RESUMEN
Long interspersed nuclear elements-1 (LINE-1) are mobile DNA elements that comprise the majority of interspersed repeats in the mammalian genome. During the last decade, these transposable sequences have been described as controlling elements involved in transcriptional regulation and genome plasticity. Recently, LINE-1 have been implicated in neurogenesis, but to date little is known about their nuclear organization in neurons. The olfactory epithelium is a site of continuous neurogenesis, and loci of olfactory receptor genes are enriched in LINE-1 copies. Olfactory neurons have a unique inverted nuclear architecture and constitutive heterochromatin forms a block in the center of the nuclei. Our DNA FISH images show that, even though LINE-1 copies are dispersed throughout the mice genome, they are clustered forming a cap around the central heterochromatin block and frequently occupy the same position as facultative heterochromatin in olfactory neurons nuclei. This specific LINE-1 organization could not be observed in other olfactory epithelium cell types. Analyses of H3K27me3 and H3K9me3 ChIP-seq data from olfactory epithelium revealed that LINE-1 copies located at OR gene loci show different enrichment for these heterochromatin marks. We also found that LINE-1 are transcribed in mouse olfactory epithelium. These results suggest that LINE-1 play a role in the olfactory neurons' nuclear architecture. SIGNIFICANCE STATEMENT: LINE-1 are mobile DNA elements and comprise almost 20% of mice and human genomes. These retrotransposons have been implicated in neurogenesis. We show for the first time that LINE-1 retrotransposons have a specific nuclear organization in olfactory neurons, forming aggregates concentric to the heterochromatin block and frequently occupying the same region as facultative heterochromatin. We found that LINE-1 at olfactory receptor gene loci are differently enriched for H3K9me3 and H3K27me3, but LINE-1 transcripts could be detected in the olfactory epithelium. We speculate that these retrotransposons play an active role in olfactory neurons' nuclear architecture.
Asunto(s)
Elementos de Nucleótido Esparcido Largo/fisiología , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Animales , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/fisiología , Heterocromatina/metabolismo , Histonas/metabolismo , Masculino , Ratones Endogámicos C57BL , Receptores Odorantes/genéticaRESUMEN
Breast cancer is the most common cancer type in females worldwide. Environmental exposure to pesticides affecting hormonal homeostasis does not necessarily induce DNA mutations but may influence gene expression by disturbances in epigenetic regulation. Expression of long interspersed nuclear element-1 (LINE-1) has been associated with tumorigenesis in several cancers. In nearly all somatic cells, LINE-1 is silenced by DNA methylation in the 5Ì'UTR and reactivated during disease initiation and/or progression. Strong ligands of aryl hydrocarbon receptor (AhR) activate LINE-1 through the transforming growth factor-ß1 (TGF-ß1)/Smad pathway. Hexachlorobenzene (HCB) and chlorpyrifos (CPF), both weak AhR ligands, promote cell proliferation and migration in breast cancer cells, as well as tumor growth in rat models. In this context, our aim was to examine the effect of these pesticides on LINE-1 expression and ORF1p localization in the triple-negative breast cancer cell line MDA-MB-231 and the non-tumorigenic epithelial breast cell line NMuMG, and to evaluate the role of TGF-ß1 and AhR pathways. Results show that 0.5 µM CPF and 0.005 µM HCB increased LINE-1 mRNA expression through Smad and AhR signaling in MDA-MB-231. In addition, the methylation of the first sites in 5Ì'UTR of LINE-1 was reduced by pesticide exposure, although the farther sites remained unaffected. Pesticides modulated ORF1p localization in MDA-MB-231: 0.005 µM HCB and 50 µM CPF increased nuclear translocation, while both induced cytoplasmic retention at 0.5 and 5 µM. Moreover, both stimulated double-strand breaks, enhancing H2AX phosphorylation, coincidentally with ORF1p nuclear localization. In NMuMG similar results were observed, since they heighten LINE-1 mRNA levels. CPF effect was through AhR and TGF-ß1 signaling, whereas HCB action depends only of AhR. In addition, both pesticides increase ORF1p expression and nuclear localization. Our results provide experimental evidence that HCB and CPF exposure modify LINE-1 methylation levels and induce LINE-1 reactivation, suggesting that epigenetic mechanisms could contribute to pesticide-induced breast cancer progression.