Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Plant Physiol Biochem ; 211: 108613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696868

RESUMEN

Ionic and metal toxicity in plants is still a global problem for the environment, agricultural productivity and ultimately poses human health threats when these metal ions accumulate in edible organs of plants. Metal and ion transport from cytosol to the vacuole is considered an important component of metal and ion tolerance and a plant's potential utility in phytoremediation. Finger millet (Eleusine coracana) is an orphan crop but has prominent nutritional value in comparison to other cereals. Previous transcriptomic studies suggested that one of the calcium/proton exchanger (EcCAX3) is strongly upregulated during different developmental stages of spikes development in plant. This finding led us to speculate that high calcium accumulation in the grain might be because of CAX3 function. Moreover, phylogenetic analysis shows that EcCAX3 is more closely related to foxtail millet, sorghum and rice CAX3 protein. To decipher the functional role of EcCAX3, we have adopted complementation of yeast triple mutant K677 (Δpmc1Δvcx1Δcnb1), which has defective calcium transport machinery. Furthermore, metal tolerance assay shows that EcCAX3 expression conferred tolerance to different metal stresses in yeast. The gain-of-function study suggests that EcCAX3 overexpressing Arabidopsis plants shows better tolerance to higher concentration of different metal ions as compared to wild type Col-0 plants. EcCAX3-overexpression transgenic lines exhibits abundance of metal transporters and cation exchanger transporter transcripts under metal stress conditions. Furthermore, EcCAX3-overexpression lines have higher accumulation of macro- and micro-elements under different metal stress. Overall, this finding highlights the functional role of EcCAX3 in the regulation of metal and ion homeostasis and this could be potentially utilized to engineer metal fortification and generation of stress tolerant crops in near future.


Asunto(s)
Arabidopsis , Eleusine , Plantas Modificadas Genéticamente , Estrés Fisiológico , Eleusine/genética , Eleusine/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Filogenia , Antiportadores/metabolismo , Antiportadores/genética , Metales/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Catión , Proteínas de Arabidopsis
2.
Theor Appl Genet ; 137(6): 139, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771345

RESUMEN

Climate change and population growth pose challenges to food security. Major crops such as maize, wheat, and rice are expected to face yield reductions due to warming in the coming years, highlighting the need for incorporating climate-resilient crops in agricultural production systems. Finger millet (Eleusine coracana (L.) Gaertn) is a nutritious cereal crop adapted to arid regions that could serve as an alternative crop for sustaining the food supply in low rainfall environments where other crops routinely fail. Despite finger millet's nutritional qualities and climate resilience, it is deemed an "orphan crop," neglected by researchers compared to major crops, which has hampered breeding efforts. However, in recent years, finger millet has entered the genomics era. Next-generation sequencing resources, including a chromosome-scale genome assembly, have been developed to support trait characterization. This review discusses the current genetic and genomic resources available for finger millet while addressing the gaps in knowledge and tools that are still needed to aid breeders in bringing finger millet to its full production potential.


Asunto(s)
Productos Agrícolas , Eleusine , Fitomejoramiento , Eleusine/genética , Eleusine/crecimiento & desarrollo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Inseguridad Alimentaria , Genómica , Genoma de Planta , Cambio Climático
3.
Planta ; 259(6): 136, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679693

RESUMEN

MAIN CONCLUSION: Expression profiling of NF-Y transcription factors during dehydration and salt stress in finger millet genotypes contrastingly differing in tolerance levels identifies candidate genes for further characterization and functional studies. The Nuclear Factor-Y (NF-Y) transcription factors are known for imparting abiotic stress tolerance in different plant species. However, there is no information on the role of this transcription factor family in naturally drought-tolerant crop finger millet (Eleusine coracana L.). Therefore, interpretation of expression profiles against drought and salinity stress may provide valuable insights into specific and/or overlapping expression patterns of Eleusine coracana Nuclear Factor-Y (EcNF-Y) genes. Given this, we identified 59 NF-Y (18 NF-YA, 23 NF-YB, and 18 NF-YC) encoding genes and designated them EcNF-Y genes. Expression profiling of these genes was performed in two finger millet genotypes, PES400 (dehydration and salt stress tolerant) and VR708 (dehydration and salt stress sensitive), subjected to PEG-induced dehydration and salt (NaCl) stresses at different time intervals (0, 6, and 12 h). The qRT-PCR expression analysis reveals that the six EcNF-Y genes namely EcNF-YA1, EcNF-YA5, EcNF-YA16, EcNF-YB6, EcNF-YB10, and EcNF-YC2 might be associated with tolerance to both dehydration and salinity stress in early stress condition (6 h), suggesting the involvement of these genes in multiple stress responses in tolerant genotype. In contrast, the transcript abundance of finger millet EcNF-YA5 genes was also observed in the sensitive genotype VR708 under late stress conditions (12 h) of both dehydration and salinity stress. Therefore, the EcNF-YA5 gene might be important for adaptation to salinity and dehydration stress in sensitive finger millet genotypes. Therefore, this gene could be considered as a susceptibility determinant, which can be edited to impart tolerance. The phylogenetic analyses revealed that finger millet NF-Y genes share strong evolutionary and functional relationship to NF-Ys governing response to abiotic stresses in rice, sorghum, maize, and wheat. This is the first report of expression profiling of EcNF-Ys genes identified from the finger millet genome and reveals potential candidate for enhancing dehydration and salt tolerance.


Asunto(s)
Factor de Unión a CCAAT , Eleusine , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Deshidratación/genética , Sequías , Eleusine/genética , Eleusine/metabolismo , Eleusine/fisiología , Perfilación de la Expresión Génica , Genes de Plantas/genética , Genotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
4.
Planta ; 259(6): 139, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687379

RESUMEN

Finger millet (Eleusine coracana) is an essential staple crop in many regions of Africa and Asia, valued for its nutritional content and resilience in challenging agro-ecological conditions. The enhancement of finger millet through genomic resources and breeding methods represents a promising avenue for addressing food and nutritional security. Current efforts in this field have harnessed genomic technologies to decipher the crop's genetic diversity and identify key traits related to yield, disease resistance, and nutritional content. These insights have facilitated the development of improved varieties through selective breeding, accelerating the crop's adaptation to changing environmental conditions. In the future, continued advancements in genomics and breeding methodologies hold the potential to further enhance finger millet's resilience, nutritional value, and productivity, ultimately benefiting both farmers and consumers. This review article synthesizes the current state of research and development in finger millet enhancement through the integration of genomic resources and innovative breeding methods. The utilization of these insights in selective breeding has already yielded promising results in developing improved finger millet varieties that meet the evolving needs of farmers and consumers. Moreover, this article discusses potential future interventions, including the continued advancement of genomics, precision breeding, and sustainable agricultural practices. These interventions hold the promise of further enhancing finger millet's adaptability to changing climates, its nutritional quality, and its overall productivity, thereby contributing to food security and improved livelihoods in finger millet-dependent regions.


Asunto(s)
Eleusine , Genómica , Fitomejoramiento , Eleusine/genética , Fitomejoramiento/métodos , Genómica/métodos , Productos Agrícolas/genética , Genoma de Planta , Valor Nutritivo , Variación Genética , Resistencia a la Enfermedad/genética
5.
Sci Rep ; 14(1): 460, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172143

RESUMEN

Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353 mg kg-1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7 mg kg-1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1 mg kg-1 for Fe and 36.6 ± 11 to 60.9 ± 22 µg kg-1 for Se. Phytate (308-360 µg g-1), tannin (0.15-0.51 mg g-1) and oxalate (1.26-4.41 mg g-1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people.


Asunto(s)
Eleusine , Selenio , Humanos , Eleusine/genética , Etiopía , Valor Nutritivo , Oxalatos , Ácido Fítico/análisis , Selenio/análisis , Taninos/análisis
6.
BMC Plant Biol ; 24(1): 75, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281915

RESUMEN

BACKGROUND: The nucleotide binding site leucine rich repeat (NBLRR) genes significantly regulate defences against phytopathogens in plants. The genome-wide identification and analysis of NBLRR genes have been performed in several species. However, the detailed evolution, structure, expression of NBLRRs and functional response to Magnaporthe grisea are unknown in finger millet (Eleusine coracana (L.) Gaertn.). RESULTS: The genome-wide scanning of the finger millet genome resulted in 116 NBLRR (EcNBLRRs1-116) encompassing 64 CC-NB-LRR, 47 NB-LRR and 5 CCR-NB-LRR types. The evolutionary studies among the NBLRRs of five Gramineae species, viz., purple false brome (Brachypodium distachyon (L.) P.Beauv.), finger millet (E. coracana), rice (Oryza sativa L.), sorghum (Sorghum bicolor L. (Moench)) and foxtail millet (Setaria italica (L.) P.Beauv.) showed the evolution of NBLRRs in the ancestral lineage of the target species and subsequent divergence through gene-loss events. The purifying selection (Ka/Ks < 1) shaped the expansions of NBLRRs paralogs in finger millet and orthologs among the target Gramineae species. The promoter sequence analysis showed various stress- and phytohormone-responsive cis-acting elements besides growth and development, indicating their potential role in disease defence and regulatory mechanisms. The expression analysis of 22 EcNBLRRs in the genotypes showing contrasting responses to Magnaporthe grisea infection revealed four and five EcNBLRRs in early and late infection stages, respectively. The six of these nine candidate EcNBLRRs proteins, viz., EcNBLRR21, EcNBLRR26, EcNBLRR30, EcNBLRR45, EcNBLRR55 and EcNBLRR76 showed CC, NB and LRR domains, whereas the EcNBLRR23, EcNBLRR32 and EcNBLRR83 showed NB and LRR somains. CONCLUSION: The identification and expression analysis of EcNBLRRs showed the role of EcNBLRR genes in assigning blast resistance in finger millet. These results pave the foundation for in-depth and targeted functional analysis of EcNBLRRs through genome editing and transgenic approaches.


Asunto(s)
Eleusine , Eleusine/genética , Pyricularia grisea , Nucleótidos/metabolismo , Genotipo , Sitios de Unión , Filogenia
7.
Plant Genome ; 17(1): e20392, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37986545

RESUMEN

Advances in sequencing technologies mean that insights into crop diversification can now be explored in crops beyond major staples. We use a genome assembly of finger millet, an allotetraploid orphan crop, to analyze DArTseq single nucleotide polymorphisms (SNPs) at the whole and sub-genome level. A set of 8778 SNPs and 13 agronomic traits was used to characterize a diverse panel of 423 landraces from Africa and Asia. Through principal component analysis (PCA) and discriminant analysis of principal components, four distinct groups of accessions were identified that coincided with the primary geographic regions of finger millet cultivation. Notably, East Africa, presumed to be the crop's origin, exhibited the lowest genetic diversity. The PCA of phenotypic data also revealed geographic differentiation, albeit with differing relationships among geographic areas than indicated with genomic data. Further exploration of the sub-genomes A and B using neighbor-joining trees revealed distinct features that provide supporting evidence for the complex evolutionary history of finger millet. Although genome-wide association study found only a limited number of significant marker-trait associations, a clustering approach based on the distribution of marker effects obtained from a ridge regression genomic model was employed to investigate trait complexity. This analysis uncovered two distinct clusters. Overall, the findings suggest that finger millet has undergone complex and context-specific diversification, indicative of a lengthy domestication history. These analyses provide insights for the future development of finger millet.


Asunto(s)
Eleusine , Eleusine/genética , Estudio de Asociación del Genoma Completo , Asia , Fenotipo , Genómica
8.
Nat Commun ; 14(1): 4865, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567866

RESUMEN

Genomic structural variation (SV) has profound effects on organismal evolution; often serving as a source of novel genetic variation. Gene copy number variation (CNV), one type of SV, has repeatedly been associated with adaptive evolution in eukaryotes, especially with environmental stress. Resistance to the widely used herbicide, glyphosate, has evolved through target-site CNV in many weedy plant species, including the economically important grass, Eleusine indica (goosegrass); however, the origin and mechanism of these CNVs remain elusive in many weed species due to limited genetic and genomic resources. To study this CNV in goosegrass, we present high-quality reference genomes for glyphosate-susceptible and -resistant goosegrass lines and fine-assembles of the duplication of glyphosate's target site gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). We reveal a unique rearrangement of EPSPS involving chromosome subtelomeres. This discovery adds to the limited knowledge of the importance of subtelomeres as genetic variation generators and provides another unique example for herbicide resistance evolution.


Asunto(s)
Eleusine , Eleusine/genética , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Variaciones en el Número de Copia de ADN/genética , Fosfatos , Glifosato
9.
Pestic Biochem Physiol ; 194: 105530, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532339

RESUMEN

Eleusine indica causes problems in direct-seeding rice fields across Jiangsu Province in China. Long-term application of chemical herbicides has led to the widespread evolution of resistance in E. indica. In this study, we surveyed the resistance level of cyhalofop-butyl (CyB) in 19 field-collected E. indica biotypes, and characterized its underlying resistance mechanisms. All 19 biotypes evolved moderate- to high-level resistance to CyB (from 5.8- to 171.1-fold). 18 biotypes had a target-site mechanism with Trp-1999-Ser, Trp-2027-Cys, or Asp-2078-Gly mutations, respectively. One biotype (JSSQ-1) was identified to have metabolic resistance, in which malathion pretreatment significantly reduced the CyB resistance, and cyhalofop acid was degraded 1.7- to 2.5-times faster in this biotype compared with a susceptible control. Furthermore, the JSSQ-1 biotype showed multiple resistance to acetyl-CoA carboxylase (ACCase) inhibitor metamifop (RI = 4.6) and fenoxaprop-p-ethyl (RI = 5.1), acetolactate synthase (ALS) inhibitor imazethapyr (RI = 4.1), and hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione (RI = 3.5). In addition, 11 out of 19 E. indica biotypes exhibited multiple resistance to glyphosate. This research has identified the widespread occurrence of CyB resistance in E. indica, attributed to target-site mutations or enhanced metabolism. Moreover, certain biotypes have exhibited resistance to multiple herbicides or even cross-resistance. Consequently, there is an urgent need to implement diverse weed management practices to effectively combat the proliferation of this weed in rice fields.


Asunto(s)
Eleusine , Herbicidas , Oryza , Eleusine/genética , Acetil-CoA Carboxilasa/metabolismo , Resistencia a los Herbicidas/genética , Oryza/genética , Oryza/metabolismo , Mutación , Herbicidas/farmacología
10.
Nat Commun ; 14(1): 3694, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344528

RESUMEN

Finger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21st century, here we present the assembly and annotation of a chromosome-scale reference genome. We show that this ~1.3 million years old allotetraploid has a high level of homoeologous gene retention and lacks subgenome dominance. Population structure is mainly driven by the differential presence of large wild segments in the pericentromeric regions of several chromosomes. Trait mapping, followed by variant analysis of gene candidates, reveals that loss of purple coloration of anthers and stigma is associated with loss-of-function mutations in the finger millet orthologs of the maize R1/B1 and Arabidopsis GL3/EGL3 anthocyanin regulatory genes. Proanthocyanidin production in seed is not affected by these gene knockouts.


Asunto(s)
Eleusine , Humanos , Lactante , Eleusine/genética , Fitomejoramiento , Genoma de Planta/genética , Fenotipo , África Oriental
11.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175957

RESUMEN

Gene mutation is a basic evolutionary mechanism in plants under selection pressure of herbicides. Such mutation has pleiotropic effects on plant growth. We systemically investigated the effects of Pro106Leu (P106L), Pro106Ser (P106S), and Thr102Ile + Pro106Ser (TIPS) mutations on EPSPS functionality and fitness traits in Eleusine indica at the biochemical and physiological levels. The affinity of natural EPSPS for glyphosate was 53.8 times higher than that for phosphoenolpyruvate (PEP), as revealed by the dissociation constant; the constant decreased in both the P106L (39.9-fold) and P106S (46.9-fold) mutants but increased in the TIPS (87.5-fold) mutant. The Km (PEP) values of the P106L, P106S, and TIPS mutants were 2.4-, 0.7-, and 4.1-fold higher than that of natural EPSPS, corresponding to resistance levels of 2.5, 1.9, and 11.4, respectively. The catalytic efficiency values (maximum reaction rates) were 0.89-, 0.94-, and 0.26-fold higher than that of natural EPSPS. The levels of metabolites related to amino acids and nucleotides were significantly reduced in the mutated plants. The fitness costs were substantial for the biomass, total leaf area, seed number, and seedling emergence throughout the growth period in the plants with P106L and TIPS mutations. These results provide insights into EPSPS kinetics and their effect on plant growth.


Asunto(s)
Eleusine , Herbicidas , Eleusine/genética , Eleusine/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Resistencia a los Herbicidas/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Herbicidas/farmacología , Herbicidas/metabolismo , Glifosato
12.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047599

RESUMEN

Eleusine indica (goosegrass) is a problematic weed worldwide known for its multi-herbicide tolerance/resistance biotype. However, a genetic transformation method in goosegrass has not been successfully established, making a bottleneck for functional genomics studies in this species. Here, we report a successful Agrobacterium-mediated transformation method for goosegrass. Firstly, we optimized conditions for breaking seed dormancy and increasing seed germination rate. A higher callus induction rate from germinated seeds was obtained in N6 than in MS or B5 medium. Then the optimal transformation efficiency of the gus reporter gene was obtained by infection with Agrobacterium tumefaciens culture of OD600 = 0.5 for 30 min, followed by 3 days of co-cultivation with 300 µmol/L acetosyringone. Concentrations of 20 mg L-1 kanamycin and 100 mg L-1 timentin were used to select the transformed calli. The optimal rate of regeneration of the calli was generated by using 0.50 mg L-1 6-BA and 0.50 mg L-1 KT in the culture medium. Then, using this transformation method, we overexpressed the paraquat-resistant EiKCS gene into a paraquat-susceptible goosegrass biotype MZ04 and confirmed the stable inheritance of paraquat-resistance in the transgenic goosegrass lines. This approach may provide a potential mechanism for the evolution of paraquat-resistant goosegrass and a promising gene for the manipulation of paraquat-resistance plants. This study is novel and valuable in future research using similar methods for herbicide resistance.


Asunto(s)
Eleusine , Paraquat , Paraquat/farmacología , Eleusine/genética , Agrobacterium tumefaciens/genética , Resistencia a los Herbicidas/genética , Transformación Genética , Plantas Modificadas Genéticamente/genética
13.
Curr Microbiol ; 80(5): 186, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37071197

RESUMEN

Globally, man-made agrochemicals plays crucial role in plant growth promotion and boost crop yield. The agrochemicals overuse leaves the detrimental damage on the environment and humans. Biostimulants developed from single or multiple microbes (archaea, bacteria, and fungi) could be the appropriate alternative of agrochemical which sustains the agriculture as well as environment. In the present investigation, 93 beneficial bacteria associated with rhizospheric and endophytic region were isolated using diverse growth media. The isolated bacteria were screened for macronutrients availing traits including dinitrogen fixation, phosphorus and potassium solubilization. The bacterial consortium was developed using selected bacteria with multifunctional attributes and evaluated for the growth promotion of finger millet crop. Three potent NPK strains were identified as Erwinia rhapontici EU-FMEN-9 (N-fixer), Paenibacillus tylopili EU-FMRP-14 (P-solubilizer) and Serratia marcescens EU-FMRK-41 (K-solubilizer) using 16S rRNA gene sequencing and BLAST analysis. The developed bacterial consortium inoculation on finger millet resulted in the improvement of growth and physiological parameters with respect to chemical fertilizer and control. The compatible mixture of bacteria was found to have more ability to increase the growth of finger millet and it might be utilized as biostimulants for nutri-cereal crops growing in hilly regions.


Asunto(s)
Eleusine , Humanos , Eleusine/genética , ARN Ribosómico 16S/genética , Fenotipo , Grano Comestible
14.
PLoS One ; 18(2): e0277499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36724188

RESUMEN

Spatial variation and genotype by environment (GxE) interaction are common in varietal selection field trials and pose a significant challenge for plant breeders when comparing the genetic potential of different varieties. Efficient statistical methods must be employed for the evaluation of finger millet breeding trials to accurately select superior varieties that contribute to agricultural productivity. The objective of this study was to improve selection strategies in finger millet breeding in Ethiopia through modeling of spatial field trends and the GxE interaction. A dataset of seven multi-environment trials (MET) conducted in randomized complete block design (RCBD) with two replications laid out in rectangle (row x column) arrays of plots was used in this study. The results revealed that, under the linear mixed model, the spatial and factor analytic (FA) models were efficient methods of data analysis for this study, and this was demonstrated with evidence of heritability measure. We found two clusters of correlated environments that helped to select superior and stable varieties through ranking average Best Linear Unbiased Predictors (BLUPs) within clusters. The first cluster was chosen because it contained a greater number of environments with high heritability. Based on this cluster, Bako-09, 203439, 203325, and 203347 were the top four varieties with relatively high yield performance and stability across correlated environments. Hence, scaling up the use of this efficient analysis method will improve the selection of superior finger millet varieties.


Asunto(s)
Eleusine , Eleusine/genética , Etiopía , Genotipo , Modelos Estadísticos , Fitomejoramiento
15.
Gene ; 854: 147115, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36526121

RESUMEN

Finger millet (Eleusine coracana L.) is climate resilient minor millet of Asia and Africa with wide adaptation and unparallel nutritional profile. To date, genomic resources available in finger millet are scanty and genetic control of agronomic traits remains elusive. Here, a collection of eco-geographically diverse 186 genotypes was quantified for variation in 13 agronomic traits and reaction to blast to identify marker-trait associations (MTAs) using genotyping-by-sequencing (GBS) and genome-wide association study (GWAS). GBS generated 2977 high quality single nucleotide polymorphism (SNPs) markers and identified three subpopulations with varying admixture levels. General linear and mixed model approaches of GWAS to correct for population structure and genetic relatedness identified 132 common MTAs for agronomic traits across the years. The phenotypic variance explained by the makers varied from 4.8% (TP692389-flag leaf width) to 20% (TP714446-green fodder weight). Of these, 26 MTAs showed homology with candidate genes having role in plant growth, development and photosynthesis in the genomes of foxtail millet, rice, maize, wheat and barley. We also found 4 common MTAs for neck blast resistance, which explained 5.9-15.1% phenotypic variance. Three MTAs for neck blast resistance showed orthologues in related genera having putative functions in pathogen defense in plants. The results of this work lay a foundation for understanding the genetic architecture of agronomic traits and blast resistance in finger millet and provide a framework for genomics assisted breeding.


Asunto(s)
Eleusine , Estudio de Asociación del Genoma Completo , Eleusine/genética , Fitomejoramiento , Mapeo Cromosómico/métodos , Fenotipo , Genotipo , Genómica , Polimorfismo de Nucleótido Simple
16.
Biotechnol Lett ; 44(12): 1379-1387, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183295

RESUMEN

Finger millet [Eleusine coracana (L.) Gaertn.] is an important cereal because of its mineral-nutrition value. With the increasing demand, there is a pressing need to conserve it through biotechnological approaches. High-frequency somatic embryogenesis from seed-derived callus of E. coracana was developed on Murashige-Skoog (MS) medium supplemented with a combination of auxins [Indole-3-acetic acid (IAA), 2,4-Dichlorophenoxy acetic acid (2,4-D)] and cytokinins [6-Benzylaminopurine (BAP), kinetin (KN)] in different concentrations, ranging from 0.1 to 5.0 mg L-1. Seeds cultured on this medium produced three different types of primary callus. Type I callus was very compact and dark brown, type II callus was light brownish and type III callus appeared whitish and light brown. All three types of calli had differential proliferation responses. Type II compact brown calli were obtained on the MS medium supplemented with 1.0 and 1.5 mg 2,4-Dichlorophenoxy acetic acid L-1 and 0.5 mg kinetin L-1. Friable yellowish embryogenic calli with a large number of somatic embryos were developed within 60 days after being transferred to auxins and cytokinin (1.0 and 1.5 mg 2,4-Dichlorophenoxy acetic acid L-1 and 0.5 mg Kinetin L-1) along with 200 mg casein hydrolysate L-1. Germination of somatic embryos on a half-strength MS medium supplemented with 0.1% Kinetin led to the development of healthy plantlets within 30 days. Genetic fingerprinting using random amplified polymorphic DNA (RAPD) revealed high levels of genetic fidelity. The study provides methods and hormonal concentrations required to develop somatic embryos in E. coracana for its genetic improvement and conservation.


Asunto(s)
Eleusine , Cinetina/farmacología , Eleusine/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Ácidos Indolacéticos , Desarrollo Embrionario
17.
Pest Manag Sci ; 78(11): 4764-4773, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35904507

RESUMEN

BACKGROUND: Eleusine indica (L.) Gaertn. (goosegrass) is a major weed in global cropping systems. It has evolved resistance to glyphosate due to single Pro-106-Ser (P106S) or double Thr-102-Ile + Pro-106-Ser (TIPS) EPSPS target site mutations. Here, experiments were conducted to evaluate the single effect of soybean competition and its combined effect with a glyphosate field dose (1080 g ae ha-1 ) on the growth and fitness of plants carrying these glyphosate resistance endowing target site mutations. RESULTS: TIPS E. indica plants are highly glyphosate-resistant but the double mutation endows a substantial fitness cost. The TIPS fitness penalty increased under the effect of soybean competition resulting in a cost of 95%, 95% and 96% in terms of, respectively, vegetative growth, seed mass and seed number investment. Glyphosate treatment of these glyphosate-resistant TIPS plants showed an increase in growth relative to those without glyphosate. Conversely, for the P106S moderate glyphosate resistance mutation, glyphosate treatment alone reduced survival rate, vegetative growth, aboveground biomass (34%), seed mass (48%) and number (52%) of P106S plants relative to the glyphosate nontreated plants. However, under the combined effects of both soybean competition and the field-recommended glyphosate dose, vegetative growth, aboveground biomass, seed mass and number of P106S and TIPS plants were substantially limited (by ≤99%). CONCLUSION: The ecological environment imposed by intense competition from a soybean crop sets a significant constraint for the landscape-level increase of both the E. indica single and double glyphosate resistance mutations in the agroecosystem and highlights the key role of crop competition in limiting the population growth of weeds, whether they are herbicide-resistant or susceptible. © 2022 Society of Chemical Industry.


Asunto(s)
Eleusine , Fabaceae , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Eleusine/genética , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Glycine max/genética , Glifosato
18.
Int J Biol Macromol ; 206: 768-776, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35306013

RESUMEN

Calmodulin-binding transcription activator (CAMTA) are a group of transcription factors that are known to perform various important biological functions in plants. Here, we report 7 putative CAMTA transcription factors identified from finger millet transcriptome data. They were further analyzed for physicochemical properties, subcellular localization, conserved domains and motifs, Gene Ontology (GO) terms, phylogeny, 3D structure prediction and CAMTA-Ca2+-Calmodulin interaction through protein-protein docking. All EcCAMTAs were found to be localized in the nucleus and possessed a calmodulin binding domain (CaMBD). GO results indicated the involvement of CAMTAs in DNA binding and protein binding molecular functions. Phylogenetic analysis classified EcCAMTA genes into 3-subgroups. 3D-structure of CAMTA proteins was elucidated through ab-initio protein modeling and its interaction with Calmodulin was investigated by docking studies. Our study provides molecular insight into the structure and function of CAMTA genes in finger millet and also highlights the role of omics-based in-silico approaches for identification of novel gene families in the absence of a reference genome or annotated database. This being the first study of CAMTA transcription factor family in finger millet, it could serve as a resource for further studies of CAMTA genes either in finger millet or other related millets and cereal crops.


Asunto(s)
Eleusine , Calmodulina/genética , Eleusine/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
19.
Pestic Biochem Physiol ; 182: 105040, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35249648

RESUMEN

Long-term reliance on herbicide weed control has led to resistance evolution in Eleusine indica in sugarcane fields of Guangxi Zhuang autonomous region. Ninety-six E. indica lines were collected from this region, and their response was tested to six herbicides: glyphosate; glufosinate; PSII-inhibitors diuron and atrazine; and PSI inhibitors paraquat and diquat. Target-site resistance mechanisms were examined in specific lines with multiple resistance to three herbicide modes of action. Of 96 E. indica lines, 51, 26, and 24 lines had resistance to diuron, atrazine, and diquat, respectively, while 14 and 9 had resistance to paraquat and glyphosate. Among 25 lines tested with multiple resistance, 7 lines exhibited resistance to three herbicide modes of action. In two multiple resistant lines (GXER2, GXER5), amplification/over-expression/mutations of the EPSPS gene contributed to the very high-level (up to 109-fold) glyphosate resistance. No target-site mutations/over-expression were identified in the psbA gene in these two lines, so non-target-site resistance mechanisms were likely responsible for the low-level (3-fold) resistance to the PSII herbicides diuron and atrazine. A high-level (23-fold) of paraquat resistance was observed in GXER5, and a low-level (5-fold) paraquat resistance was found in GXER2. Multiple herbicide resistance in E. indica has evolved in sugarcane fields of Guangxi Zhuang autonomous region with diverse resistance mechanisms. Therefore, diversified weed control tactics should be adopted to prevent this weed.


Asunto(s)
Eleusine , Herbicidas , Saccharum , China , Eleusine/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Saccharum/genética
20.
Pest Manag Sci ; 78(2): 499-505, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34553491

RESUMEN

BACKGROUND: Turfgrass managers reported poor Eleusine indica control following applications of the mitosis-inhibiting herbicide dithiopyr in cool-season turfgrass. Field, glasshouse, and laboratory experiments were conducted to understand the response of these biotypes to dithiopyr and prodiamine. RESULTS: In field experiments at two locations with putative dithiopyr-resistant E. indica, preemergence applications of dithiopyr provided no E. indica control. Single applications of the protoporphyrinogen oxidase (PPO)-inhibitor, oxadiazon, provided > 85% control at these locations. When subjected to agar-based bioassays, root growth of putative resistant biotypes planted with 0.01 mmol L-1 dithiopyr was slightly reduced (< 25%) whereas roots were completely inhibited in the susceptible biotype. Glasshouse whole plant rate-response experiments found that the cytochrome P450 inhibitor, piperonyl butoxide (PBO), did not increase the sensitivity of these putative resistant biotypes to dithiopyr. Sequencing of α-tubulin 1 (TUA1) revealed a Leu-136-Phe substitution in both dithiopyr-resistant populations. CONCLUSION: Eleusine indica biotypes with resistance to dithiopyr are present in cool-season turfgrass systems in the United States. Resistance is possibly related to a single nucleotide polymorphism (SNP) of an α-tubulin gene. If turfgrass managers suspect resistance to dithiopyr, oxadiazon can still be an effective alternative for preemergence control. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Eleusine , Herbicidas , Eleusine/genética , Resistencia a los Herbicidas , Herbicidas/farmacología , Piridinas , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...