Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.253
Filtrar
1.
BMC Biotechnol ; 24(1): 29, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720285

RESUMEN

This research investigates the efficacy of a high-performance pilot-scale Internal Circulation Anaerobic Reactor inoculated with Granular Sludge (ICAGSR) for treating cattle slaughterhouse wastewater while concurrently generating biogas. The primary objective is to assess the efficiency and performance of ICAGSR in terms of organic pollutant removal and biogas production using granular anaerobic sludge. The research methodology entails operating the ICAGSR system under ambient conditions and systematically varying key parameters, including different Hydraulic Retention Times (HRTs) (24, 12, and 8 h) and Organic Loading Rates (OLRs) (3.3, 6.14, and 12.83 kg COD/m³. d). The study focuses on evaluating pollutants' removal and biogas production rates. Results reveal that the ICAGSR system achieves exceptional removal efficiency for organic pollutants, with Chemical Oxygen Demand (COD) removal exceeding 74%, 67%, and 68% at HRTs of 24, 12, and 8 h, respectively. Furthermore, the system demonstrates stable and sustainable biogas production, maintaining average methane contents of 80%, 76%, and 72% throughout the experimental period. The successful operation of the ICAGSR system underscores its potential as a viable technology for treating cattle slaughterhouse wastewater and generating renewable biogas. In conclusion, this study contributes to wastewater treatment and renewable energy production by providing a comprehensive analysis of the ICAGSR system's hydrodynamic properties. The research enhances our understanding of the system's performance optimization under varying conditions, emphasizing the benefits of utilizing ICAGSR reactors with granular sludge as an effective and sustainable approach. Identifying current gaps, future research directions aim to further refine and broaden the application of ICAGSR technology in wastewater treatment and renewable energy initiatives.


Asunto(s)
Mataderos , Biocombustibles , Reactores Biológicos , Aguas del Alcantarillado , Aguas Residuales , Animales , Bovinos , Aguas del Alcantarillado/microbiología , Aguas Residuales/química , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Metano/metabolismo , Análisis de la Demanda Biológica de Oxígeno
2.
J Hazard Mater ; 471: 134451, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691935

RESUMEN

Anaerobic biotechnology for wastewaters treatment can nowadays be considered as state of the art methods. Nonetheless, this technology exhibits certain inherent limitations when employed for industrial wastewater treatment, encompassing elevated substrate consumption, diminished electron transfer efficiency, and compromised system stability. To address the above issues, increasing interest is being given to the potential of using conductive non-biological materials, e,g., iron sulfide (FeS), as a readily accessible electron donor and electron shuttle in the biological decontamination process. In this study, Mackinawite nanoparticles (FeS NPs) were studied for their ability to serve as electron donors for p-chloronitrobenzene (p-CNB) anaerobic reduction within a coupled system. This coupled system achieved an impressive p-CNB removal efficiency of 78.3 ± 2.9% at a FeS NPs dosage of 1 mg/L, surpassing the efficiencies of 62.1 ± 1.5% of abiotic and 30.6 ± 1.6% of biotic control systems, respectively. Notably, the coupled system exhibited exclusive formation of aniline (AN), indicating the partial dechlorination of p-CNB. The improvements observed in the coupled system were attributed to the increased activity in the electron transport system (ETS), which enhanced the sludge conductivity and nitroaromatic reductases activity. The analysis of equivalent electron donors confirmed that the S2- ions dominated the anaerobic reduction of p-CNB in the coupled system. However, the anaerobic reduction of p-CNB would be adversely inhibited when the FeS NPs dosage exceeded 5 g/L. In a continuous operation, the p-CNB concentration and HRT were optimized as 125 mg/L and 40 h, respectively, resulting in an outstanding p-CNB removal efficiency exceeding 94.0% after 160 days. During the anaerobic reduction process, as contributed by the predominant bacterium of Thiobacillus with a 6.6% relative abundance, a mass of p-chloroaniline (p-CAN) and AN were generated. Additionally, Desulfomonile was emerged with abundances ranging from 0.3 to 0.7%, which was also beneficial for the reduction of p-CNB to AN. The long-term stable performance of the coupled system highlighted that anaerobic technology mediated by FeS NPs has a promising potential for the treatment of wastewater containing chlorinated nitroaromatic compounds, especially without the aid of organic co-substrates.


Asunto(s)
Compuestos Ferrosos , Nitrobencenos , Anaerobiosis , Nitrobencenos/metabolismo , Nitrobencenos/química , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Nanopartículas/química , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Compuestos de Anilina/química , Compuestos de Anilina/metabolismo , Aguas Residuales/química , Reactores Biológicos
3.
Environ Monit Assess ; 196(5): 492, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691228

RESUMEN

Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.


Asunto(s)
Compuestos de Bencidrilo , Carbón Orgánico , Fenoles , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/análisis , Fenoles/análisis , Fenoles/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos
4.
Water Sci Technol ; 89(9): 2240-2253, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747947

RESUMEN

The banana tree circle (BTC) is a low-cost system for local greywater management, using a natural treatment and disposal process, providing additional resource recovery benefits. However, there are no standard design criteria for BTC that would allow for quality control of its efficiency and sustainability, and little is currently known about the full-scale performance of BTC. Based on the scoping literature review of 31 documents in the scientific database and eight documents from grey literature, a standard design model was proposed for the BTC technology based on the concept of water balance, greywater flows, rain, infiltration, and evapotranspiration. The first two steps of the BTC design were determining the areas required for infiltration and evapotranspiration. A cylindrical form trench, the soil percolation rate, and the hydraulic loading rate were considered for the infiltration area. The banana trees' evapotranspiration rate was taken into consideration for the evapotranspiration area. The proposed model was applied in a case study where we used a trench with 0.8 m depth and 1.5 m diameter. This study proposes a standard design criterion for the BTC based on environmental factors, and the scoping of the literature provides the basis for future studies to evaluate its environmental sustainability.


Asunto(s)
Modelos Teóricos , Musa , Conservación de los Recursos Naturales/métodos , Eliminación de Residuos Líquidos/métodos , Árboles
5.
Water Sci Technol ; 89(9): 2290-2310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747950

RESUMEN

In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper explores cutting-edge membrane-based approaches, including reverse osmosis, nanofiltration, ultrafiltration, microfiltration, gas separation membranes, and pervaporation. Each technology's efficacy in removing distinct organic pollutants while producing purified water is scrutinized. This review delves into membrane fouling, discussing its influencing factors and preventative strategies. It sheds light on the merits, limitations, and prospects of these various membrane techniques, contributing to the advancement of wastewater treatment. It advocates for future research in membrane technology with a focus on fouling control and the development of energy-efficient devices. Interdisciplinary collaboration among researchers, engineers, policymakers, and industry players is vital for shaping water purification innovation. Ongoing research and collaboration position us to fulfill the promise of accessible, clean water for all.


Asunto(s)
Membranas Artificiales , Contaminantes Químicos del Agua , Purificación del Agua , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Filtración/métodos , Filtración/instrumentación , Ultrafiltración/métodos , Compuestos Orgánicos/aislamiento & purificación
6.
Water Sci Technol ; 89(9): 2311-2325, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747951

RESUMEN

Rational disposal of sludge is an ongoing concern. This work is the first attempt for in-depth statistical analysis of anaerobic digestion (AD) research in recent three decades (1986-2022) using both quantitative and qualitative approaches in bibliometrics to investigate the research progress, trends and hot spots. All publications in the Web of Science Core Collection database from 1986 to April 4, 2022 were analyzed. Results showed that the research on AD started in 1999 and the number of papers significantly increased since 2012. The research about the disposal of sewage sludge mainly focuses on energy recovery (e.g. methane and short chain volatile organic acids) by AD. Besides, different pretreatment technologies were studied in this study to eliminate the negative effects on the disposal of sludge caused by hydrolysis (rate-limiting step of AD), water content (increasing the costs) and heavy metal (toxic to the environment) of sludge. Of those, the treatment technologies related to direct interspecies electron transfer were worth further studied in the future. Towards that end, iron conductive material, iron-based advanced oxidation and biological treatment were concluded as the prospective technologies and worth to further study.


Asunto(s)
Bibliometría , Aguas del Alcantarillado , Anaerobiosis , Eliminación de Residuos Líquidos/métodos
7.
Water Sci Technol ; 89(9): 2342-2366, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747953

RESUMEN

To investigate the influence of carbonization process parameters on the characteristics of municipal sludge carbonization products, this study selected carbonization temperatures of 300-700 °C and carbonization times of 0.5-1.5 h to carbonize municipal sludge. The results showed that with an increase in temperature and carbonization time, the sludge was carbonized more completely, and the structure and performance characteristics of the sludge changed significantly. Organic matter was continuously cracked, the amorphous nature of the material was reduced, its morphology was transformed into an increasing number of regular crystalline structures, and the content of carbon continued to decrease, from the initial 52.85 to 38.77%, while the content of inorganic species consisting continued to increase. The conductivity was reduced by 87.8%, and the degree of conversion of salt ions into their residual and insoluble states was significant. Natural water absorption in the sludge decreased from 8.13 to 1.29%, and hydrophobicity increased. The dry-basis higher calorific value decreased from 8,703 to 3,574 kJ/kg. Heavy metals were concentrated by a factor of 2-3, but the content of the available state was very low. The results of this study provide important technological support for the selection of suitable carbonization process conditions and for resource utilization.


Asunto(s)
Carbono , Aguas del Alcantarillado , Temperatura , Aguas del Alcantarillado/química , Carbono/química , Eliminación de Residuos Líquidos/métodos , Factores de Tiempo , Metales Pesados/química
8.
Water Sci Technol ; 89(9): 2538-2557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747966

RESUMEN

Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm2, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn2+, Cu2+, Ni2+, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.


Asunto(s)
Membranas Artificiales , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Galvanoplastia , Purificación del Agua/métodos , Metales Pesados , Electrocoagulación/métodos
9.
Water Environ Res ; 96(5): e11018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712584

RESUMEN

Applicable and low-cost ultrafiltration membranes based on waste polystyrene (WPS) blend and poly vinylidene fluoride (PVDF) were effectively cast on nonwoven support using phase inversion method. Analysis was done into how the WPS ratio affected the morphology and antifouling performance of the fabricated membranes. Cross flow filtration of pure water and various types of polluted aqueous solutions as the feed was used to assess the performance of the membranes. The morphology analysis shows that the WPS/PVDF membrane layer has completely changed from a spongy structure to a finger-like structure. In addition, the modified membrane with 50% WPS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection of the membrane with a reduction in permeate flux due to the addition of PVDF. With a water permeability of 50 LMH and 44 LMH, respectively, the optimized WPS-PVDF membrane with 50% WPS could reject 81% and 74% of Congo red dye (CR) and methylene blue dye (MB), respectively. The flux recovery ratio (FRR) reached to 88.2% by increasing PVDF concentration with 50% wt. Also, this membrane has the lowest irreversible fouling (Rir) value of 11.7% and lowest reversible fouling (Rr) value of 27.9%. The percent of cleaning efficiency reach to 71%, 90%, and 85% after eight cycles of humic acid (HA), CR, and MB filtration, respectively, for the modified PS-PVDF (50%-50%). However, higher PVDF values cause the membrane's pores to become clogged, increase the irreversible fouling, and decrease the cleaning efficiency. In addition to providing promising filtration results, the modified membrane is inexpensive because it was made from waste polystyrene, and as a result, it could be scaled up to treat colored wastewater produced by textile industries. PRACTITIONER POINTS: Recycling of plastic waste as an UF membrane for water/wastewater treatment was successfully prepared and investigated. Mechanical properties showed reasonable response with adding PVDF. The modified membrane with 50% PS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection.


Asunto(s)
Colorantes , Polímeros de Fluorocarbono , Membranas Artificiales , Ultrafiltración , Contaminantes Químicos del Agua , Purificación del Agua , Ultrafiltración/métodos , Colorantes/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Plásticos/química , Eliminación de Residuos Líquidos/métodos , Polivinilos/química , Permeabilidad
10.
Water Environ Res ; 96(5): e11032, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698675

RESUMEN

In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.


Asunto(s)
Reactores Biológicos , Cerámica , Membranas Artificiales , Cerámica/química , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/química , Incrustaciones Biológicas/prevención & control
11.
Environ Monit Assess ; 196(6): 502, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700594

RESUMEN

Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Aguas Residuales , Contaminantes Químicos del Agua , Metales Pesados/metabolismo , Metales Pesados/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Plantas/metabolismo
12.
J Vis Exp ; (206)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38738879

RESUMEN

The use of respirometry to study the biokinetics of microbiota treating wastewater or digesting wastewater sludges has become more prevalent over the last few decades. The use of respirometry to examine the biokinetics of anaerobic microbiota co-digesting organic waste streams such as wastewater sludge and food scrap is an area of active research. To date, no visualized protocol has been published on the topic. Accordingly, in this protocol, we configured a respirometer to measure methane production and flow rate over time using three different food-to-microorganism (F:M) ratios and food scrap waste and waste-activated sludge as substrates. The resulting data, coupled with substrate utilization measurements, provides the basis for understanding how different substrate concentrations influence the rate at which anaerobic microbiota produce methane. Additionally, this protocol presents a method to develop biokinetic parameters (e.g., methane production rate constant and yield). Others can use this respirometry protocol to examine organic degradation under anaerobic conditions and develop microbial parameters.


Asunto(s)
Metano , Aguas del Alcantarillado , Metano/metabolismo , Aguas del Alcantarillado/microbiología , Anaerobiosis , Eliminación de Residuos Líquidos/métodos
13.
Water Environ Res ; 96(5): e11036, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38740567

RESUMEN

The cheese making and vegetable processing industries generate immense volumes of high-nitrogen wastewater that is often treated at rural facilities using land applications. Laboratory incubation results showed denitrification decreased with temperature in industry facility soils but remained high in soils from agricultural sites (75% at 2.1°C). 16S rRNA, phospholipid fatty acid (PLFA), and soil respiration analyses were conducted to investigate potential soil microbiome impacts. Biotic and abiotic system factor correlations showed no clear patterns explaining the divergent denitrification rates. In all three soil types at the phylum level, Actinobacteria, Proteobacteria, and Acidobacteria dominated, whereas at the class level, Nitrososphaeria and Alphaproteobacteria dominated, similar to denitrifying systems such as wetlands, wastewater resource recovery facilities, and wastewater-irrigated agricultural systems. Results show that potential denitrification drivers vary but lay the foundation to develop a better understanding of the key factors regulating denitrification in land application systems and protect local groundwater supplies. PRACTITIONER POINTS: Incubation study denitrification rates decreased as temperatures decreased, potentially leading to groundwater contamination issues during colder months. The three most dominant phyla for all systems are Actinobacteria, Proteobacteria, and Acidobacteria. The dominant class for all systems is Nitrosphaeria (phyla Crenarchaeota). No correlation patterns between denitrification rates and system biotic and abiotic factors were observed that explained system efficiency differences.


Asunto(s)
Queso , Desnitrificación , Microbiología del Suelo , Verduras , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Suelo/química
14.
Waste Manag ; 182: 271-283, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38688046

RESUMEN

High water and pharmaceutical and care products (PPCPs) bounded in sludge flocs limit its utilization and disposal. The advanced oxidation process of perxymonosulfate (PMS) catalyzed by iron salts has been widely used in sludge conditioning. In this study, two iron-rich minerals pyrite and siderite were proposed to enhance sludge dewatering performance and remove the target contaminant of triclosan (TCS). The permanent release of Fe2+ in the activation of PMS made siderite more effective in enhancing sludge dewater with capillary suction time (CST) diminishing by 60.5 %, specific resistance to filtration (SRF) decreasing by 79.2 %, and bound water content (BWC) dropping from 37.1 % to 2.6 % at siderite/PMS dosages of 0.36/0.20 mmol/g-TSS after 20 min of pretreatment. Pyrite/PMS performed slightly inferior under the same conditions and the corresponding CST and SRF decreased by 51.5 % and 71.8 % while the BWC only declined to 17.8 %. Rheological characterization was employed to elucidate the changes in sludge dewatering performance, with siderite/PMS treated sludge showing a 48.3 % reduction in thixotropy, higher than 28.4 % of pyrite/PMS. Oscillation and creep tests further demonstrated the significantly weakened viscoelastic behavior of the sludge by siderite/PMS pretreatment. For TCS mineralization removal, siderite/PMS achieved a high removal efficiency of 43.9 %, in comparison with 39.9 % for pyrite/PMS. The reduction in the sludge solids phase contributed the most to the TCS removal. Free radical quenching assays and EPR spectroscopy showed that both siderite/PMS and pyrite/PMS produced SO4-·  and ·OH, with the latter acting as the major radicals. Besides, the dosage of free radicals generated from siderite/PMS exhibited a lower time-dependence, which also allowed it to outperform in destroying EPS matrix, neutralizing the negative Zeta potential of sludge flocs, and mineralizing macromolecular organic matter.


Asunto(s)
Hierro , Peróxidos , Aguas del Alcantarillado , Triclosán , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/química , Triclosán/química , Hierro/química , Eliminación de Residuos Líquidos/métodos , Peróxidos/química , Contaminantes Químicos del Agua/química , Minerales/química , Oxidación-Reducción
15.
Bioresour Technol ; 401: 130710, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636880

RESUMEN

The integration of high-rate activated sludge (HRAS), an effective carbon redirection technology, with partial nitritation/anammox (PN/A) is a novel AB treatment process for municipal wastewater. In this study, an airlift HRAS reactor was operated in the continuous inflow mode for 200 d at a wastewater treatment plant. The balance between potential PN/A system stability and peak HRAS performance under decreasing hydraulic retention time (HRT) was optimized. Energy consumption and recovery and CO2 emissions were calculated. The results showed that the optimal HRT suitable with the PN/A process was 3 h, achieving 2-3 g/L mixed liquor volatile suspended solid, 67.8 % chemical oxygen demand (COD) recovery, 81 % total COD removal efficiency, 2.27 ± 1.03 g COD/L/d organic loading rate, 62 % aeration reduction, and 0.24 kWh/m3 power recovery potential. Such findings hold practical value and contribute to the development of the optimal AB process capable of achieving energy autonomy and carbon neutrality.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Purificación del Agua , Purificación del Agua/métodos , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Eliminación de Residuos Líquidos/métodos , Factores de Tiempo , Nitrógeno , Dióxido de Carbono , Oxidación-Reducción , Ciudades
16.
Bioresour Technol ; 401: 130713, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641305

RESUMEN

The mainstream anaerobic ammonium oxidation (anammox) faces considerable challenges with low-strength municipal wastewater. A Fe(Ⅱ)-amended partial denitrification coupled anammox (PD/A) process was conducted and achieved a long-term and efficient nitrogen and phosphorus removal, yielding effluent total nitrogen and phosphorus concentrations of 1.97 ± 1.03 mg/L and 0.23 ± 0.13 mg/L, respectively, which could well meet more stringent effluent discharge standard of some wastewater treatment plants in specific geographical locations, e.g., estuaries. Fe(Ⅱ)-driven vivianite formation provided key nucleuses for the optimization of the spatial distribution of heterotrophic and anammox bacteria with enhanced extracellular polymeric substances as key driving forces. Metagenomics analysis further revealed the increase of key genes, enhancing anammox bacteria homeostasis, which also bolstered the resistance to environmental perturbations. This study provided a comprehensive sight into the function of Fe(Ⅱ) in mainstream PD/A process, and explored a promising alternative for synergetic nitrogen and phosphorus removal for low-strength municipal wastewater treatment.


Asunto(s)
Nitrógeno , Fósforo , Aguas Residuales , Fósforo/metabolismo , Nitrógeno/metabolismo , Aguas Residuales/química , Aguas Residuales/microbiología , Bacterias/metabolismo , Bacterias/genética , Purificación del Agua/métodos , Oxidación-Reducción , Desnitrificación , Reactores Biológicos/microbiología , Procesos Heterotróficos , Compuestos Ferrosos/metabolismo , Eliminación de Residuos Líquidos/métodos , Anaerobiosis
17.
Bioresour Technol ; 401: 130735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670293

RESUMEN

Municipal wastewater treatment plants are mostly based on traditional activated sludge (AS) processes. These systems are characterised by major drawbacks: high energy consumption, large amount of excess sludge and high greenhouse gases emissions. Treatment through microalgal-bacterial consortia (MBC) is an alternative and promising solution thanks to lower energy consumption and emissions, biomass production and water sanitation. Here, microbial difference between a traditional anaerobic sludge (AS) and a consortium-based system (photo-sequencing batch reactor (PSBR)) with the same wastewater inlet were characterised through shotgun metagenomics. Stable nitrification was achieved in the PSBR ensuring ammonium removal > 95 % and significant total nitrogen removal thanks to larger flocs enhancing denitrification. The new system showed enhanced pathogen removal, a higher abundance of photosynthetic and denitrifying microorganisms with a reduced emissions potential identifying this novel PSBR as an effective alternative to AS.


Asunto(s)
Bacterias , Reactores Biológicos , Microalgas , Nitrógeno , Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Microalgas/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Reactores Biológicos/microbiología , Bacterias/metabolismo , Consorcios Microbianos/fisiología , Purificación del Agua/métodos , Desnitrificación , Eliminación de Residuos Líquidos/métodos , Nitrificación
18.
J Hazard Mater ; 471: 134340, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640670

RESUMEN

While the effectiveness of Poly-Aluminum Chloride (PAC) coagulation for pollutant removal has been documented across various wastewater scenarios, its specific application in hospital wastewater (HWW) treatment to remove conventional pollutants and hazardous genetic pollutants has not been studied. The research compared three hospital wastewater treatment plants (HWTPs) to address a knowledge gap, including the PAC coagulation-sodium hypochlorite disinfection process (PAC-HWTP), the biological contact oxidation-precipitation-sodium hypochlorite process (BCO-HWTP), and a system using outdated equipment with PAC coagulation (ODE-PAC-HWTP). Effluent compliance with national discharge standards is assessed, with BCO-HWTP meeting standards for direct or indirect discharge into natural aquatic environments. ODE-PAC-HWTP exceeds pretreatment standards for COD and BOD5 concentrations. PAC-HWTP effluent largely adheres to national pretreatment standards, enabling release into municipal sewers for further treatment. Metagenomic analysis reveals that PAC-HWTP exhibits higher removal efficiencies for antibiotic resistance genes, metal resistance genes, mobile genetic elements, and pathogens compared to BCO-HWTP and ODE-PAC-HWTP, achieving average removal rates of 45.13%, 57.54%, 80.61%, and 72.17%, respectively. These results suggests that when discharging treated HWW into municipal sewers for further processing, the use of PAC coagulation process is more feasible and cost-effective compared to BCO technologies. The analysis emphasizes the urgent need to upgrade outdated equipment HWTPs.


Asunto(s)
Hospitales , Oxidación-Reducción , Hipoclorito de Sodio , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Hipoclorito de Sodio/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Desinfección/métodos , Purificación del Agua/métodos , Polímeros/química , Hidróxido de Aluminio
19.
J Hazard Mater ; 471: 134329, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640679

RESUMEN

Due to the refractory of 1 H-1,2,4-triazole (TZ), conventional anaerobic biological treatment technology is usually restricted by low removal efficiency and poor system stability. In this study, TZ biodegradation and nitrate reduction was coupled to improve the removal efficiency of TZ from polluted wastewater. Batch assay was performed with pure culture strain Raoultella sp. NJUST42, which was reported to have the capability to degrade TZ in our previous study. Based on batch assay result, complete removal of TZ could be achieved in the presence of nitrate, whereas only 50% of TZ could be removed in the control system. Long-term stability experiment indicated that the relative abundance of microorganisms (Bacteroidetes_vadinHA17, Georgenia, Anaerolinea, etc) was obviously enhanced under nitrate reduction condition. During long-term period, major intermediates for TZ biodegradation such as [1,2,4]Triazolidine-3,5-diol, hydrazine dibasic carboxylic acid and carbamic acid were detected. A novel TZ biotransformation approach via hydration, TZ-ring cleavage, deamination and oxidation was speculated. PICRUSt1 and KEGG pathway analyses indicated that hydration (dch), oxidation (adhD, oah, pucG, fdhA) of TZ and nitrate reduction (Nar, napA, nrfA, nirBK, norB, nosZ) were significantly enhanced in the presence of nitrate. Moreover, the significant enrichment of TCA cycle (gab, sdh, fum, etc.) indicated that carbon and energy metabolism were facilitated with the addition of nitrate, thus improved TZ catabolism. The proposed mechanism demonstrated that TZ biodegradation coupled with nitrate reduction would be a promising approach for efficient treatment of wastewater contaminated by TZ.


Asunto(s)
Biodegradación Ambiental , Biotransformación , Nitratos , Oxidación-Reducción , Triazoles , Contaminantes Químicos del Agua , Triazoles/metabolismo , Nitratos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Aguas Residuales , Bacterias/metabolismo , Eliminación de Residuos Líquidos/métodos
20.
J Hazard Mater ; 471: 134296, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643574

RESUMEN

The effective removal of viruses from swine wastewater using anaerobic membrane bioreactor (AnMBR) is vital to ecological safety. However, most studies have focused only on disinfectants, whereas the capabilities of the treatment process have not been investigated. In this study, the performance and mechanism of an AnMBR in the removal of porcine hepatitis E virus (HEV), porcine kobuvirus (PKoV), porcine epidemic diarrhea virus (PEDV), and transmissible gastroenteritis coronavirus (TGEV) are systematically investigated. The results show that the AnMBR effectively removes the four viruses, with average removal efficiencies of 1.62, 3.05, 2.41, and 1.34 log for HEV, PKoV, PEDV and TGEV, respectively. Biomass adsorption contributes primarily to the total virus removal in the initial stage of reactor operation, with contributions to HEV and PKoV removal exceeding 71.7 % and 68.2 %, respectively. When the membrane is fouled, membrane rejection dominated virus removal. The membrane rejection contribution test shows the significant contribution of membrane pore foulants (23-76 %). Correlation analysis shows that the surface characteristics and size differences of the four viruses contribute primarily to their different effects on biomass adsorption and membrane rejection. This study provides technical guidance for viral removal during the treatment of high-concentration swine wastewater using an AnMBR.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Aguas Residuales , Animales , Aguas Residuales/virología , Porcinos , Anaerobiosis , Virus ARN/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Biomasa , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...