Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 2300, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863890

RESUMEN

The ability of nucleic acids to form double-stranded structures is essential for all living systems on Earth. Current knowledge on functional RNA structures is focused on locally-occurring base pairs. However, crosslinking and proximity ligation experiments demonstrated that long-range RNA structures are highly abundant. Here, we present the most complete to-date catalog of conserved complementary regions (PCCRs) in human protein-coding genes. PCCRs tend to occur within introns, suppress intervening exons, and obstruct cryptic and inactive splice sites. Double-stranded structure of PCCRs is supported by decreased icSHAPE nucleotide accessibility, high abundance of RNA editing sites, and frequent occurrence of forked eCLIP peaks. Introns with PCCRs show a distinct splicing pattern in response to RNAPII slowdown suggesting that splicing is widely affected by co-transcriptional RNA folding. The enrichment of 3'-ends within PCCRs raises the intriguing hypothesis that coupling between RNA folding and splicing could mediate co-transcriptional suppression of premature pre-mRNA cleavage and polyadenylation.


Asunto(s)
Emparejamiento Base/fisiología , ADN Complementario/genética , Precursores del ARN/metabolismo , Empalme del ARN/fisiología , Células A549 , Secuencia de Bases/genética , Secuencia Conservada/fisiología , Biblioteca de Genes , Células Hep G2 , Humanos , Intrones/genética , Poliadenilación , Pliegue del ARN/fisiología , Precursores del ARN/genética , RNA-Seq
2.
Nat Commun ; 12(1): 1595, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707433

RESUMEN

NH groups in proteins or nucleic acids are the most challenging target for chemical shift prediction. Here we show that the RNA base pair triplet motif dictates imino chemical shifts in its central base pair. A lookup table is established that links each type of base pair triplet to experimental chemical shifts of the central base pair, and can be used to predict imino chemical shifts of RNAs to remarkable accuracy. Strikingly, the semiempirical method can well interpret the variations of chemical shifts for different base pair triplets, and is even applicable to non-canonical motifs. This finding opens an avenue for predicting chemical shifts of more complicated RNA motifs. Furthermore, we combine the imino chemical shift prediction with NMR relaxation dispersion experiments targeting both 15N and 1HN of the imino group, and verify a previously characterized excited state of P5abc subdomain including an earlier speculated non-native G•G mismatch.


Asunto(s)
Emparejamiento Base/fisiología , Mutación/genética , ARN/química , Repeticiones de Trinucleótidos/genética , Secuencia de Bases , Resonancia Magnética Nuclear Biomolecular
3.
Mol Cell Biol ; 40(24)2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33046533

RESUMEN

The telomerase ribonucleoprotein (RNP) counters the chromosome end replication problem, completing genome replication to prevent cellular senescence in yeast, humans, and most other eukaryotes. The telomerase RNP core enzyme is composed of a dedicated RNA subunit and a reverse transcriptase (telomerase reverse transcriptase [TERT]). Although the majority of the 1,157-nucleotide (nt) Saccharomyces cerevisiae telomerase RNA, TLC1, is rapidly evolving, the central catalytic core is largely conserved, containing the template, template-boundary helix, pseudoknot, and core-enclosing helix (CEH). Here, we show that 4 bp of core-enclosing helix is required for telomerase to be active in vitro and to maintain yeast telomeres in vivo, whereas the ΔCEH and 1- and 2-bp alleles do not support telomerase function. Using the CRISPR/nuclease-deactivated Cas9 (dCas9)-based CARRY (CRISPR-assisted RNA-RNA-binding protein [RBP] yeast) two-hybrid assay to assess binding of our CEH mutant RNAs to TERT, we find that the 4-bp CEH RNA binds to TERT but the shorter-CEH constructs do not, consistent with the telomerase activity and in vivo complementation results. Thus, the CEH is essential in yeast telomerase RNA because it is needed to bind TERT to form the core RNP enzyme. Although the 8 nt that form this 4-bp stem at the base of the CEH are nearly invariant among Saccharomyces species, our results with sequence-randomized and truncated-CEH helices suggest that this binding interaction with TERT is dictated more by secondary than by primary structure. In summary, we have mapped an essential binding site in telomerase RNA for TERT that is crucial to form the catalytic core of this biomedically important RNP enzyme.


Asunto(s)
Emparejamiento Base/fisiología , Unión Proteica/fisiología , Subunidades de Proteína/metabolismo , ARN/metabolismo , Telomerasa/metabolismo , Secuencia de Bases , Sitios de Unión/fisiología , Replicación del ADN/fisiología , Conformación de Ácido Nucleico , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo
4.
Nucleic Acids Res ; 47(22): 11921-11930, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31724696

RESUMEN

DNA can form many structures beyond the canonical Watson-Crick double helix. It is now clear that noncanonical structures are present in genomic DNA and have biological functions. G-rich G-quadruplexes and C-rich i-motifs are the most well-characterized noncanonical DNA motifs that have been detected in vivo with either proscribed or postulated biological roles. Because of their independent sequence requirements, these structures have largely been considered distinct types of quadruplexes. Here, we describe the crystal structure of the DNA oligonucleotide, d(CCAGGCTGCAA), that self-associates to form a quadruplex structure containing two central antiparallel G-tetrads and six i-motif C-C+ base pairs. Solution studies suggest a robust structural motif capable of assembling as a tetramer of individual strands or as a dimer when composed of tandem repeats. This hybrid structure highlights the growing structural diversity of DNA and suggests that biological systems may harbor many functionally important non-duplex structures.


Asunto(s)
Emparejamiento Base/fisiología , ADN/química , G-Cuádruplex , Motivos de Nucleótidos/fisiología , Bario/química , Bario/farmacología , Emparejamiento Base/efectos de los fármacos , Cristalografía por Rayos X , Estabilidad de Medicamentos , G-Cuádruplex/efectos de los fármacos , Enlace de Hidrógeno/efectos de los fármacos , Modelos Moleculares , Conformación de Ácido Nucleico/efectos de los fármacos , Desnaturalización de Ácido Nucleico/efectos de los fármacos , Motivos de Nucleótidos/efectos de los fármacos , Oligonucleótidos/química
5.
Biochemistry ; 58(10): 1319-1331, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30775913

RESUMEN

Chemically modified peptide nucleic acids (PNAs) show great promise in the recognition of RNA duplexes by major-groove PNA·RNA-RNA triplex formation. Triplex formation is favored for RNA duplexes with a purine tract within one of the RNA duplex strands, and is severely destabilized if the purine tract is interrupted by pyrimidine residues. Here, we report the synthesis of a PNA monomer incorporated with an artificial nucleobase S, followed by the binding studies of a series of S-modified PNAs. Our data suggest that an S residue incorporated into short 8-mer dsRNA-binding PNAs (dbPNAs) can recognize internal Watson-Crick C-G and U-A, and wobble U-G base pairs (but not G-C, A-U, and G-U pairs) in RNA duplexes. The short S-modified PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. Interestingly, replacement of the C residue in an S·C-G triple with a 5-methyl C results in the disruption of the triplex, probably due to a steric clash between S and 5-methyl C. Previously reported PNA E base shows recognition of U-A and A-U pairs, but not a U-G pair. Thus, S-modified dbPNAs may be uniquely useful for the general recognition of RNA U-G, U-A, and C-G pairs. Shortening the succinyl linker of our PNA S monomer by one carbon atom to have a malonyl linker causes a severe destabilization of triplex formation. Our experimental and modeling data indicate that part of the succinyl moiety in a PNA S monomer may serve to expand the S base forming stacking interactions with adjacent PNA bases.


Asunto(s)
Ácidos Nucleicos de Péptidos/síntesis química , Ácidos Nucleicos de Péptidos/fisiología , ARN/química , Emparejamiento Base/genética , Emparejamiento Base/fisiología , Simulación por Computador , ADN/química , Modelos Biológicos , Conformación de Ácido Nucleico , Ácidos Nucleicos de Péptidos/química , ARN/metabolismo , ARN Bicatenario
6.
IEEE/ACM Trans Comput Biol Bioinform ; 16(5): 1645-1655, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29994069

RESUMEN

Computational RNA secondary structure prediction depends on a large number of nearest-neighbor free-energy parameters, including 10 parameters for Watson-Crick stacked base pairs that were estimated from experimental measurements of the free energies of 90 RNA duplexes. These experimental data are provided by time-consuming and cost-intensive experiments. In contrast, various modified nucleotides in RNAs, which would affect not only their structures but also functions, have been found, and rapid determination of energy parameters for a such modified nucleotides is needed. To reduce the high cost of determining energy parameters, we propose a novel method to estimate energy parameters from both experimental and computational data, where the computational data are provided by a recently developed molecular dynamics simulation protocol. We evaluate our method for Watson-Crick stacked base pairs, and show that parameters estimated from 10 experimental data items and 10 computational data items can predict RNA secondary structures with accuracy comparable to that using conventional parameters. The results indicate that the combination of experimental free-energy measurements and molecular dynamics simulations is capable of estimating the thermodynamic properties of RNA secondary structures at lower cost.


Asunto(s)
Emparejamiento Base/fisiología , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN , Biología Computacional , ARN/química , ARN/metabolismo , Termodinámica
7.
Small ; 15(3): e1803926, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30488638

RESUMEN

Controlled drug release systems can enhance the safety and availability but avoid the side effect of drugs. Herein, the concept of DNA complementary base pairing rules in biology is used to design and prepare a photothermal-triggered drug release system. Adenine (A) modified polydopamine nanoparticles (A-PDA, photothermal reagent) can effectively bind with thymine (T) modified Zinc phthalocyanine (T-ZnPc, photosensitizer) forming A-PDA = T-ZnPc (PATP) complex based on A = T complementary base pairing rules. Similar to DNA, whose base pairing in double strands will break by heating, T-ZnPc can be effectively released from A-PDA after near infrared irradiation-triggered light-thermal conversion to obtain satisfactory photodynamic-photothermal synergistic tumor treatment. In addition, PDA can carry abundant Gd3+ to provide magnetic resonance imaging guided delivery and theranostic function.


Asunto(s)
Emparejamiento Base/fisiología , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Hipertermia Inducida/métodos , Neoplasias/terapia , Fotoquimioterapia/métodos , Adenina/química , Animales , Línea Celular Tumoral , Terapia Combinada , ADN Complementario/química , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Liberación de Fármacos/genética , Sinergismo Farmacológico , Femenino , Humanos , Indoles/química , Isoindoles , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Nanopartículas/uso terapéutico , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacocinética , Fototerapia/métodos , Polímeros/química , Ensayos Antitumor por Modelo de Xenoinjerto , Compuestos de Zinc
8.
Nucleic Acids Res ; 46(20): 10855-10869, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30285153

RESUMEN

Homologous recombination is essential to genome maintenance, and also to genome diversification. In virtually all organisms, homologous recombination depends on the RecA/Rad51-family recombinases, which catalyze ATP-dependent formation of homologous joints-critical intermediates in homologous recombination. RecA/Rad51 binds first to single-stranded (ss) DNA at a damaged site to form a spiral nucleoprotein filament, after which double-stranded (ds) DNA interacts with the filament to search for sequence homology and to form consecutive base pairs with ssDNA ('pairing'). How sequence homology is recognized and what exact role filament formation plays remain unknown. We addressed the question of whether filament formation is a prerequisite for homologous joint formation. To this end we constructed a nonpolymerizing (np) head-to-tail-fused RecA dimer (npRecA dimer) and an npRecA monomer. The npRecA dimer bound to ssDNA, but did not form continuous filaments upon binding to DNA; it formed beads-on-string structures exclusively. Although its efficiency was lower, the npRecA dimer catalyzed the formation of D-loops (a type of homologous joint), whereas the npRecA monomer was completely defective. Thus, filament formation contributes to efficiency, but is not essential to sequence-homology recognition and pairing, for which a head-to-tail dimer form of RecA protomer is required and sufficient.


Asunto(s)
ADN de Cadena Simple/metabolismo , Recombinación Homóloga , Multimerización de Proteína , Rec A Recombinasas/fisiología , Emparejamiento Base/fisiología , Catálisis , ADN de Cadena Simple/química , Escherichia coli , Inestabilidad Genómica/genética , Recombinación Homóloga/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína/fisiología , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo
9.
Nucleic Acids Res ; 46(20): 11099-11114, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30285154

RESUMEN

A(syn)-U/T and G(syn)-C+ Hoogsteen (HG) base pairs (bps) are energetically more disfavored relative to Watson-Crick (WC) bps in A-RNA as compared to B-DNA by >1 kcal/mol for reasons that are not fully understood. Here, we used NMR spectroscopy, optical melting experiments, molecular dynamics simulations and modified nucleotides to identify factors that contribute to this destabilization of HG bps in A-RNA. Removing the 2'-hydroxyl at single purine nucleotides in A-RNA duplexes did not stabilize HG bps relative to WC. In contrast, loosening the A-form geometry using a bulge in A-RNA reduced the energy cost of forming HG bps at the flanking sites to B-DNA levels. A structural and thermodynamic analysis of purine-purine HG mismatches reveals that compared to B-DNA, the A-form geometry disfavors syn purines by 1.5-4 kcal/mol due to sugar-backbone rearrangements needed to sterically accommodate the syn base. Based on MD simulations, an additional penalty of 3-4 kcal/mol applies for purine-pyrimidine HG bps due to the higher energetic cost associated with moving the bases to form hydrogen bonds in A-RNA versus B-DNA. These results provide insights into a fundamental difference between A-RNA and B-DNA duplexes with important implications for how they respond to damage and post-transcriptional modifications.


Asunto(s)
Emparejamiento Base/fisiología , ADN Forma B/química , Conformación de Ácido Nucleico , Purinas/química , ARN/química , ADN/química , Metabolismo Energético , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Pirimidinas/química , Termodinámica
10.
Nucleic Acids Res ; 46(20): 10782-10795, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30272207

RESUMEN

MutS homologs identify base-pairing errors made in DNA during replication and initiate their repair. In the presence of adenosine triphosphate, MutS induces DNA bending upon mismatch recognition and subsequently undergoes conformational transitions that promote its interaction with MutL to signal repair. In the absence of MutL, these transitions lead to formation of a MutS mobile clamp that can move along the DNA. Previous single-molecule FRET (smFRET) studies characterized the dynamics of MutS DNA-binding domains during these transitions. Here, we use protein-DNA and DNA-DNA smFRET to monitor DNA conformational changes, and we use kinetic analyses to correlate DNA and protein conformational changes to one another and to the steps on the pathway to mobile clamp formation. The results reveal multiple sequential structural changes in both MutS and DNA, and they suggest that DNA dynamics play a critical role in the formation of the MutS mobile clamp. Taking these findings together with data from our previous studies, we propose a unified model of coordinated MutS and DNA conformational changes wherein initiation of mismatch repair is governed by a balance of DNA bending/unbending energetics and MutS conformational changes coupled to its nucleotide binding properties.


Asunto(s)
Disparidad de Par Base/genética , Reparación de la Incompatibilidad de ADN , ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Conformación de Ácido Nucleico , Emparejamiento Base/fisiología , Reparación de la Incompatibilidad de ADN/genética , Escherichia coli , Transferencia Resonante de Energía de Fluorescencia , Inestabilidad Genómica/genética , Modelos Moleculares , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/química , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Unión Proteica/fisiología , Conformación Proteica , Dominios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
11.
Nucleic Acids Res ; 46(20): 10771-10781, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30239839

RESUMEN

Mammalian mitochondria operate multiple mechanisms of DNA replication. In many cells and tissues a strand-asynchronous mechanism predominates over coupled leading and lagging-strand DNA synthesis. However, little is known of the factors that control or influence the different mechanisms of replication, and the idea that strand-asynchronous replication entails transient incorporation of transcripts (aka bootlaces) is controversial. A firm prediction of the bootlace model is that it depends on mitochondrial transcripts. Here, we show that elevated expression of Twinkle DNA helicase in human mitochondria induces bidirectional, coupled leading and lagging-strand DNA synthesis, at the expense of strand-asynchronous replication; and this switch is accompanied by decreases in the steady-state level of some mitochondrial transcripts. However, in the so-called minor arc of mitochondrial DNA where transcript levels remain high, the strand-asynchronous replication mechanism is instated. Hence, replication switches to a strand-coupled mechanism only where transcripts are scarce, thereby establishing a direct correlation between transcript availability and the mechanism of replication. Thus, these findings support a critical role of mitochondrial transcripts in the strand-asynchronous mechanism of mitochondrial DNA replication; and, as a corollary, mitochondrial RNA availability and RNA/DNA hybrid formation offer means of regulating the mechanisms of DNA replication in the organelle.


Asunto(s)
Emparejamiento Base/fisiología , Replicación del ADN/genética , ADN Mitocondrial/metabolismo , ADN de Cadena Simple/metabolismo , ARN Mitocondrial/fisiología , Animales , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Mitocondrial/química , ADN de Cadena Simple/química , Regulación de la Expresión Génica/fisiología , Inestabilidad Genómica/genética , Células HEK293 , Humanos , Mamíferos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo
12.
Chem Pharm Bull (Tokyo) ; 66(2): 132-138, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29386463

RESUMEN

In this review, we have summarized the research effort into the development of unnatural base pairs beyond standard Watson-Crick (WC) base pairs for synthetic biology. Prior to introducing our research results, we present investigations by four outstanding groups in the field. Their research results demonstrate the importance of shape complementarity and stacking ability as well as hydrogen-bonding (H-bonding) patterns for unnatural base pairs. On the basis of this research background, we developed unnatural base pairs consisting of imidazo[5',4':4.5]pyrido[2,3-d]pyrimidines and 1,8-naphthyridines, i.e., Im : Na pairs. Since Im bases are recognized as ring-expanded purines and Na bases are recognized as ring-expanded pyrimidines, Im : Na pairs are expected to satisfy the criteria of shape complementarity and enhanced stacking ability. In addition, these pairs have four non-canonical H-bonds. Because of these preferable properties, ImNN : NaOO, one of the Im : Na pairs, is recognized as a complementary base pair in not only single nucleotide insertion, but also the PCR.


Asunto(s)
Emparejamiento Base/fisiología , Biología Sintética/métodos , Enlace de Hidrógeno , Naftiridinas/química , Fenómenos Físicos , Purinas/química , Pirimidinas/química
13.
Biochim Biophys Acta Gene Regul Mech ; 1860(11): 1148-1158, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29031931

RESUMEN

Among the four Argonaute family members in mammals, only AGO2 protein retains endonuclease activity and facilitates cleavage of target RNAs base-pairing with highly complementary guide RNAs. Despite the deeply conserved catalytic activity, only a small number of targets have been reported to extensively base pair with cognate miRNAs to be cleaved by AGO2. Here, we analyzed AGO2-bound RNAs by CrossLinking ImmunoPrecipitation (CLIP) of genetically modified cells that express epitope-tagged AGO2 from the native genomic locus. We found that HMGA2 mRNA is cleaved by AGO2 loaded with let-7 and miR-21. In contrast to the generally accepted notion, the base-pairing from the seed region to the cleavage site, rather than perfect or near perfect complementarity, was required for cleavage of the target mRNA in cells. Non-templated addition of nucleotides at the 3' end of the cleaved RNA was observed, further supporting the AGO2-mediated cleavage. Based on the observation that the limited complementarity is the minimum requirement for cleavage, we found that AGO2-mediated cleavage of targets is more common than previously thought. Our result may explain the vital role of endonuclease activity in controlling miRNA-mediated gene regulation.


Asunto(s)
Proteínas Argonautas/metabolismo , Emparejamiento Base/fisiología , MicroARNs/metabolismo , División del ARN , ARN Mensajero/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Ratones SCID , MicroARNs/genética , Unión Proteica , ARN Mensajero/genética
14.
Biophys J ; 113(2): 277-289, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28506525

RESUMEN

Reverse Watson-Crick G:C basepairs (G:C W:W Trans) occur frequently in different functional RNAs. This is one of the few basepairs whose gas-phase-optimized isolated geometry is inconsistent with the corresponding experimental geometry. Several earlier studies indicate that through post-transcriptional modification, direct protonation, or coordination with Mg2+, accumulation of positive charge near N7 of guanine can stabilize the experimental geometry. Interestingly, recent studies reveal significant variation in the position of putatively bound Mg2+. This, in conjunction with recently raised doubts regarding some of the Mg2+ assignments near the imino nitrogen of guanine, is suggestive of the existence of multiple Mg2+ binding modes for this basepair. Our detailed investigation of Mg2+-bound G:C W:W Trans pairs occurring in high-resolution RNA crystal structures shows that they are found in 14 different contexts, eight of which display Mg2+ binding at the Hoogsteen edge of guanine. Further examination of occurrences in these eight contexts led to the characterization of three different Mg2+ binding modes: 1) direct binding via N7 coordination, 2) direct binding via O6 coordination, and 3) binding via hydrogen-bonding interaction with the first-shell water molecules. In the crystal structures, the latter two modes are associated with a buckled and propeller-twisted geometry of the basepair. Interestingly, respective optimized geometries of these different Mg2+ binding modes (optimized using six different DFT functionals) are consistent with their corresponding experimental geometries. Subsequent interaction energy calculations at the MP2 level, and decomposition of its components, suggest that for G:C W:W Trans , Mg2+ binding can fine tune the basepair geometries without compromising with their stability. Our results, therefore, underline the importance of the mode of binding of Mg2+ ions in shaping RNA structure, folding and function.


Asunto(s)
Emparejamiento Base/fisiología , Citosina/metabolismo , Guanina/metabolismo , Magnesio/metabolismo , Pliegue del ARN/fisiología , ARN/metabolismo , Bacterias , Cationes Bivalentes/química , Cationes Bivalentes/metabolismo , Citosina/química , Guanina/química , Enlace de Hidrógeno , Magnesio/química , Modelos Genéticos , Modelos Moleculares , ARN/química , Estabilidad del ARN/fisiología , Agua/química
15.
Nat Commun ; 7: 13366, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819266

RESUMEN

Eukaryotic and archaeal translation initiation complexes have a common structural core comprising e/aIF1, e/aIF1A, the ternary complex (TC, e/aIF2-GTP-Met-tRNAiMet) and mRNA bound to the small ribosomal subunit. e/aIF2 plays a crucial role in this process but how this factor controls start codon selection remains unclear. Here, we present cryo-EM structures of the full archaeal 30S initiation complex showing two conformational states of the TC. In the first state, the TC is bound to the ribosome in a relaxed conformation with the tRNA oriented out of the P site. In the second state, the tRNA is accommodated within the peptidyl (P) site and the TC becomes constrained. This constraint is compensated by codon/anticodon base pairing, whereas in the absence of a start codon, aIF2 contributes to swing out the tRNA. This spring force concept highlights a mechanism of codon/anticodon probing by the initiator tRNA directly assisted by aIF2.


Asunto(s)
Archaea/fisiología , Proteínas Arqueales/fisiología , Iniciación de la Cadena Peptídica Traduccional/fisiología , Factores de Iniciación de Péptidos/fisiología , Subunidades Ribosómicas Pequeñas de Archaea/ultraestructura , Anticodón/metabolismo , Proteínas Arqueales/ultraestructura , Emparejamiento Base/fisiología , Codón Iniciador/metabolismo , Codón Iniciador/ultraestructura , Microscopía por Crioelectrón , Factores de Iniciación de Péptidos/ultraestructura , ARN Mensajero/metabolismo , ARN de Transferencia de Metionina/fisiología , Subunidades Ribosómicas Pequeñas de Archaea/fisiología
16.
PLoS One ; 11(6): e0158436, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27362509

RESUMEN

Yeast Rad52 (yRad52) has two important functions at homologous DNA recombination (HR); annealing complementary single-strand DNA (ssDNA) molecules and recruiting Rad51 recombinase onto ssDNA (recombination mediator activity). Its human homolog (hRAD52) has a lesser role in HR, and apparently lacks mediator activity. Here we show that yRad52 can load human Rad51 (hRAD51) onto ssDNA complexed with yeast RPA in vitro. This is biochemically equivalent to mediator activity because it depends on the C-terminal Rad51-binding region of yRad52 and on functional Rad52-RPA interaction. It has been reported that the N-terminal two thirds of both yRad52 and hRAD52 is essential for binding to and annealing ssDNA. Although a second DNA binding region has been found in the C-terminal region of yRad52, its role in ssDNA annealing is not clear. In this paper, we also show that the C-terminal region of yRad52, but not of hRAD52, is involved in ssDNA annealing. This suggests that the second DNA binding site is required for the efficient ssDNA annealing by yRad52. We propose an updated model of Rad52-mediated ssDNA annealing.


Asunto(s)
ADN de Cadena Simple/metabolismo , Nucleoproteínas/metabolismo , Dominios y Motivos de Interacción de Proteínas/fisiología , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/química , Proteínas de Saccharomyces cerevisiae/química , Emparejamiento Base/fisiología , Sitios de Unión , Humanos , Nucleoproteínas/química , Unión Proteica , Multimerización de Proteína , Recombinasa Rad51/química , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Recombinación Genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Phys Chem Lett ; 7(11): 2125-31, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27195654

RESUMEN

Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general.


Asunto(s)
Emparejamiento Base/fisiología , ADN/química , Simulación de Dinámica Molecular , Teoría Cuántica
18.
PLoS One ; 10(6): e0130875, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26115175

RESUMEN

Accurate sequence dependent pairing of single-stranded DNA (ssDNA) molecules plays an important role in gene chips, DNA origami, and polymerase chain reactions. In many assays accurate pairing depends on mismatched sequences melting at lower temperatures than matched sequences; however, for sequences longer than ~10 nucleotides, single mismatches and correct matches have melting temperature differences of less than 3°C. We demonstrate that appropriately grouping of 35 bases in ssDNA using abasic sites increases the difference between the melting temperature of correct bases and the melting temperature of mismatched base pairings. Importantly, in the presence of appropriately spaced abasic sites mismatches near one end of a long dsDNA destabilize the annealing at the other end much more effectively than in systems without the abasic sites, suggesting that the dsDNA melts more uniformly in the presence of appropriately spaced abasic sites. In sum, the presence of appropriately spaced abasic sites allows temperature to more accurately discriminate correct base pairings from incorrect ones.


Asunto(s)
ADN de Cadena Simple/química , Nucleótidos/química , Emparejamiento Base/fisiología , ADN/química
19.
J Am Soc Mass Spectrom ; 26(8): 1394-403, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26002790

RESUMEN

Hypermethylation of cytosine in expanded (CCG)n•(CGG)n trinucleotide repeats results in Fragile X syndrome, the most common cause of inherited mental retardation. The (CCG)n•(CGG)n repeats adopt i-motif conformations that are preferentially stabilized by base-pairing interactions of protonated base pairs of cytosine. Here we investigate the effects of 5-methylation and the sugar moiety on the base-pairing energies (BPEs) of protonated cytosine base pairs by examining protonated nucleoside base pairs of 2'-deoxycytidine (dCyd) and 5-methyl-2'-deoxycytidine (m(5)dCyd) using threshold collision-induced dissociation techniques. 5-Methylation of a single or both cytosine residues leads to very small change in the BPE. However, the accumulated effect may be dramatic in diseased state trinucleotide repeats where many methylated base pairs may be present. The BPEs of the protonated nucleoside base pairs examined here significantly exceed those of Watson-Crick dGuo•dCyd and neutral dCyd•dCyd base pairs, such that these base-pairing interactions provide the major forces responsible for stabilization of DNA i-motif conformations. Compared with isolated protonated nucleobase pairs of cytosine and 1-methylcytosine, the 2'-deoxyribose sugar produces an effect similar to the 1-methyl substituent, and leads to a slight decrease in the BPE. These results suggest that the base-pairing interactions may be slightly weaker in nucleic acids, but that the extended backbone is likely to exert a relatively small effect on the total BPE. The proton affinity (PA) of m(5)dCyd is also determined by competitive analysis of the primary dissociation pathways that occur in parallel for the protonated (m(5)dCyd)H(+)(dCyd) nucleoside base pair and the absolute PA of dCyd previously reported.


Asunto(s)
Emparejamiento Base/fisiología , ADN/química , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Motivos de Nucleótidos/fisiología , Conformación de Ácido Nucleico , Protones
20.
Biopolymers ; 103(6): 328-38, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25652776

RESUMEN

Emergence of thousands of crystal structures of noncoding RNA molecules indicates its structural and functional diversity. RNA function is based upon a large variety of structural elements which are specifically assembled in the folded molecules. Along with the canonical Watson-Crick base pairs, different orientations of the bases to form hydrogen-bonded non-canonical base pairs have also been observed in the available RNA structures. Frequencies of occurrences of different non-canonical base pairs in RNA indicate their important role to maintain overall structure and functions of RNA. There are several reports on geometry and energetic stabilities of these non-canonical base pairs. However, their stacking geometry and stacking stability with the neighboring base pairs are not well studied. Among the different non-canonical base pairs, the G:U wobble base pair (G:U W:WC) is most frequently observed in the RNA double helices. Using quantum chemical method and available experimental data set we have studied the stacking geometry of G:U W:WC base pair containing dinucleotide sequences in roll-slide parameters hyperspace for different values of twist. This study indicates that the G:U W:WC base pair can stack well with the canonical base pairs giving rise to large interaction energy. The overall preferred stacking geometry in terms of roll, twist and slide for the eleven possible dinucleotide sequences is seen to be quite dependent on their sequences.


Asunto(s)
Emparejamiento Base/fisiología , ARN/química , Enlace de Hidrógeno , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...