Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.436
Filtrar
1.
Sci Rep ; 14(1): 10503, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714844

RESUMEN

Diesel exhaust particles (DEPs) are very small (typically < 0.2 µm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.


Asunto(s)
Células Endoteliales , Especies Reactivas de Oxígeno , Emisiones de Vehículos , Emisiones de Vehículos/toxicidad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos , Material Particulado/toxicidad , Apoptosis/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Muerte Celular/efectos de los fármacos
2.
Environ Int ; 186: 108597, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579453

RESUMEN

The growing body of evidence links exposure to particulate matter pollutants with an increased risk of neurodegenerative diseases. In the present study, we investigated whether diesel exhaust particles can induce neurobehavioral alterations associated with neurodegenerative effects on glutamatergic and dopaminergic neurons in Caenorhabditis elegans (C. elegans). Exposure to DEP at concentrations of 0.167 µg/cm2 and 1.67 µg/cm2 resulted in significant developmental delays and altered locomotion behaviour. These effects were accompanied by discernible alterations in the expressions of antioxidant genes sod-3 and gst-4 observed in transgenic strains. Behaviour analysis demonstrated a significant reduction in average speed (p < 0.001), altered paths, and decreased swimming activities (p < 0.01), particularly at mid and high doses. Subsequent assessment of neurodegeneration markers in glutamatergic (DA1240) and dopaminergic (BZ555) transgenic worms revealed notable glutamatergic neuron degeneration at 0.167 µg/cm2 (∼30 % moderate, ∼20 % advanced) and 1.67 µg/cm2 (∼28 % moderate, ∼24 % advanced, p < 0.0001), while dopaminergic neurons exhibited structural deformities (∼16 %) without significant degeneration in terms of blebs and breaks. Furthermore, in silico docking simulations suggest the presence of an antagonistic competitive inhibition induced by DEP in the evaluated neuro-targets, stronger for the glutamatergic transporter than for the dopaminergic receptor from the comparative binding affinity point of view. The results underscore DEP's distinctive neurodegenerative effects and suggest a link between locomotion defects and glutamatergic neurodegeneration in C. elegans, providing insights into environmental health risks assessment.


Asunto(s)
Caenorhabditis elegans , Neuronas Dopaminérgicas , Emisiones de Vehículos , Animales , Caenorhabditis elegans/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Material Particulado/toxicidad , Animales Modificados Genéticamente , Ácido Glutámico/metabolismo , Locomoción/efectos de los fármacos , Enfermedades Neurodegenerativas/inducido químicamente , Contaminantes Atmosféricos/toxicidad
3.
Toxicol Ind Health ; 40(6): 337-351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38597775

RESUMEN

Gasoline station attendants are exposed to numerous chemicals that might have genotoxic and carcinogenic potential, such as benzene in fuel vapor and particulate matter and polycyclic aromatic hydrocarbons in vehicle exhaust emission. According to IARC, benzene and diesel particulates are Group 1 human carcinogens, and gasoline has been classified as Group 2A "possibly carcinogenic to humans." At gas stations, self-service is not implemented in Turkey; fuel-filling service is provided entirely by employees, and therefore they are exposed to those chemicals in the workplace during all working hours. Genetic monitoring of workers with occupational exposure to possible genotoxic agents allows early detection of cancer. We aimed to investigate the genotoxic damage due to exposures in gasoline station attendants in Turkey. Genotoxicity was evaluated by the Comet, chromosomal aberration, and cytokinesis-block micronucleus assays in peripheral blood lymphocytes. Gasoline station attendants (n = 53) had higher tail length, tail intensity, and tail moment values than controls (n = 61). In gasoline station attendants (n = 46), the frequencies of chromatid gaps, chromosome gaps, and total aberrations were higher compared with controls (n = 59). Increased frequencies of micronuclei and nucleoplasmic bridges were determined in gasoline station attendants (n = 47) compared with controls (n = 40). Factors such as age, duration of working, and smoking did not have any significant impact on genotoxic endpoints. Only exposure increased genotoxic damage in gasoline station attendants independently from demographic and clinical characteristics. Occupational exposure-related genotoxicity risk may increase in gasoline station attendants who are chronically exposed to gasoline and various chemicals in vehicle exhaust emissions.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Gasolina , Pruebas de Micronúcleos , Exposición Profesional , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Gasolina/toxicidad , Adulto , Masculino , Turquía , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN/efectos de los fármacos , Persona de Mediana Edad , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/toxicidad , Ensayo Cometa , Biomarcadores , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Linfocitos/efectos de los fármacos , Femenino , Mutágenos/toxicidad , Benceno/toxicidad , Benceno/análisis
4.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673906

RESUMEN

Air pollution poses a significant global health risk, with fine particulate matter (PM2.5) such as diesel exhaust particles (DEPs) being of particular concern due to their potential to drive systemic toxicities through bloodstream infiltration. The association between PM2.5 exposure and an increased prevalence of metabolic disorders, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), is evident against a backdrop of rising global obesity and poor metabolic health. This paper examines the role of adipose tissue in mediating the effects of PM2.5 on metabolic health. Adipose tissue, beyond its energy storage function, is responsive to inhaled noxious stimuli, thus disrupting metabolic homeostasis and responding to particulate exposure with pro-inflammatory cytokine release, contributing to systemic inflammation. The purpose of this study was to characterize the metabolic response of adipose tissue in mice exposed to either DEPs or room air (RA), exploring both the adipokine profile and mitochondrial bioenergetics. In addition to a slight change in fat mass and a robust shift in adipocyte hypertrophy in the DEP-exposed animals, we found significant changes in adipose mitochondrial bioenergetics. Furthermore, the DEP-exposed animals had a significantly higher expression of adipose inflammatory markers compared with the adipose from RA-exposed mice. Despite the nearly exclusive focus on dietary factors in an effort to better understand metabolic health, these results highlight the novel role of environmental factors that may contribute to the growing global burden of poor metabolic health.


Asunto(s)
Tejido Adiposo , Inflamación , Mitocondrias , Material Particulado , Emisiones de Vehículos , Animales , Emisiones de Vehículos/toxicidad , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Material Particulado/efectos adversos , Material Particulado/toxicidad , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Metabolismo Energético/efectos de los fármacos , Adipoquinas/metabolismo , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/toxicidad , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos
5.
Part Fibre Toxicol ; 21(1): 15, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468337

RESUMEN

BACKGROUND: Particulate matter 2.5 (PM2.5) deposition in the lung's alveolar capillary region (ACR) is significantly associated with respiratory disease development, yet the molecular mechanisms are not completely understood. Adverse responses that promote respiratory disease development involve orchestrated, intercellular signaling between multiple cell types within the ACR. We investigated the molecular mechanisms elicited in response to PM2.5 deposition in the ACR, in an in vitro model that enables intercellular communication between multiple resident cell types of the ACR. METHODS: An in vitro, tri-culture model of the ACR, incorporating alveolar-like epithelial cells (NCI-H441), pulmonary fibroblasts (IMR90), and pulmonary microvascular endothelial cells (HULEC) was developed to investigate cell type-specific molecular responses to a PM2.5 exposure in an in-vivo-like model. This tri-culture in vitro model was termed the alveolar capillary region exposure (ACRE) model. Alveolar epithelial cells in the ACRE model were exposed to a suspension of diesel exhaust particulates (DEP) (20 µg/cm2) with an average diameter of 2.5 µm. Alveolar epithelial barrier formation, and transcriptional and protein expression alterations in the directly exposed alveolar epithelial and the underlying endothelial cells were investigated over a 24 h DEP exposure. RESULTS: Alveolar epithelial barrier formation was not perturbed by the 24 h DEP exposure. Despite no alteration in barrier formation, we demonstrate that alveolar epithelial DEP exposure induces transcriptional and protein changes in both the alveolar epithelial cells and the underlying microvascular endothelial cells. Specifically, we show that the underlying microvascular endothelial cells develop redox dysfunction and increase proinflammatory cytokine secretion. Furthermore, we demonstrate that alveolar epithelial MAPK signaling modulates the activation of NRF2 and IL-8 secretion in the underlying microvascular endothelial cells. CONCLUSIONS: Endothelial redox dysfunction and increased proinflammatory cytokine secretion are two common events in respiratory disease development. These findings highlight new, cell-type specific roles of the alveolar epithelium and microvascular endothelium in the ACR in respiratory disease development following PM2.5 exposure. Ultimately, these data expand our current understanding of respiratory disease development following particle exposures and illustrate the utility of multicellular in vitro systems for investigating respiratory tract health.


Asunto(s)
Células Endoteliales , Emisiones de Vehículos , Emisiones de Vehículos/toxicidad , Células Endoteliales/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Interleucina-8/metabolismo , Endotelio , Material Particulado/toxicidad
6.
Aging (Albany NY) ; 16(5): 4348-4362, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431308

RESUMEN

Diesel exhaust particles (DEPs) are major air pollutants emitted from automobile engines. Prenatal exposure to DEPs has been linked to neurodevelopmental and neurodegenerative diseases associated with aging. However, the specific mechanism by DEPs impair the hippocampal synaptic plasticity in the offspring remains unclear. Pregnant C57BL/6 mice were administered DEPs solution via the tail vein every other day for a total of 10 injections, then the male offsprings were studied to assess learning and memory by the Morris water maze. Additionally, protein expression in the hippocampus, including CPEB3, NMDAR (NR1, NR2A, NR2B), PKA, SYP, PSD95, and p-CREB was analyzed using Western blotting and immunohistochemistry. The alterations in the histomorphology of the hippocampus were observed in male offspring on postnatal day 7 following prenatal exposure to DEPs. Furthermore, 8-week-old male offspring exposed to DEPs during prenatal development exhibited impairments in the Morris water maze test, indicating deficits in learning and memory. Mechanistically, the findings from our study indicate that exposure to DEPs during pregnancy may alter the expression of CPEB3, SYP, PSD95, NMDAR (NR1, NR2A, and NR2B), PKA, and p-CREB in the hippocampus of both immature and mature male offspring. The results offer evidence for the role of the NMDAR/PKA/CREB and CPEB3 signaling pathway in mediating the learning and memory toxicity of DEPs in male offspring mice. The alterations in signaling pathways may contribute to the observed damage to synaptic structure and transmission function plasticity caused by DEPs. The findings hold potential for informing future safety assessments of DEPs.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Emisiones de Vehículos , Femenino , Embarazo , Humanos , Ratones , Animales , Masculino , Emisiones de Vehículos/toxicidad , Aprendizaje por Laberinto , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratones Endogámicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal , Proteínas de Unión al ARN/metabolismo
7.
Int J Pediatr Otorhinolaryngol ; 179: 111929, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38555812

RESUMEN

OBJECTIVE: Increasing evidence suggests a link between middle ear inflammation and the development of diesel exhaust particles (DEPs). Chronic middle ear inflammation can lead to bone damage and remodeling. This study aimed to explore the impact of DEPs on the expression of interleukin (IL)-6 and RANKL under conditions of middle ear inflammation. METHODS: DEPs were collected by burning fuel in a diesel engine at the Gwangju Institute of Science and Technology. Human middle ear epithelial cells were cultured to 70-80% confluence in culture plates and then treated with DEPs at concentrations of 0, 5, 10, 20, 40, and 80 µg/mL for 24 h. Cell viability was assessed manually. B6.SJL mice, aged 9 weeks, were exposed to DEPs at a concentration of 200 µg/m3 for 1 h daily over a period of 28 days. The expression levels of IL-6, tumor necrosis factor α, RANKL, and RANK were evaluated using hematoxylin and eosin staining and western blot analysis of the harvested middle ear samples. RESULTS: The viability of human middle ear epithelial cells was found to decrease in a dose-dependent manner after 24 h. The mRNA expression level of IL-6 exhibited the most significant increase at the 48-h mark. In contrast, the mRNA expression levels of RANKL and RANK showed a marked increase as early as 6 h post-exposure, with both genes subsequently displaying a time-dependent decrease. Histological analysis revealed that the middle ear mucosa was thicker in the group exposed to DEPs compared to the control group. Additionally, the protein expression levels of IL-6 and RANKL were elevated in the DEP-exposed group relative to the normal control group. CONCLUSIONS: We confirmed the expression of osteoclast-related proteins in the mouse middle ear. These results imply that air pollutants might affect RANKL/RANK signaling, which is associated with bone remodeling.


Asunto(s)
Contaminantes Atmosféricos , Otitis Media , Ratones , Animales , Humanos , Emisiones de Vehículos/toxicidad , Interleucina-6 , ARN Mensajero
8.
Inhal Toxicol ; 36(3): 189-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466202

RESUMEN

OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Masculino , Ratas , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Material Particulado/toxicidad , Biomarcadores , Exposición por Inhalación/efectos adversos
9.
J Hazard Mater ; 469: 134084, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518700

RESUMEN

Research on airborne ultrafine particles (UFP) is driven by an increasing awareness of their potential effects on human health and on ecosystems. Brake wear is an important UFP source releasing largely metallic and potentially hazardous emissions. UFP uptake into plant tissues could mediate entry into food webs. Still, the effects of these particles on plants have barely been studied, especially in a realistic setting with aerial exposure. In this study, we established a system designed to mimic airborne exposure to ultrafine brake dust particles and performed experiments with the model species Arabidopsis thaliana. Using advanced analytical methods, we characterized the conditions in our exposure experiments. A comparison with data we obtained on UFP release at different outdoor stations showed that our controlled exposures are within the same order of magnitude regarding UFP deposition on plants at a traffic-heavy site. In order to assess the physiological implications of exposure to brake derived-particles we generated transcriptomic data with RNA sequencing. The UFP treatment led to diverse changes in gene expression, including the deregulation of genes involved in Fe and Cu homeostasis. This suggests a major contribution of metallic UFPs to the elicitation of physiological responses by brake wear derived emissions.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Polvo , Tamaño de la Partícula , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis
10.
Cardiovasc Toxicol ; 24(4): 396-407, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451349

RESUMEN

Intravenous injection of capsaicin produces vagal-mediated protective cardio-pulmonary (CP) reflexes manifesting as tachypnea, bradycardia, and triphasic blood pressure (BP) response in anesthetized rats. Particulate matter from diesel engine exhaust has been reported to attenuate these reflexes. However, the effects of gaseous constituents of diesel exhaust are not known. Therefore, the present study was designed to investigate the effects of gaseous pollutants in diesel exhaust, on capsaicin-induced CP reflexes in rat model. Adult male rats were randomly assigned to three groups: Non-exposed (NE) group, filtered diesel exhaust-exposed (FDE) group and N-acetyl cysteine (NAC)-treated FDE group. FDE group of rats (n = 6) were exposed to filtered diesel exhaust for 5 h a day for 5 days (D1-D5), and were taken for dissection on day 6 (D6), while NE group of rats (n = 6) remained unexposed. On D6, rats were anesthetized, following which jugular vein was cannulated for injection of chemicals, and femoral artery was cannulated to record the BP. Lead II electrocardiogram and respiratory movements were also recorded. Results show that intravenous injection of capsaicin (0.1 ml; 10 µg/kg) produced immediate tachypneic, hyperventilatory, hypotensive, and bradycardiac responses in both NE and FDE groups of rats. However, these capsaicin-induced CP responses were significantly attenuated in FDE group as compared to the NE group of rats. Further, FDE-induced attenuation of capsaicin-evoked CP responses were diminished in the N-acetyl cysteine-treated FDE rats. These findings demonstrate that oxidant stress mechanisms could possibly be involved in inhibition of CP reflexes by gaseous pollutants in diesel engine exhaust.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Ratas , Masculino , Animales , Ratas Wistar , Emisiones de Vehículos/toxicidad , Capsaicina/farmacología , Gases , Cisteína , Contaminantes Atmosféricos/toxicidad , Reflejo
11.
Stroke ; 55(4): 1090-1093, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38299349

RESUMEN

BACKGROUND: Air pollution particulate matter exposure and chronic cerebral hypoperfusion (CCH) contribute to white matter toxicity through shared mechanisms of neuroinflammation, oxidative stress, and myelin breakdown. Prior studies showed that exposure of mice to joint particulate matter and CCH caused supra-additive injury to corpus callosum white matter. This study examines the role of TLR4 (toll-like receptor 4) signaling in mediating neurotoxicity and myelin damage observed in joint particulate matter and CCH exposures. METHODS: Experiments utilized a novel murine model of inducible monocyte/microglia-specific TLR4 knockout (i-mTLR4-ko). Bilateral carotid artery stenosis (BCAS) was induced surgically to model CCH. TLR4-intact (control) and i-mTLR4-ko mice were exposed to 8 weeks of either aerosolized diesel exhaust particulate (DEP) or filtered air (FA) in 8 experimental groups: (1) control/FA (n=10), (2) control/DEP (n=10), (3) control/FA+BCAS (n=9), (4) control/DEP+BCAS (n=10), (5) i-mTLR4-ko/FA (n=9), (6) i-mTLR4-ko/DEP (n=8), (7) i-mTLR4-ko/FA+BCAS (n=8), and (8) i-mTLR4-ko/DEP+BCAS (n=10). Corpus callosum levels of 4-hydroxynonenal, 8-Oxo-2'-deoxyguanosine, Iba-1 (ionized calcium-binding adapter molecule 1), and dMBP (degraded myelin basic protein) were assayed via immunofluorescence to measure oxidative stress, neuroinflammation, and myelin breakdown, respectively. RESULTS: Compared with control/FA mice, control/DEP+BCAS mice exhibited increased dMBP (41%; P<0.01), Iba-1 (51%; P<0.0001), 4-hydroxynonenal (100%; P<0.0001), and 8-Oxo-2'-deoxyguanosine (65%; P<0.05). I-mTLR4 knockout attenuated responses to DEP/BCAS for all markers. CONCLUSIONS: i-mTLR4-ko markedly reduced neuroinflammation and oxidative stress and attenuated white matter degradation following DEP and CCH exposures. This suggests a potential role for targeting TLR4 signaling in individuals with vascular cognitive impairment, particularly those exposed to substantial ambient air pollution.


Asunto(s)
Aldehídos , Isquemia Encefálica , Estenosis Carotídea , Sustancia Blanca , Animales , Ratones , Microglía/metabolismo , Sustancia Blanca/metabolismo , Emisiones de Vehículos/toxicidad , Enfermedades Neuroinflamatorias , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Isquemia Encefálica/metabolismo , Material Particulado/toxicidad , Estenosis Carotídea/metabolismo , Ratones Endogámicos C57BL
12.
Ecotoxicol Environ Saf ; 273: 116090, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364346

RESUMEN

Airway epithelium, the first defense barrier of the respiratory system, facilitates mucociliary clearance against inflammatory stimuli, such as pathogens and particulates inhaled into the airway and lung. Inhaled particulate matter 2.5 (PM2.5) can penetrate the alveolar region of the lung, and it can develop and exacerbate respiratory diseases. Although the pathophysiological effects of PM2.5 in the respiratory system are well known, its impact on mucociliary clearance of airway epithelium has yet to be clearly defined. In this study, we used two different 3D in vitro airway models, namely the EpiAirway-full-thickness (FT) model and a normal human bronchial epithelial cell (NHBE)-based air-liquid interface (ALI) system, to investigate the effect of diesel exhaust particles (DEPs) belonging to PM2.5 on mucociliary clearance. RNA-sequencing (RNA-Seq) analyses of EpiAirway-FT exposed to DEPs indicated that DEP-induced differentially expressed genes (DEGs) are related to ciliary and microtubule function and inflammatory-related pathways. The exposure to DEPs significantly decreased the number of ciliated cells and shortened ciliary length. It reduced the expression of cilium-related genes such as acetylated α-tubulin, ARL13B, DNAH5, and DNAL1 in the NHBEs cultured in the ALI system. Furthermore, DEPs significantly increased the expression of MUC5AC, whereas they decreased the expression of epithelial junction proteins, namely, ZO1, Occludin, and E-cadherin. Impairment of mucociliary clearance by DEPs significantly improved the release of epithelial-derived inflammatory and fibrotic mediators such as IL-1ß, IL-6, IL-8, GM-CSF, MMP-1, VEGF, and S100A9. Taken together, it can be speculated that DEPs can cause ciliary dysfunction, hyperplasia of goblet cells, and the disruption of the epithelial barrier, resulting in the hyperproduction of lung injury mediators. Our data strongly suggest that PM2.5 exposure is directly associated with ciliary and epithelial barrier dysfunction and may exacerbate lung injury.


Asunto(s)
Lesión Pulmonar , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Lesión Pulmonar/metabolismo , Mucosa Respiratoria , Material Particulado/metabolismo , Células Epiteliales , Epitelio
13.
Part Fibre Toxicol ; 21(1): 8, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38409078

RESUMEN

BACKGROUND: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS: The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.


Asunto(s)
Asma , Lesión Pulmonar , Ratones , Animales , Emisiones de Vehículos/toxicidad , Lesión Pulmonar/patología , Dióxido de Silicio/toxicidad , Autoanticuerpos/farmacología , Anticuerpos Antinucleares/farmacología , Microtomografía por Rayos X , Ratones Endogámicos NOD , Ratones Endogámicos C57BL , Pulmón , Citocinas/genética , Líquido del Lavado Bronquioalveolar , Inflamación/patología , Material Particulado/toxicidad
14.
Part Fibre Toxicol ; 21(1): 6, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360668

RESUMEN

BACKGROUND: Air pollution is recognized as an emerging environmental risk factor for neurological diseases. Large-scale epidemiological studies associate traffic-related particulate matter (PM) with impaired cognitive functions and increased incidence of neurodegenerative diseases such as Alzheimer's disease. Inhaled components of PM may directly invade the brain via the olfactory route, or act through peripheral system responses resulting in inflammation and oxidative stress in the brain. Microglia are the immune cells of the brain implicated in the progression of neurodegenerative diseases. However, it remains unknown how PM affects live human microglia. RESULTS: Here we show that two different PMs derived from exhausts of cars running on EN590 diesel or compressed natural gas (CNG) alter the function of human microglia-like cells in vitro. We exposed human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGLs) to traffic related PMs and explored their functional responses. Lower concentrations of PMs ranging between 10 and 100 µg ml-1 increased microglial survival whereas higher concentrations became toxic over time. Both tested pollutants impaired microglial phagocytosis and increased secretion of a few proinflammatory cytokines with distinct patterns, compared to lipopolysaccharide induced responses. iMGLs showed pollutant dependent responses to production of reactive oxygen species (ROS) with CNG inducing and EN590 reducing ROS production. CONCLUSIONS: Our study indicates that traffic-related air pollutants alter the function of human microglia and warrant further studies to determine whether these changes contribute to adverse effects in the brain and on cognition over time. This study demonstrates human iPSC-microglia as a valuable tool to study functional microglial responses to environmental agents.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Material Particulado/toxicidad , Material Particulado/análisis , Microglía/química , Células Madre Pluripotentes Inducidas/química , Automóviles , Especies Reactivas de Oxígeno , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis
15.
Environ Int ; 184: 108481, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38330748

RESUMEN

Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.


Asunto(s)
Contaminantes Atmosféricos , Ratas , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Biocombustibles , Exposición por Inhalación/efectos adversos , Material Particulado/toxicidad , Material Particulado/análisis , Carbono , Inflamación
16.
Eur J Epidemiol ; 39(3): 241-255, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38289519

RESUMEN

BACKGROUND: Diesel exhaust (DE) is human carcinogen with sufficient evidence only for lung cancer. Systematic evidence on other cancer types is scarce, thus we aimed to systematically review current literature on the association between occupational DE exposure and risk of liver and pancreatic cancers. METHODS: We performed a systematic literature review to identify cohort studies on occupational DE exposure and risk of cancers other than lung. We computed pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs) for liver and pancreatic cancers using DerSimonian and Laird random-effects model. RESULTS: Fifteen studies reporting results on pancreatic cancer and fourteen on liver cancer were included. We found a weakly increased risk of pancreatic cancer in workers exposed to DE (RR: 1.07, 95% CI: 1.00, 1.14), mainly driven by results on incidence (RR: 1.11, 95% CI: 1.02, 1.22). As for liver cancer, results were suggestive of a positive association (RR: 1.09; 95% CI: 0.99, 1.19), although a significant estimate was present in studies published before 2000 (RR: 1.41; 95% CI: 1.09, 1.82). We found no compelling evidence of publication bias. CONCLUSIONS: Our findings suggest an association between occupational DE exposure and liver and pancreatic cancer. Further studies with detailed exposure assessment, environmental monitoring data, and appropriate control for confounders are warranted.


Asunto(s)
Neoplasias Hepáticas , Enfermedades Profesionales , Exposición Profesional , Neoplasias Pancreáticas , Humanos , Emisiones de Vehículos/toxicidad , Exposición Profesional/efectos adversos , Neoplasias Pancreáticas/inducido químicamente , Neoplasias Pancreáticas/epidemiología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/epidemiología , Enfermedades Profesionales/epidemiología
17.
Int Immunol ; 36(5): 211-222, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38227765

RESUMEN

The epithelial barrier theory links the recent rise in chronic non-communicable diseases, notably autoimmune and allergic disorders, to environmental agents disrupting the epithelial barrier. Global pollution and environmental toxic agent exposure have worsened over six decades because of uncontrolled growth, modernization, and industrialization, affecting human health. Introducing new chemicals without any reasonable control of their health effects through these years has led to documented adverse effects, especially on the skin and mucosal epithelial barriers. These substances, such as particulate matter, detergents, surfactants, food emulsifiers, micro- and nano-plastics, diesel exhaust, cigarette smoke, and ozone, have been shown to compromise the epithelial barrier integrity. This disruption is linked to the opening of the tight-junction barriers, inflammation, cell death, oxidative stress, and metabolic regulation. Consideration must be given to the interplay of toxic substances, underlying inflammatory diseases, and medications, especially in affected tissues. This review article discusses the detrimental effect of environmental barrier-damaging compounds on human health and involves cellular and molecular mechanisms.


Asunto(s)
Material Particulado , Emisiones de Vehículos , Humanos , Material Particulado/efectos adversos , Emisiones de Vehículos/toxicidad , Uniones Estrechas , Alérgenos , Estrés Oxidativo , Células Epiteliales
18.
Respir Res ; 25(1): 14, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178075

RESUMEN

BACKGROUND: Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. RESULTS: Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. CONCLUSIONS: DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.


Asunto(s)
Contaminantes Atmosféricos , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Animales , Material Particulado/toxicidad , Material Particulado/análisis , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Ratas Sprague-Dawley , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente
19.
Environ Pollut ; 342: 123087, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061431

RESUMEN

Traffic-related air pollution (TRAP) exposure is associated with systemic health effects, which can be studied using blood-based markers. Although we have previously shown that high TRAP concentrations alter the plasma proteome, the concentration-response relationship between blood proteins and TRAP is unexplored in controlled human exposure studies. We aimed to identify concentration-dependent plasma markers of diesel exhaust (DE), a model of TRAP. Fifteen healthy non-smokers were enrolled into a double-blinded, crossover study where they were exposed to filtered air (FA) and DE at 20, 50 and 150 µg/m3 PM2.5 for 4h, separated by ≥ 4-week washouts. We collected blood at 24h post-exposure and used label-free mass spectrometry to quantify proteins in plasma. Proteins exhibiting a concentration-response, as determined by linear mixed effects models (LMEMs), were assessed for pathway enrichment using WebGestalt. Top candidates, identified by sparse partial least squares discriminant analysis and LMEMs, were confirmed using enzyme-linked immunoassays. Thereafter, we assessed correlations between proteins that showed a DE concentration-response and acute inflammatory endpoints, forced expiratory volume in 1 s (FEV1) and methacholine provocation concentration causing a 20% drop in FEV1 (PC20). DE exposure was associated with concentration-dependent alterations in 45 proteins, which were enriched in complement pathways. Of the 9 proteins selected for confirmatory immunoassays, based on complementary bioinformatic approaches to narrow targets and availability of high-quality assays, complement factor I (CFI) exhibited a significant concentration-dependent decrease (-0.02 µg/mL per µg/m3 of PM2.5, p = 0.04). Comparing to FA at discrete concentrations, CFI trended downward at 50 (-2.14 ± 1.18, p = 0.08) and significantly decreased at 150 µg/m3 PM2.5 (-2.93 ± 1.18, p = 0.02). CFI levels were correlated with FEV1, PC20 and nasal interleukin (IL)-6 and IL-1ß. This study details concentration-dependent alterations in the plasma proteome following DE exposure at concentrations relevant to occupational and community settings. CFI shows a robust concentration-response and association with established measures of airway function and inflammation.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Proteoma , Estudios Cruzados , Pruebas de Función Respiratoria , Interleucina-6 , Material Particulado/toxicidad , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis
20.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L83-L97, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084400

RESUMEN

Macrophage populations exist on a spectrum between the proinflammatory M1 and proresolution M2 states and have demonstrated the ability to reprogram between them after exposure to opposing polarization stimuli. Particulate matter (PM) has been repeatedly linked to worsening morbidity and mortality following respiratory infections and has been demonstrated to modify macrophage function and polarization. The purpose of this study was to determine whether diesel exhaust particles (DEP), a key component of airborne PM, would demonstrate polarization state-dependent effects on human monocyte-derived macrophages (hMDMs) and whether DEP would modify macrophage reprogramming. CD14+CD16- monocytes were isolated from the blood of healthy human volunteers and differentiated into macrophages with macrophage colony-stimulating factor (M-CSF). Resulting macrophages were left unpolarized or polarized into the proresolution M2 state before being exposed to DEP, M1-polarizing conditions (IFN-γ and LPS), or both and tested for phagocytic function, secretory profile, gene expression patterns, and bioenergetic properties. Contrary to previous reports, we observed a mixed M1/M2 phenotype in reprogrammed M2 cells when considering the broader range of functional readouts. In addition, we determined that DEP exposure dampens phagocytic function in all polarization states while modifying bioenergetic properties in M1 macrophages preferentially. Together, these data suggest that DEP exposure of reprogrammed M2 macrophages results in a highly inflammatory, highly energetic subpopulation of macrophages that may contribute to the poor health outcomes following PM exposure during respiratory infections.NEW & NOTEWORTHY We determined that reprogramming M2 macrophages in the presence of diesel exhaust particles (DEP) results in a highly inflammatory mixed M1/M2 phenotype. We also demonstrated that M1 macrophages are particularly vulnerable to particulate matter (PM) exposure as seen by dampened phagocytic function and modified bioenergetics. Our study suggests that PM causes reprogrammed M2 macrophages to become a highly energetic, highly secretory subpopulation of macrophages that may contribute to negative health outcomes observed in humans after PM exposure.


Asunto(s)
Infecciones del Sistema Respiratorio , Emisiones de Vehículos , Humanos , Emisiones de Vehículos/toxicidad , Macrófagos/metabolismo , Fenotipo , Diferenciación Celular , Material Particulado/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...