted devices. These devices are applicable in human physiological signals and activities sensing/monitoring. In the case of human-machine interaction, the devices can be applicable in in-body information transmission, computation, and storage, with the potential for the combination of artificial intelligence and human intelligence.


Asunto(s)
Electrónica , Humanos , Animales , Materiales Biocompatibles/química , Seda/química , Fibroínas/química , Dispositivos Electrónicos Vestibles , Óptica y Fotónica , Bombyx
8.
Molecules ; 29(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611785

RESUMEN

Tumor hypoxia plays an important role in the clinical management and treatment planning of various cancers. The use of 2-nitroimidazole-based radiopharmaceuticals has been the most successful for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging probes, offering noninvasive means to assess tumor hypoxia. In this study we performed detailed computational investigations of the most used compounds for PET imaging, focusing on those derived from 2-nitroimidazole: fluoromisonidazole (FMISO), fluoroazomycin arabinoside (FAZA), fluoroetanidazole (FETA), fluoroerythronitroimidazole (FETNIM) and 2-(2-nitroimidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)acetamide (EF5). Conformational analysis, structural parameters, vibrational IR and Raman properties (within both harmonic and anharmonic approximations), as well as the NMR shielding tensors and spin-spin coupling constants were obtained by density functional theory (DFT) calculations and then correlated with experimental findings, where available. Furthermore, time-dependent DFT computations reveal insight into the excited states of the compounds. Our results predict a significant change in the conformational landscape of most of the investigated compounds when transitioning from the gas phase to aqueous solution. According to computational data, the 2-nitroimidazole moiety determines to a large extent the spectroscopic properties of its derivatives. Due to the limited structural information available in the current literature for the investigated compounds, the findings presented herein deepen the current understanding of the electronic structures of these five radiopharmaceuticals.


Asunto(s)
Nitroimidazoles , Radiofármacos , Química Computacional , Electrónica
9.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612569

RESUMEN

The treatment of the bulky Rind-based dibromosilanes, (Rind)2SiBr2 (2) [Rind = 1,1,7,7-tetra-R1-3,3,5,5-tetra-R2-s-hydrindacen-4-yl: EMind (a: R1 = Et, R2 = Me) and Eind (b: R1 = R2 = Et)], with two equivalents of tBuLi in Et2O at low temperatures resulted in the formation of blue solutions derived from the diarylsilylenes, (Rind)2Si: (3). Upon warming the solutions above -20 °C, the blue color gradually faded, accompanying the decomposition of 3 and yielding cyclic hydrosilanes (4) via intramolecular C-H bond insertion at the Si(II) center. The molecular structures of the bulky Eind-based 3b and 4b were confirmed by X-ray crystallography. Thus, at -20 °C, blue crystals were formed (Crystal-A), which were identified as mixed crystals of 3b and 4b. Additionally, colorless crystals of 4b as a singular component were isolated (Crystal-B), whose structure was also determined by an X-ray diffraction analysis. Although the isolation of 3 was difficult due to their thermally labile nature, their structural characteristics and electronic properties were discussed based on the experimental findings complemented by computational results. We also examined the hydrolysis of 3b to afford the silanol, (Eind)2SiH(OH) (5b).


Asunto(s)
Frío , Fibras de la Dieta , Cristalografía por Rayos X , Electrónica , Hidrólisis
10.
Sci Prog ; 107(2): 368504241242276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38614463

RESUMEN

Objective: This pilot study assessed the effects of electronic noise-masking earbuds on subjective sleep perception and objective sleep parameters among healthcare workers (HCWs) reporting sleep difficulties during the COVID-19 pandemic. Methods: Using a pre-post design, 77 HCWs underwent 3 nights of baseline assessment followed by a 7-night intervention period. Participants wore an at-home sleep monitoring headband to assess objective sleep measures and completed subjective self-report assessments. The difference in mean sleep measures from baseline to intervention was estimated in linear mixed models. Results: Compared to baseline assessments, HCWs reported significant improvements in sleep quality as measured by the Insomnia Severity Index (ISI) (Cohen's d = 1.74, p < 0.001) and a significant reduction in perceived sleep onset latency (SOL) during the intervention (M = 17.2 minutes, SD = 7.7) compared to baseline (M = 24.7 minutes, SD = 16.1), (Cohen's d = -0.42, p = 0.001). There were no significant changes in objective SOL (p = 0.703). However, there was a significant interaction between baseline objective SOL (<20 minutes vs >20 minutes) and condition (baseline vs intervention) (p = 0.002), such that individuals with objective SOL >20 minutes experienced a significant decrease in objective SOL during the intervention period compared to baseline (p = 0.015). Conclusions: HCWs experienced a significant improvement in perceived SOL and ISI scores after using the electronic noise-masking earbuds. Our data provide preliminary evidence for a nonpharmacological intervention to improve the sleep quality of HCWs which should be confirmed by future controlled studies.


Asunto(s)
Pandemias , Sueño , Humanos , Proyectos Piloto , Tecnología , Electrónica , Personal de Salud
11.
J Med Syst ; 48(1): 42, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630322

RESUMEN

The Electronic Personal Health Record (EPHR) provides an innovative service for citizens and professionals to manage health data, promoting patient-centred care. It enhances communication between patients and physicians and improves accessibility to documents for remote medical information management. The study aims to assess the prevalence of awareness and acceptance of the EPHR in northern Italy and define determinants and barriers to its implementation. In 2022, a region-wide cross-sectional study was carried out through a paper-based and online survey shared among adult citizens. Univariable and multivariable regression models analysed the association between the outcome variables (knowledge and attitudes toward the EPHR) and selected independent variables. Overall, 1634 people were surveyed, and two-thirds were aware of the EPHR. Among those unaware of the EPHR, a high prevalence of specific socio-demographic groups, such as foreign-born individuals and those with lower educational levels, was highlighted. Multivariable regression models showed a positive association between being aware of the EPHR and educational level, health literacy, and perceived poor health status, whereas age was negatively associated. A higher knowledge of the EPHR was associated with a higher attitude towards the EPHR. The current analysis confirms a lack of awareness regarding the existence of the EPHR, especially among certain disadvantaged demographic groups. This should serve as a driving force for a powerful campaign tailored to specific categories of citizens for enhancing knowledge and usage of the EPHR. Involving professionals in promoting this tool is crucial for helping patients and managing health data.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Registros de Salud Personal , Adulto , Humanos , Estudios Transversales , Italia , Electrónica
12.
JAMA Netw Open ; 7(4): e246565, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619840

RESUMEN

Importance: Timely tests are warranted to assess the association between generative artificial intelligence (GenAI) use and physicians' work efforts. Objective: To investigate the association between GenAI-drafted replies for patient messages and physician time spent on answering messages and the length of replies. Design, Setting, and Participants: Randomized waiting list quality improvement (QI) study from June to August 2023 in an academic health system. Primary care physicians were randomized to an immediate activation group and a delayed activation group. Data were analyzed from August to November 2023. Exposure: Access to GenAI-drafted replies for patient messages. Main Outcomes and Measures: Time spent (1) reading messages, (2) replying to messages, (3) length of replies, and (4) physician likelihood to recommend GenAI drafts. The a priori hypothesis was that GenAI drafts would be associated with less physician time spent reading and replying to messages. A mixed-effects model was used. Results: Fifty-two physicians participated in this QI study, with 25 randomized to the immediate activation group and 27 randomized to the delayed activation group. A contemporary control group included 70 physicians. There were 18 female participants (72.0%) in the immediate group and 17 female participants (63.0%) in the delayed group; the median age range was 35-44 years in the immediate group and 45-54 years in the delayed group. The median (IQR) time spent reading messages in the immediate group was 26 (11-69) seconds at baseline, 31 (15-70) seconds 3 weeks after entry to the intervention, and 31 (14-70) seconds 6 weeks after entry. The delayed group's median (IQR) read time was 25 (10-67) seconds at baseline, 29 (11-77) seconds during the 3-week waiting period, and 32 (15-72) seconds 3 weeks after entry to the intervention. The contemporary control group's median (IQR) read times were 21 (9-54), 22 (9-63), and 23 (9-60) seconds in corresponding periods. The estimated association of GenAI was a 21.8% increase in read time (95% CI, 5.2% to 41.0%; P = .008), a -5.9% change in reply time (95% CI, -16.6% to 6.2%; P = .33), and a 17.9% increase in reply length (95% CI, 10.1% to 26.2%; P < .001). Participants recognized GenAI's value and suggested areas for improvement. Conclusions and Relevance: In this QI study, GenAI-drafted replies were associated with significantly increased read time, no change in reply time, significantly increased reply length, and some perceived benefits. Rigorous empirical tests are necessary to further examine GenAI's performance. Future studies should examine patient experience and compare multiple GenAIs, including those with medical training.


Asunto(s)
Inteligencia Artificial , Médicos , Adulto , Femenino , Humanos , Comunicación , Electrónica , Sistemas de Registros Médicos Computarizados , Masculino , Persona de Mediana Edad
13.
Science ; 384(6691): 42, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574146

RESUMEN

Ingestible electronic pills can be used for targeted noninvasive neuromodulation.


Asunto(s)
Encéfalo , Estimulación Encefálica Profunda , Electrónica , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Estómago
14.
PLoS One ; 19(4): e0299079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630772

RESUMEN

Organic photovoltaic cells are a promising technology for generating renewable energy from sunlight. These cells are made from organic materials, such as polymers or small molecules, and can be lightweight, flexible, and low-cost. Here, we have created a novel mixture of magnesium phthalocyanine (MgPc) and chlorophenyl ethyl diisoquinoline (Ch-diisoQ). A coating unit has been utilized in preparing MgPc, Ch-diisoQ, and MgPc-Ch-diisoQ films onto to FTO substrate. The MgPc-Ch-diisoQ film has a spherical and homogeneous surface morphology with a grain size of 15.9 nm. The optical absorption of the MgPc-Ch-diisoQ film was measured, and three distinct bands were observed at 800-600 nm, 600-400 nm, and 400-250 nm, with a band gap energy of 1.58 eV. The current density-voltage and capacitance-voltage measurements were performed to analyze the photoelectric properties of the three tested cells. The forward current density obtained from our investigated blend cell is more significant than that for each material by about 22%. The photovoltaic parameters (Voc, Isc, and FF) of the MgPc-Ch-diisoQ cell were found to be 0.45 V, 2.12 µA, and 0.4, respectively. We believe that our investigated MgPc-Ch-diisoQ film will be a promising active layer in organic solar cells.


Asunto(s)
Grano Comestible , Isoindoles , Magnesio , Capacidad Eléctrica , Electrónica , Indoles
15.
Biosens Bioelectron ; 255: 116257, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574560

RESUMEN

Seamless integration and conformal contact of soft electronics with tissue surfaces have emerged as major challenges in realizing accurate monitoring of biological signals. However, the mechanical mismatch between the electronics and biological tissues impedes the conformal interfacing between them. Attempts have been made to utilize soft hydrogels as the bioelectronic materials to realize tissue-comfortable bioelectronics. However, hydrogels have several limitations in terms of their electrical and mechanical properties. In this study, we present the development of a 3D-printable modulus-tunable hydrogel with multiple functionalities. The hydrogel has a cross-linked double network, which greatly improves its mechanical properties. Functional fillers such as XLG or functionalized carbon nanotubes (fCNT) can be incorporated into the hydrogel to provide tunable mechanics (Young's modulus of 10-300 kPa) and electrical conductivity (electrical conductivity of ∼20 S/m). The developed hydrogel exhibits stretchability (∼1000% strain), self-healing ability (within 5 min), toughness (400-731 kJ/m3) viscoelasticity, tissue conformability, and biocompatibility. Upon examining the rheological properties in the modulated region, hydrogels can be 3D printed to customize the shape and design of the bioelectronics. These hydrogels can be fabricated into ring-shaped strain sensors for wearable sensor applications.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Hidrogeles , Tinta , Conductividad Eléctrica , Electrónica , Impresión Tridimensional
16.
PLoS One ; 19(4): e0301363, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603737

RESUMEN

The behavior of an illuminated solar module can be characterized by its power-voltage curve. Tracking the peak of this curve is essential to harvest the maximum power by the module. The position of the peak varies with temperature and irradiance and needs to be traced. Under partial shading conditions, the number of peaks increases and makes it more difficult to find the global maximum power point (MPP). Various methods are used for maximum power point tracking (MPPT) that are based on iterations. These methods are time-consuming and fail to work satisfactorily under rapidly changing environmental conditions. In this paper, a novel algorithm is proposed that for the first time, utilizes computer vision to find the global maximum power point. This algorithm, which is implemented in Matlab/Simulink, is free of voltage iterations and gives the real-time data for the maximum power point. The proposed algorithm increases the speed and the reliability of the MPP tracking via replacing analogue electronics calculations by digital means. The validity of the algorithm is experimentally verified.


Asunto(s)
Algoritmos , Computadores , Reproducibilidad de los Resultados , Electrónica , Temperatura
17.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Artículo en Chino | MEDLINE | ID: mdl-38605613

RESUMEN

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Algoritmos , Calibración , Electrónica , Radioterapia de Intensidad Modulada/métodos , Radiometría/métodos
18.
ACS Nano ; 18(15): 10495-10508, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38556991

RESUMEN

Sonodynamic therapy (SDT) has promising application prospects in tumor therapy. However, SDT does not eradicate metastatic tumors. Herein, Cu-substituted ZnAl ternary layered double hydroxide nanosheets (ZCA NSs) were developed as both sonosensitizers and copper nanocarriers for synergistic SDT/cuproptosis cancer therapy. An optimized electronic structure more conducive to the sonodynamic process was obtained from ZCA NSs via the Jahn-Teller effect induced by the introduction of Cu2+, and the synthesized ZCA NSs regulated the intricate tumor microenvironment (TME) by depleting endogenous glutathione (GSH) to amplify oxidative stress for further enhanced SDT performance. Furthermore, cuproptosis was evoked by intracellular overload of Cu2+ and amplified by SDT, leading to irreversible proteotoxicity. In vitro results showed that such synergetic SDT/cuproptosis triggered immunogenic cell death (ICD) and promoted the maturation of dendritic cells (DCs). Furthermore, the as-synthesized ZCA NS-mediated SDT/cuproptosis thoroughly eradicated the in vivo solid tumors and simultaneously elicited antitumor immunity to suppress lung and liver metastasis. Overall, this work established a nanoplatform for synergistic SDT/cuproptosis with a satisfactory antitumor immunity.


Asunto(s)
Neoplasias Hepáticas , Neoplasias , Terapia por Ultrasonido , Humanos , Cobre , Electrónica , Glutatión , Hidróxidos , Neoplasias Hepáticas/tratamiento farmacológico , Inmunidad , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
19.
Sci Adv ; 10(14): eadn3784, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569040

RESUMEN

Conventional power-integrated wireless neural recording devices suffer from bulky, rigid batteries in head-mounted configurations, hindering the precise interpretation of the subject's natural behaviors. These power sources also pose risks of material leakage and overheating. We present the direct printing of a power-integrated wireless neural recording system that seamlessly conforms to the cranium. A quasi-solid-state Zn-ion microbattery was 3D-printed as a built-in power source geometrically synchronized to the shape of a mouse skull. Soft deep-brain neural probes, interconnections, and auxiliary electronics were also printed using liquid metals on the cranium with high resolutions. In vivo studies using mice demonstrated the reliability and biocompatibility of this wireless neural recording system, enabling the monitoring of neural activities across extensive brain regions without notable heat generation. This all-printed neural interface system revolutionizes brain research, providing bio-conformable, customizable configurations for improved data quality and naturalistic experimentation.


Asunto(s)
Encéfalo , Cabeza , Animales , Ratones , Reproducibilidad de los Resultados , Cráneo , Electrónica , Tecnología Inalámbrica
20.
BMC Med Res Methodol ; 24(1): 81, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561661

RESUMEN

BACKGROUND: Epidemiological studies in refugee settings are often challenged by the denominator problem, i.e. lack of population at risk data. We develop an empirical approach to address this problem by assessing relationships between occupancy data in refugee centres, number of refugee patients in walk-in clinics, and diseases of the digestive system. METHODS: Individual-level patient data from a primary care surveillance system (PriCarenet) was matched with occupancy data retrieved from immigration authorities. The three relationships were analysed using regression models, considering age, sex, and type of centre. Then predictions for the respective data category not available in each of the relationships were made. Twenty-one German on-site health care facilities in state-level registration and reception centres participated in the study, covering the time period from November 2017 to July 2021. RESULTS: 445 observations ("centre-months") for patient data from electronic health records (EHR, 230 mean walk-in clinics visiting refugee patients per month and centre; standard deviation sd: 202) of a total of 47.617 refugee patients were available, 215 for occupancy data (OCC, mean occupancy of 348 residents, sd: 287), 147 for both (matched), leaving 270 observations without occupancy (EHR-unmatched) and 40 without patient data (OCC-unmatched). The incidence of diseases of the digestive system, using patients as denominators in the different sub-data sets were 9.2% (sd: 5.9) in EHR, 8.8% (sd: 5.1) when matched, 9.6% (sd: 6.4) in EHR- and 12% (sd 2.9) in OCC-unmatched. Using the available or predicted occupancy as denominator yielded average incidence estimates (per centre and month) of 4.7% (sd: 3.2) in matched data, 4.8% (sd: 3.3) in EHR- and 7.4% (sd: 2.7) in OCC-unmatched. CONCLUSIONS: By modelling the ratio between patient and occupancy numbers in refugee centres depending on sex and age, as well as on the total number of patients or occupancy, the denominator problem in health monitoring systems could be mitigated. The approach helped to estimate the missing component of the denominator, and to compare disease frequency across time and refugee centres more accurately using an empirically grounded prediction of disease frequency based on demographic and centre typology. This avoided over-estimation of disease frequency as opposed to the use of patients as denominators.


Asunto(s)
Refugiados , Humanos , Registros Electrónicos de Salud , Emigración e Inmigración , Factores de Riesgo , Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...