Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 520
Filtrar
2.
Neural Plast ; 2021: 4894881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659396

RESUMEN

Stem cells have the potential as a regenerative therapy for cerebral ischemia by improving functional outcomes. However, cell transplantation has some limitations, including a low rate of the grafted cell survival. There is still a major challenge of promoting the harmonious symbiosis between grafted cells and the host. Acupuncture can effectively improve the functional outcome after cerebral ischemia. The present study evaluated the therapeutic effects and explored the mechanism of combined medial ganglionic eminence (MGE) neural progenitors differentiated from human embryonic stem cells (hESCs) with electroacupuncture (EA) in a bilateral common carotid artery occlusion (2VO) rat model. The results showed that EA could promote the survival of the grafted MGE neural progenitors differentiated from hESCs and alleviate learning and memory impairment in rats with cerebral ischemia. This may have partially resulted from inhibited expression of TNF-α and IL-1ß and increased vascular endothelial growth factor (VEGF) expression and blood vessel density in the hippocampus. Our findings indicated that EA could promote the survival of the grafted MGE neural progenitors and enhance transplantation therapy's efficacy by promoting angiogenesis and inhibiting inflammation.


Asunto(s)
Isquemia Encefálica/terapia , Electroacupuntura/métodos , Mediadores de Inflamación/antagonistas & inhibidores , Eminencia Media/trasplante , Neovascularización Fisiológica/fisiología , Trasplante de Células Madre/métodos , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Supervivencia Celular/fisiología , Células Cultivadas , Células Madre Embrionarias/fisiología , Células Madre Embrionarias/trasplante , Hipocampo/citología , Hipocampo/fisiología , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Eminencia Media/citología , Eminencia Media/fisiología , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Ratas , Ratas Sprague-Dawley
3.
Nat Commun ; 12(1): 2288, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863883

RESUMEN

Hypothalamic tanycytes in median eminence (ME) are emerging as a crucial cell population that regulates endocrine output, energy balance and the diffusion of blood-born molecules. Tanycytes have recently been considered as potential somatic stem cells in the adult mammalian brain, but their regenerative and tumorigenic capacities are largely unknown. Here we found that Rax+ tanycytes in ME of mice are largely quiescent but quickly enter the cell cycle upon neural injury for self-renewal and regeneration. Mechanistically, Igf1r signaling in tanycytes is required for tissue repair under injury conditions. Furthermore, Braf oncogenic activation is sufficient to transform Rax+ tanycytes into actively dividing tumor cells that eventually develop into a papillary craniopharyngioma-like tumor. Together, these findings uncover the regenerative and tumorigenic potential of tanycytes. Our study offers insights into the properties of tanycytes, which may help to manipulate tanycyte biology for regulating hypothalamic function and investigate the pathogenesis of clinically relevant tumors.


Asunto(s)
Craneofaringioma/patología , Células Ependimogliales/fisiología , Eminencia Media/fisiología , Neoplasias Experimentales/patología , Regeneración , Animales , Carcinogénesis/patología , Autorrenovación de las Células/fisiología , Craneofaringioma/inducido químicamente , Craneofaringioma/genética , Proteínas del Ojo/metabolismo , Femenino , Proteínas de Homeodominio/metabolismo , Eminencia Media/citología , Ratones , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/genética , Proteínas Proto-Oncogénicas B-raf/genética , RNA-Seq , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
4.
Neuron ; 107(2): 306-319.e9, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32407670

RESUMEN

Melanin-concentrating hormone (MCH)-expressing neurons are key regulators of energy and glucose homeostasis. Here, we demonstrate that they provide dense projections to the median eminence (ME) in close proximity to tanycytes and fenestrated vessels. Chemogenetic activation of MCH neurons as well as optogenetic stimulation of their projections in the ME enhance permeability of the ME by increasing fenestrated vascular loops and enhance leptin action in the arcuate nucleus of the hypothalamus (ARC). Unbiased phosphoRiboTrap-based assessment of cell activation upon chemogenetic MCH neuron activation reveals MCH-neuron-dependent regulation of endothelial cells. MCH neurons express the vascular endothelial growth factor A (VEGFA), and blocking VEGF-R signaling attenuates the leptin-sensitizing effect of MCH neuron activation. Our experiments reveal that MCH neurons directly regulate permeability of the ME barrier, linking the activity of energy state and sleep regulatory neurons to the regulation of hormone accessibility to the ARC.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Hormonas Hipotalámicas/fisiología , Eminencia Media/fisiología , Melaninas/fisiología , Neuronas/fisiología , Hormonas Hipofisarias/fisiología , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Vasos Sanguíneos/fisiología , Capilares/fisiología , Núcleo Celular/fisiología , Núcleo Celular/ultraestructura , Células Endoteliales/fisiología , Leptina/fisiología , Eminencia Media/irrigación sanguínea , Ratones , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/biosíntesis
5.
Neuron ; 105(1): 75-92.e5, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31780329

RESUMEN

During neonatal development, sensory cortices generate spontaneous activity patterns shaped by both sensory experience and intrinsic influences. How these patterns contribute to the assembly of neuronal circuits is not clearly understood. Using longitudinal in vivo calcium imaging in un-anesthetized mouse pups, we show that spatially segregated functional assemblies composed of interneurons and pyramidal cells are prominent in the somatosensory cortex by postnatal day (P) 7. Both reduction of GABA release and synaptic inputs onto pyramidal cells erode the emergence of functional topography, leading to increased network synchrony. This aberrant pattern effectively blocks interneuron apoptosis, causing increased survival of parvalbumin and somatostatin interneurons. Furthermore, the effect of GABA on apoptosis is mediated by inputs from medial ganglionic eminence (MGE)-derived but not caudal ganglionic eminence (CGE)-derived interneurons. These findings indicate that immature MGE interneurons are fundamental for shaping GABA-driven activity patterns that balance the number of interneurons integrating into maturing cortical networks.


Asunto(s)
Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Corteza Somatosensorial/fisiología , Animales , Apoptosis/fisiología , Supervivencia Celular/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Neuronas GABAérgicas/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/metabolismo , Masculino , Eminencia Media/fisiología , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Vías Nerviosas/fisiología , Neurogénesis/fisiología , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Somatostatina/metabolismo , Potenciales Sinápticos/fisiología , Ácido gamma-Aminobutírico/metabolismo
6.
Stem Cell Reports ; 12(2): 191-200, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30661995

RESUMEN

Striatal interneurons are born in the medial and caudal ganglionic eminences (MGE and CGE) and play an important role in human striatal function and dysfunction in Huntington's disease and dystonia. MGE/CGE-like neural progenitors have been generated from human pluripotent stem cells (hPSCs) for studying cortical interneuron development and cell therapy for epilepsy and other neurodevelopmental disorders. Here, we report the capacity of hPSC-derived MGE/CGE-like progenitors to differentiate into functional striatal interneurons. In vitro, these hPSC neuronal derivatives expressed cortical and striatal interneuron markers at the mRNA and protein level and displayed maturing electrophysiological properties. Following transplantation into neonatal rat striatum, progenitors differentiated into striatal interneuron subtypes and were consistently found in the nearby septum and hippocampus. These findings highlight the potential for hPSC-derived striatal interneurons as an invaluable tool in modeling striatal development and function in vitro or as a source of cells for regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Cuerpo Estriado/citología , Hipocampo/citología , Interneuronas/citología , Células Madre Pluripotentes/citología , Animales , Cuerpo Estriado/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Humanos , Interneuronas/metabolismo , Eminencia Media/metabolismo , Eminencia Media/fisiología , Neurogénesis/fisiología , Células Madre Pluripotentes/metabolismo , ARN Mensajero/metabolismo , Ratas
7.
J Neurosci ; 39(1): 177-192, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30377227

RESUMEN

The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.


Asunto(s)
Factor de Unión a CCCTC/fisiología , Corteza Cerebral/fisiología , Interneuronas/fisiología , Eminencia Media/fisiología , Animales , Factor de Unión a CCCTC/genética , Recuento de Células , Movimiento Celular/genética , Movimiento Celular/fisiología , Corteza Cerebral/citología , Femenino , Proteínas con Homeodominio LIM/biosíntesis , Proteínas con Homeodominio LIM/genética , Masculino , Eminencia Media/citología , Ratones , Ratones Endogámicos C57BL , Neocórtex/citología , Neocórtex/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Telencéfalo/citología , Telencéfalo/crecimiento & desarrollo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Ácido gamma-Aminobutírico/fisiología
8.
Biochem Biophys Res Commun ; 493(4): 1560-1566, 2017 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-28974418

RESUMEN

Neuronal nitric oxide synthase (nNOS) 1, mainly responsible for NO release in central nervous system (CNS) 2, plays a significant role in multiple physiological functions. However, the function of nNOS+ interneurons in fear learning has not been much explored. Here we focused on the medial ganglionic eminences (MGE) 3-derived nNOS+ interneurons in fear learning. To determine the origin of nNOS+ interneurons, we cultured neurons in vitro from MGE, cortex, lateral ganglionic eminence (LGE) 4, caudal ganglionic eminences (CGE) 5 and preoptic area (POA) 6. The results showed that MGE contained the most abundant precursors of nNOS+ interneurons. Moreover, donor cells from E12.5 embryos demonstrated the highest positive rate of nNOS+ interneurons compared with other embryonic periods (E11.5, E12, E13, E13.5 and E14). Additionally, these cells from E12.5 embryos showed long axonal and abundant dendritic arbors after 10 days culture, indicating the capability to disperse and integrate in host neural circuits after transplantation. To investigate the role of MGE-derived nNOS+ interneurons in fear learning, donor MGE cells were transplanted into dentate gyrus (DG) 7 of nNOS knock-out (nNOS-/-) or wild-type mice. Results showed that the transplantation of MGE cells promoted the acquisition of nNOS-/- but not the wild-type mice, suggesting the importance of nNOS+ neurons in fear acquisition. Moreover, we transplanted MGE cells from nNOS-/- mice or wild-type mice into DG of the nNOS-/- mice and found that only MGE cells from wild-type mice but not the nNOS-/- mice rescued the deficit in acquisition of the nNOS-/- mice, further confirming the positive role of nNOS+ neurons in fear learning.


Asunto(s)
Miedo/fisiología , Interneuronas/fisiología , Eminencia Media/fisiología , Óxido Nítrico Sintasa de Tipo I/fisiología , Animales , Conducta Animal/fisiología , Células Cultivadas , Giro Dentado/citología , Giro Dentado/fisiología , Giro Dentado/cirugía , Interneuronas/citología , Interneuronas/trasplante , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Telencéfalo/citología , Telencéfalo/embriología
9.
An. R. Acad. Farm ; 83(2): 224-240, abr.-jun. 2017. ilus, tab
Artículo en Español | IBECS | ID: ibc-164600

RESUMEN

Desde hace muchos años se considera que el control de la reproducción radica en el cerebro y que el hipotálamo es la región del SNC directamente implicada en esta función. Clásicamente se había descrito un eje hipotálamo-hipofisario-gonadal encargado de controlar la función reproductora. Los avances de los últimos años confirman este concepto, pero se está demostrando que existe una mayor dependencia del eje al estar íntimamente conectado con el resto del SNC, con otros ejes reguladores hipotalámicos (energía y metabolismo, medio líquido interno, control simpático y parasimpático, estrés, hormonas, etc) y con el resto del organismo. Se reciben, además, de manera directa o indirecta, informaciones nerviosas y moleculares del medio interno y de situaciones del medio externo con mayor amplitud y selectividad que lo anteriormente descrito. Las amplias interconexiones que cada vez se van poniendo más de manifiesto (entre los núcleos y neuronas no secretoras y secretoras del hipotálamo; entre éstas neuronas y las extrahipotalámicas; y entre los ejes funcionales descritos), hacen cada vez más difícil describir con exactitud la base morfofuncional de cada individuo de cada especie en cada situación (sexo, edad, estadio del ciclo reproductivo, condiciones externas y externas), máxime cuando existen enormes capacidades de adaptación de las células y los sistemas funcionales. Las neuronas descritas en los últimos años relacionadas con la reproducción son las neuronas secretoras de GnRH, GnIH y Kisspeptina (neuronas productoras de la hormona liberadora de gonadotropina, la hormona inhibidora de las neuronas GnRH y las neuronas reguladoras de GnRH mediante el péptido Kisspeptina), pero todavía se desconoce si existen otros péptidos reguladores de las gonadotropinas hipofisarias así como de otras neuronas (o péptidos) que producen factores controladores de estas neuronas. Sí se sabe que estas neuronas están formadas por subconjuntos que pueden secretar otras substancias y/o ser reguladas de diferente manera. La gran variabilidad de las conexiones sinápticas y la secreción de neuropéptidos parece indicar que es necesario conocer la ‘modalidad funcional’ específica (o cuadro éspecífico de una situación en un individuo de una especie) más que las células intervinientes en un proceso. La compleja interrelación de los subtipos morfofuncionales de las neuronas secretoras y no secretoras de los diferentes núcleos o áreas del hipotálamo relacionadas con la reproducción plantea dudas sobre la actuación terapéutica. Posibles tratamientos farmacológicos y no farmacológicos, estimulando ‘específicamente’ algunos tipos neuronales, pueden tener consecuencias adversas al desestimar conexiones colaterales a otros sistemas o desconocer la existencia de neuronas de un subtipo en otras ‘vía’ o ‘ejes’ funcionales del hipotálamo, con lo que se podrían inducir fenómenos secundarios de gran transcendencia (AU)


For many years, the control of reproduction has been considered a brin function, being the hypothalamus the CNS region directly involved. The main neurons described in recent years related to reproduction are the secretory neurons of GnRH, GnIH and Kisspeptine (gonadotropin-releasing hormone; the gonadotropin-inhibitory hormone and by the peptide Kisspeptine- GnRH regulatory neurons), but it is still unknown whether other pituitary gonadotropin regulatory peptides exist as well as other neurons (or peptides) that produce regulatory factors for these neurons. It is known that these neurons are formed by subsets that can secrete other substances and/or be regulated in different ways. The great variability of the synaptic connections and the secretion of neuropeptides seem to indicate that it is necessary to know the specific ’functional modality’ (or specific picture of a situation in an individual of a species) rather than the cells involved in a process. The complex interrelationship of the morphofunctional subtypes of secretory and non-secreting neurons of the different nuclei or areas of the hypothalamus related to reproduction raises doubts about the therapeutic performance. Possible pharmacological and non-pharmacological treatments, specifically stimulating some neuronal types, may have important side effects by disregarding collateral connections to other systems or by ignoring the existence of neurons of a subtype in other functional ‘axes’ of the hypothalamus (AU)


Asunto(s)
Humanos , Femenino , Embarazo , Fenómenos Fisiológicos Reproductivos , Reproducción , Cerebro/fisiología , Embarazo/fisiología , Hipotálamo/fisiología , Eminencia Media/fisiología , Neuroglía/fisiología
10.
Proc Natl Acad Sci U S A ; 114(9): 2379-2382, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193889

RESUMEN

Small assemblies of hypothalamic "parvocellular" neurons release their neuroendocrine signals at the median eminence (ME) to control long-lasting pituitary hormone rhythms essential for homeostasis. How such rapid hypothalamic neurotransmission leads to slowly evolving hormonal signals remains unknown. Here, we show that the temporal organization of dopamine (DA) release events in freely behaving animals relies on a set of characteristic features that are adapted to the dynamic dopaminergic control of pituitary prolactin secretion, a key reproductive hormone. First, locally generated DA release signals are organized over more than four orders of magnitude (0.001 Hz-10 Hz). Second, these DA events are finely tuned within and between frequency domains as building blocks that recur over days to weeks. Third, an integration time window is detected across the ME and consists of high-frequency DA discharges that are coordinated within the minutes range. Thus, a hierarchical combination of time-scaled neuroendocrine signals displays local-global integration to connect brain-pituitary rhythms and pace hormone secretion.


Asunto(s)
Hipotálamo/fisiología , Eminencia Media/fisiología , Hipófisis/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Prolactina/metabolismo , Ritmo Ultradiano/fisiología , Potenciales de Acción/fisiología , Animales , Relojes Biológicos/fisiología , Técnicas Electroquímicas , Femenino , Ratones , Ratones Endogámicos C57BL , Microelectrodos
11.
Brain Struct Funct ; 222(1): 539-547, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27165433

RESUMEN

The maturation of cortical inhibition provided by parvalbumin-containing basket cells derived from the medial ganglionic eminence (MGE) is a key event in starting the enhanced visual cortical plasticity during the critical period. Although it is generally assumed that a further increase in inhibition closes the critical period again, it was recently shown that embryonic interneurons derived from the MGE can induce an additional, artificial critical period when injected into the visual cortex of young mice. It has, however, remained open whether this effect was indeed specific for MGE-derived cells, and whether critical period-like plasticity could also be induced in fully adult animals. To clarify these issues, we injected explants from either the MGE or the caudal ganglionic eminence (CGE) into the visual cortices of fully adult mice, and performed monocular deprivation 33 days later for 4 days. Animals implanted with MGE cells, but not with CGE cells, showed marked ocular dominance plasticity. Immunohistochemistry confirmed that the injected cells from both sources migrated far in the host cortex, that most developed into neurons producing GABA, and that only cells from the MGE expressed parvalbumin. Thus, our results confirm that the plasticity-inducing effect of embryonic interneurons is specific for cells from the MGE, and is independent of the host animal's age.


Asunto(s)
Predominio Ocular , Interneuronas/fisiología , Eminencia Media/fisiología , Plasticidad Neuronal , Corteza Visual/fisiología , Animales , Movimiento Celular , Neuronas GABAérgicas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa , Privación Sensorial/fisiología , Percepción Visual/fisiología
12.
Cereb Cortex ; 26(5): 2242-2256, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-25882040

RESUMEN

In humans, the developmental origins of interneurons in the third trimester of pregnancy and the timing of completion of interneuron neurogenesis have remained unknown. Here, we show that the total and cycling Nkx2.1(+)and Dlx2(+)interneuron progenitors as well as Sox2(+)precursor cells were higher in density in the medial ganglionic eminence (MGE) compared with the lateral ganglionic eminence and cortical ventricular/subventricular zone (VZ/SVZ) of 16-35 gw subjects. The proliferation of these progenitors reduced as a function of gestational age, almost terminating by 35 gw. Proliferating Dlx2(+)cells were higher in density in the caudal ganglionic eminence (CGE) compared with the MGE, and persisted beyond 35 gw. Consistent with these findings, Sox2, Nkx2.1, Dlx2, and Mash1 protein levels were higher in the ganglionic eminences relative to the cortical VZ/SVZ. The density of gamma-aminobutyric acid-positive (GABA(+)) interneurons was higher in the cortical VZ/SVZ relative to MGE, but Nkx2.1 or Dlx2-expressing GABA(+)cells were more dense in the MGE compared with the cortical VZ/SVZ. The data suggest that the MGE and CGE are the primary source of cortical interneurons. Moreover, their generation continues nearly to the end of pregnancy, which may predispose premature infants to neurobehavioral disorders.


Asunto(s)
Encéfalo/embriología , Encéfalo/fisiología , Desarrollo Fetal , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Células-Madre Neurales/fisiología , Encéfalo/metabolismo , Recuento de Células , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Femenino , Neuronas GABAérgicas/metabolismo , Edad Gestacional , Proteínas de Homeodominio/metabolismo , Humanos , Interneuronas/metabolismo , Ventrículos Laterales/embriología , Ventrículos Laterales/metabolismo , Ventrículos Laterales/fisiología , Masculino , Eminencia Media/embriología , Eminencia Media/fisiología , Células-Madre Neurales/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Embarazo , Tercer Trimestre del Embarazo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo
13.
J Vis Exp ; (98)2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25938985

RESUMEN

GABAergic cortical interneurons, derived from the embryonic medial and caudal ganglionic eminences (MGE and CGE), are functionally and morphologically diverse. Inroads have been made in understanding the roles of distinct cortical interneuron subgroups, however, there are still many mechanisms to be worked out that may contribute to the development and maturation of different types of GABAergic cells. Moreover, altered GABAergic signaling may contribute to phenotypes of autism, schizophrenia and epilepsy. Specific Cre-driver lines have begun to parcel out the functions of unique interneuron subgroups. Despite the advances in mouse models, it is often difficult to efficiently study GABAergic cortical interneuron progenitors with molecular approaches in vivo. One important technique used to study the cell autonomous programming of these cells is transplantation of MGE cells into host cortices. These transplanted cells migrate extensively, differentiate, and functionally integrate. In addition, MGE cells can be efficiently transduced with lentivirus immediately prior to transplantation, allowing for a multitude of molecular approaches. Here we detail a protocol to efficiently transduce MGE cells before transplantation for in vivo analysis, using available Cre-driver lines and Cre-dependent expression vectors. This approach is advantageous because it combines precise genetic manipulation with the ability of these cells to disperse after transplantation, permitting greater cell-type specific resolution in vivo.


Asunto(s)
Trasplante de Células/métodos , Neuronas GABAérgicas/trasplante , Interneuronas/fisiología , Interneuronas/virología , Eminencia Media/fisiología , Eminencia Media/virología , Animales , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/virología , Células HEK293 , Humanos , Interneuronas/citología , Interneuronas/trasplante , Lentivirus/genética , Eminencia Media/citología , Eminencia Media/trasplante , Ratones , Células-Madre Neurales/citología , Embarazo , Transducción de Señal , Transducción Genética
14.
Nat Commun ; 6: 6385, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25721933

RESUMEN

Reproductive competence in mammals depends on the projection of gonadotropin-releasing hormone (GnRH) neurons to the hypothalamic median eminence (ME) and the timely release of GnRH into the hypothalamic-pituitary-gonadal axis. In adult rodents, GnRH neurons and the specialized glial cells named tanycytes periodically undergo cytoskeletal plasticity. However, the mechanisms that regulate this plasticity are still largely unknown. We demonstrate that Semaphorin7A, expressed by tanycytes, plays a dual role, inducing the retraction of GnRH terminals and promoting their ensheathment by tanycytic end feet via the receptors PlexinC1 and Itgb1, respectively. Moreover, Semaphorin7A expression is regulated during the oestrous cycle by the fluctuating levels of gonadal steroids. Genetic invalidation of Semaphorin7A receptors in mice induces neuronal and glial rearrangements in the ME and abolishes normal oestrous cyclicity and fertility. These results show a role for Semaphorin7A signalling in mediating periodic neuroglial remodelling in the adult ME during the ovarian cycle.


Asunto(s)
Antígenos CD/farmacología , Eminencia Media/fisiología , Neuroglía/metabolismo , Plasticidad Neuronal/fisiología , Semaforinas/farmacología , Análisis de Varianza , Animales , Antígenos CD/administración & dosificación , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Estradiol/análogos & derivados , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones , Plasticidad Neuronal/efectos de los fármacos , Ovariectomía , Progesterona , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Semaforinas/administración & dosificación
15.
Compr Physiol ; 5(1): 217-53, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25589270

RESUMEN

The endocrine hypothalamus constitutes those cells which project to the median eminence and secrete neurohormones into the hypophysial portal blood to act on cells of the anterior pituitary gland. The entire endocrine system is controlled by these peptides. In turn, the hypothalamic neuroendocrine cells are regulated by feedback signals from the endocrine glands and other circulating factors. The neuroendocrine cells are found in specific regions of the hypothalamus and are regulated by afferents from higher brain centers. Integrated function is clearly complex and the networks between and amongst the neuroendocrine cells allows fine control to achieve homeostasis. The entry of hormones and other factors into the brain, either via the cerebrospinal fluid or through fenestrated capillaries (in the basal hypothalamus) is important because it influences the extent to which feedback regulation may be imposed. Recent evidence of the passage of factors from the pars tuberalis and the median eminence casts a new layer in our understanding of neuroendocrine regulation. The function of neuroendocrine cells and the means by which pulsatile secretion is achieved is best understood for the close relationship between gonadotropin releasing hormone and luteinizing hormone, which is reviewed in detail. The secretion of other neurohormones is less rigid, so the relationship between hypothalamic secretion and the relevant pituitary hormones is more complex.


Asunto(s)
Hipotálamo/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Humanos , Hormonas Hipotalámicas/metabolismo , Hormonas Hipotalámicas/fisiología , Hipotálamo/citología , Eminencia Media/fisiología , Células Neuroendocrinas/fisiología , Sistemas Neurosecretores/fisiología , Neurotransmisores/metabolismo , Adenohipófisis/fisiología
16.
BMC Neurosci ; 15: 94, 2014 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-25086450

RESUMEN

BACKGROUND: The GABAergic system plays an important role in modulating levels of anxiety. When transplanted into the brain, precursor cells from the medial ganglionic eminence (MGE) have the ability to differentiate into GABAergic interneurons and modify the inhibitory tone in the host brain. Currently, two methods have been reported for obtaining MGE precursor cells for transplantation: fresh and neurosphere dissociated cells. Here, we investigated the effects generated by transplantation of the two types of cell preparations on anxiety behavior in rats. RESULTS: We transplanted freshly dissociated or neurosphere dissociated cells into the neonate brain of male rats on postnatal (PN) day 2-3. At early adulthood (PN 62-63), transplanted animals were tested in the Elevated Plus Maze (EPM). To verify the differentiation and migration pattern of the transplanted cells in vitro and in vivo, we performed immunohistochemistry for GFP and several interneuron-specific markers: neuropeptide Y (NPY), parvalbumin (PV) and calretinin (CR). Cells from both types of preparations expressed these interneuronal markers. However, an anxiolytic effect on behavior in the EPM was observed in animals that received the MGE-derived freshly dissociated cells but not in those that received the neurosphere dissociated cells. CONCLUSION: Our results suggest a long-lasting anxiolytic effect of transplanted freshly dissociated cells that reinforces the inhibitory function of the GABAergic neuronal circuitry in the hippocampus related to anxiety-like behavior in rats.


Asunto(s)
Ansiedad/terapia , Trasplante de Células/métodos , Células Madre Embrionarias/trasplante , Eminencia Media/trasplante , Células-Madre Neurales/trasplante , Animales , Animales Recién Nacidos , Ansiedad/fisiopatología , Calbindina 2/metabolismo , Técnicas de Cultivo de Célula , Movimiento Celular/fisiología , Corteza Cerebral/fisiopatología , Células Madre Embrionarias/fisiología , Conducta Exploratoria/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/fisiopatología , Interneuronas/fisiología , Masculino , Eminencia Media/embriología , Eminencia Media/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuropéptido Y/metabolismo , Parvalbúminas/metabolismo , Ratas Sprague-Dawley , Ratas Transgénicas
17.
Endocrinology ; 154(11): 3984-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23928373

RESUMEN

GnRH neurons form the final common pathway for the central control of reproduction. GnRH release occurs from terminals in the external layer of the median eminence (ME) for neuroendocrine control of the pituitary, and near GnRH-GnRH fiber appositions within the preoptic area (POA). Whether or not control of GnRH secretion by neuromodulators is different in these 2 areas is unknown. Mutations in neurokinin B (NKB) or the neurokinin-3 receptor (NK3R) are linked to hypogonadotropic hypogonadism in humans, suggesting that NKB may regulate GnRH secretion. Using fast scan cyclic voltammetry through carbon-fiber microelectrodes, we examined real-time GnRH release in response to the NK3R agonist senktide in the ME and POA. Coronal brain slices were acutely prepared from adult gonad-intact GnRH-green fluorescent protein male mice, and carbon-fiber microelectrodes were placed either within green fluorescent protein-positive terminal fields of the ME or near GnRH-GnRH fiber appositions in the POA. Senktide induced GnRH release consistently in the ME but not the POA, indicating that GnRH release is differentially regulated by NKB in a location-dependent manner. Senktide also induced GnRH secretion in the ME of kisspeptin-knockout (Kiss1 knockout) mice. Interestingly, release amplitude was lower compared with wild-type mice. These data indicate regulation of GnRH release by NK3R agonists is site specific and suggest that kisspeptin is not a required mediator between NK3R activation and GnRH secretion in the ME. This information will be useful for informing future models of afferent regulation of GnRH release.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Receptores de Neuroquinina-3/metabolismo , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Liberadora de Gonadotropina/genética , Kisspeptinas/genética , Masculino , Eminencia Media/fisiología , Ratones , Ratones Noqueados , Fragmentos de Péptidos/farmacología , Receptores de Neuroquinina-3/agonistas , Receptores de Neuroquinina-3/genética , Sustancia P/análogos & derivados , Sustancia P/farmacología
18.
J Comp Neurol ; 521(15): 3389-405, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23649873

RESUMEN

Tanycytes are highly specialized ependymal cells that form a blood-cerebrospinal fluid (CSF) barrier at the level of the median eminence (ME), a circumventricular organ (CVO) located in the tuberal region of the hypothalamus. This ependymal layer harbors well-organized tight junctions, a hallmark of central nervous system barriers that is lacking in the fenestrated portal vessels of the ME. The displacement of barrier properties from the vascular to the ventricular side allows the diffusion of blood-borne molecules into the parenchyma of the ME while tanycyte tight junctions control their diffusion into the CSF, thus maintaining brain homeostasis. In the present work, we combined immunohistochemical and permeability studies to investigate the presence of tanycyte barriers along the ventricular walls of other brain CVOs. Our data indicate that, unlike cuboidal ependymal cells, ependymal cells bordering the CVOs possess long processes that project into the parenchyma of the CVOs to reach the fenestrated capillary network. Remarkably, these tanycyte-like cells display well-organized tight junctions around their cell bodies. Consistent with these observations, permeability studies show that this ependymal layer acts as a diffusion barrier. Together, our results suggest that tanycytes are a characteristic feature of all CVOs and yield potential new insights into their involvement in regulating the exchange between the blood, the brain, and the CSF within these "brain windows."


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/fisiología , Líquido Cefalorraquídeo/fisiología , Células Ependimogliales/fisiología , Eminencia Media/fisiología , Animales , Anticuerpos/química , Área Postrema/fisiología , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Permeabilidad de la Membrana Celular , Ventrículos Cerebrales , Células Ependimogliales/metabolismo , Inmunohistoquímica , Masculino , Eminencia Media/citología , Ratones , Ratones Endogámicos C57BL , Permeabilidad , Órgano Subcomisural/fisiología , Órgano Subfornical/fisiología , Proteínas de Uniones Estrechas/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(4): 1512-7, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23297228

RESUMEN

To maintain homeostasis, hypothalamic neurons in the arcuate nucleus must dynamically sense and integrate a multitude of peripheral signals. Blood-borne molecules must therefore be able to circumvent the tightly sealed vasculature of the blood-brain barrier to rapidly access their target neurons. However, how information encoded by circulating appetite-modifying hormones is conveyed to central hypothalamic neurons remains largely unexplored. Using in vivo multiphoton microscopy together with fluorescently labeled ligands, we demonstrate that circulating ghrelin, a versatile regulator of energy expenditure and feeding behavior, rapidly binds neurons in the vicinity of fenestrated capillaries, and that the number of labeled cell bodies varies with feeding status. Thus, by virtue of its vascular connections, the hypothalamus is able to directly sense peripheral signals, modifying energy status accordingly.


Asunto(s)
Regulación del Apetito/fisiología , Ghrelina/sangre , Hipotálamo/fisiología , Animales , Barrera Hematoencefálica/fisiología , Permeabilidad Capilar , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Hipotálamo/irrigación sanguínea , Hipotálamo/citología , Masculino , Eminencia Media/irrigación sanguínea , Eminencia Media/citología , Eminencia Media/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Neurológicos , Neuronas/fisiología
20.
Dev Growth Differ ; 54(3): 366-72, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22524606

RESUMEN

A neocortex is present in all mammals but is not present in other classes of vertebrates, and the neocortex is extremely elaborate in humans. Changes in excitatory projection neurons and their progenitors within the developing dorsal pallium in the most recent common ancestor of mammals are thought to have been involved in the evolution of the neocortex. Our recent findings suggest that changes in the migratory ability of inhibitory interneurons derived from outside the neocortex may also have been involved in the evolution of the neocortex. In this article we review the literature on the migratory profile of inhibitory interneurons in several different species and the literature on comparisons between the intrinsic migratory ability of interneurons derived from different species. Finally, we propose a hypothesis about the mammalian-specific evolution of the migratory ability of interneurons and its potential contribution to the establishment of a functional neocortex.


Asunto(s)
Evolución Biológica , Movimiento Celular , Neuronas GABAérgicas/citología , Interneuronas/citología , Neocórtex/fisiología , Animales , Pollos/fisiología , Embrión de Mamíferos/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Eminencia Media/citología , Eminencia Media/fisiología , Eminencia Media/trasplante , Neocórtex/citología , Filogenia , Roedores/fisiología , Especificidad de la Especie , Tortugas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...