Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
J Neuroinflammation ; 21(1): 76, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532383

RESUMEN

Japanese encephalitis virus (JEV) is a neurotropic pathogen that causes lethal encephalitis. The high susceptibility and massive proliferation of JEV in neurons lead to extensive neuronal damage and inflammation within the central nervous system. Despite extensive research on JEV pathogenesis, the effect of JEV on the cellular composition and viral tropism towards distinct neuronal subtypes in the brain is still not well comprehended. To address these issues, we performed single-cell RNA sequencing (scRNA-seq) on cells isolated from the JEV-highly infected regions of mouse brain. We obtained 88,000 single cells and identified 34 clusters representing 10 major cell types. The scRNA-seq results revealed an increasing amount of activated microglia cells and infiltrating immune cells, including monocytes & macrophages, T cells, and natural killer cells, which were associated with the severity of symptoms. Additionally, we observed enhanced communication between individual cells and significant ligand-receptor pairs related to tight junctions, chemokines and antigen-presenting molecules upon JEV infection, suggesting an upregulation of endothelial permeability, inflammation and antiviral response. Moreover, we identified that Baiap2-positive neurons were highly susceptible to JEV. Our findings provide valuable clues for understanding the mechanism of JEV induced neuro-damage and inflammation as well as developing therapies for Japanese encephalitis.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Ratones , Animales , Tropismo Viral , Sistema Nervioso Central/patología , Encefalitis Japonesa/patología , Inflamación , Análisis de Secuencia de ARN
2.
Microbiol Spectr ; 12(3): e0323823, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38319106

RESUMEN

Japanese encephalitis virus (JEV) is one of the major neurotropic viral infections that is known to dysregulate the homeostasis of neural stem/progenitor cells (NSPCs) and depletes the stem cell pool. NSPCs are multipotent stem cell population of the central nervous system (CNS) which are known to play an important role in the repair of the CNS during insults/injury caused by several factors such as ischemia, neurological disorders, CNS infections, and so on. Viruses have evolved to utilize host factors for their own benefit and during JEV infection, host factors, including the non-coding RNAs such as miRNAs, are reported to be affected, thereby cellular processes regulated by the miRNAs exhibit perturbed functionality. Previous studies from our laboratory have demonstrated the role of JEV infection in dysregulating the function of neural stem cells (NSCs) by altering the cell fate and depleting the stem cell pool leading to a decline in stem cell function in CNS repair mechanism post-infection. JEV-induced alteration in miRNA expression in the NSCs is one of the major interest to us. In prior studies, we have observed an altered expression pattern of certain miRNAs following JEV infection. In this study, we have validated the role of JEV infection in NSCs in altering the expression of miR-9-5p, which is a known regulator of neurogenesis in NSCs. Furthermore, we have validated the interaction of this miRNA with its target, Onecut2 (OC2), in primary NSCs utilizing miRNA mimic and inhibitor transfection experiments. Our findings indicate a possible role of JEV mediated dysregulated interaction between miR-9-5p and its putative target OC2 in NSPCs. IMPORTANCE: MicroRNAs have emerged as key disease pathogenic markers and potential therapeutic targets. In this study, we solidify this concept by studying a key miRNA, miR-9-5p, in Japanese encephalitis virus infection of neural stem/progenitor cells. miRNA target Onecut2 has a possible role in stem cell pool biology. Here, we show a possible mechanistic axis worth investing in neurotropic viral biology.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , MicroARNs , Células-Madre Neurales , Humanos , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Encefalitis Japonesa/genética , Encefalitis Japonesa/patología , Diferenciación Celular
3.
EMBO Mol Med ; 16(1): 185-217, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177535

RESUMEN

Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Ratones , Virus de la Encefalitis Japonesa (Especie)/fisiología , Metotrimeprazina/farmacología , Metotrimeprazina/uso terapéutico , Enfermedades Neuroinflamatorias , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/patología , Antivirales/farmacología , Antivirales/uso terapéutico , Autofagia , Antiinflamatorios/uso terapéutico
4.
Metab Brain Dis ; 38(8): 2831-2847, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37650987

RESUMEN

The anti-inflammatory and neuroprotective effects of short chain fatty acid (SCFA) butyrate have been explored in a wide array of neurological pathologies. It is a 4-carbon SCFA produced from the fermentation of dietary fibers by the gut-microbiota. As evident from previous literature, butyrate plays a wide array of functions in CNS and interestingly enhances the differentiation potential of Neural stem/Progenitor Cells (NSPCs). Japanese encephalitis virus (JEV) is a well-known member of the Flaviviridae family and has been shown to alter neural stem cell pool of the brain, causing devastating consequences. In this study, we administered sodium butyrate (NaB) post JEV infection in BALB/c mouse model to examine any possible amelioration of the viral infection in NSPCs. In addition, ex vivo neurospheres and in vitro model of NSPCs were also used to study the effect of sodium butyrate in JEV infection. As an unprecedented finding, butyrate treated infected animals presented early onset of symptoms, as compared to their respective JEV infected groups. Alongside, we observed an increased viral load in NSPCs isolated from these animals as well as in cell culture models upon sodium butyrate treatment. Cytometric bead array analysis also revealed an increase in inflammatory cytokines, particularly, MCP-1 and IL-6. Further, increased expression of the key members of the canonical NF-κB pathway, viz-a-viz p-NF-κB, p-Iκ-Bα and p-IKK was observed. Overall, the increased inflammation and cell death caused early symptom progression in NaB-treated JEV infected animal model, which is contradictory to the well documented protective nature of NaB and therefore a better understanding of SCFA-based modulation of the gut-brain axis in viral infections is required.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Células-Madre Neurales , Animales , Ratones , Encefalitis Japonesa/metabolismo , Encefalitis Japonesa/patología , Ácido Butírico/farmacología , FN-kappa B , Células-Madre Neurales/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Modelos Teóricos
5.
Cell Rep ; 42(5): 112489, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37167063

RESUMEN

Upon recognizing danger signals produced by virally infected neurons, macrophages in the central nervous system (CNS) secrete multiple inflammatory cytokines to accelerate neuron apoptosis. The understanding is limited about which key effectors regulate macrophage-neuron crosstalk upon infection. We have used neurotropic-virus-infected murine models to identify that vascular endothelial growth factor receptor 3 (VEGFR-3) is upregulated in the CNS macrophages and that virally infected neurons secrete the ligand VEGF-C. When cultured with VEGF-C-containing supernatants from virally infected neurons, VEGFR-3+ macrophages suppress tumor necrosis factor α (TNF-α) secretion to reduce neuron apoptosis. Vegfr-3ΔLBD/ΔLBD (deletion of ligand-binding domain in myeloid cells) mice or mice treated with the VEGFR-3 kinase inhibitor exacerbate the severity of encephalitis, TNF-α production, and neuron apoptosis post Japanese encephalitis virus (JEV) infection. Activating VEGFR-3 or blocking TNF-α can reduce encephalitis and neuronal damage upon JEV infection. Altogether, we show that the inducible VEGF-C/VEGFR-3 module generates protective crosstalk between neurons and macrophages to alleviate CNS viral infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Ligandos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Encefalitis Japonesa/metabolismo , Encefalitis Japonesa/patología , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Neuronas/metabolismo , Macrófagos/metabolismo
6.
Microbiol Spectr ; 10(3): e0258321, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35638852

RESUMEN

Japanese encephalitis virus (JEV) is a neurotropic flavivirus that invades the central nervous system and causes neuroinflammation and extensive neuronal cell death. Nucleotide-binding oligomerization domain 1 (NOD1) is a type of pattern recognition receptor that plays a regulatory role in both bacterial and nonbacterial infections. However, the role of NOD1 in JEV-induced neuroinflammation remains undisclosed. In this study, we evaluated the effect of NOD1 activation on the progression of JEV-induced neuroinflammation using a human astrocytic cell line and NOD1 knockout mice. The results showed that JEV infection upregulated the mRNA and protein expression of NOD1, ultimately leading to an enhanced neuroinflammatory response in vivo and in vitro. Inhibition of NOD1 in cultured cells or mice significantly abrogated the inflammatory response triggered by JEV infection. Moreover, compared to the wild-type mice, the NOD1 knockout mice showed resistance to JEV infection. Mechanistically, the NOD1-mediated neuroinflammatory response was found to be associated with increased expression or activation/phosphorylation of downstream receptor-interacting protein 2 (RIPK2), mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), Jun N-terminal protein kinase (JNK), and NF-κB signaling molecules. Thus, NOD1 targeting could be a therapeutic approach to treat Japanese encephalitis. IMPORTANCE Neuroinflammation is the main pathological manifestation of Japanese encephalitis (JE) and the most important factor leading to morbidity and death in humans and animals infected by JEV. An in-depth understanding of the basic mechanisms of neuroinflammation will contribute to research on JE treatment. This study proved that JEV infection can activate the NOD1-RIPK2 signal cascade to induce neuroinflammation through the proven downstream MAPK, ERK, JNK, and NF-κB signal pathway. Thus, our study unveiled NOD1 as a potential target for therapeutic intervention for JE.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Proteína Adaptadora de Señalización NOD1/metabolismo , Animales , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/genética , Encefalitis Japonesa/patología , Inflamación/metabolismo , Ratones , FN-kappa B/metabolismo , FN-kappa B/uso terapéutico , Enfermedades Neuroinflamatorias , Nucleótidos/metabolismo
7.
Cells ; 10(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34831405

RESUMEN

Infection with flaviviruses causes mild to severe diseases, including viral hemorrhagic fever, vascular shock syndrome, and viral encephalitis. Several animal models explore the pathogenesis of viral encephalitis, as shown by neuron destruction due to neurotoxicity after viral infection. While neuronal cells are injuries caused by inflammatory cytokine production following microglial/macrophage activation, the blockade of inflammatory cytokines can reduce neurotoxicity to improve the survival rate. This study investigated the involvement of macrophage phenotypes in facilitating CNS inflammation and neurotoxicity during flavivirus infection, including the Japanese encephalitis virus, dengue virus (DENV), and Zika virus. Mice infected with different flaviviruses presented encephalitis-like symptoms, including limbic seizure and paralysis. Histology indicated that brain lesions were identified in the hippocampus and surrounded by mononuclear cells. In those regions, both the infiltrated macrophages and resident microglia were significantly increased. RNA-seq analysis showed the gene profile shifting toward type 1 macrophage (M1) polarization, while M1 markers validated this phenomenon. Pharmacologically blocking C-C chemokine receptor 2 and tumor necrosis factor-α partly retarded DENV-induced M1 polarization. In summary, flavivirus infection, such as JEV and DENV, promoted type 1 macrophage polarization in the brain associated with encephalitic severity.


Asunto(s)
Polaridad Celular , Virus del Dengue/fisiología , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Viral/patología , Encefalitis Viral/virología , Macrófagos/patología , Índice de Severidad de la Enfermedad , Animales , Animales Lactantes , Línea Celular , Modelos Animales de Enfermedad , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Encefalitis Viral/inmunología , Hipocampo/patología , Inflamación/patología , Ratones Endogámicos ICR , Neurotoxinas/toxicidad , Receptores CCR2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
Dis Model Mech ; 14(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34447981

RESUMEN

A mouse-adapted isolate of Japanese encephalitis virus (JEV), designated as JEV-S3, was generated by serially passaging the P20778 strain of the virus in 3- to 4-week-old C57BL/6 mice. Blood-brain barrier leakage was evident in JEV-S3-infected mice, in which viral antigens and RNA were consistently demonstrated in the brain, along with infiltration of activated immune cells, as evidenced by an increased CD45+CD11b+ cell population. Histopathology studies showed the presence of perivascular cuffing, haemorrhage and necrotic foci in the virus-infected brain, conforming to the pathological changes seen in the brain of JEV-infected patients. Mass spectrometry studies characterized the molecular events leading to brain inflammation in the infected mice. Notably, a significant induction of inflammatory cytokines, such as IFNγ, IL6, TNFα and TGFß, was observed. Further, genome sequencing of the JEV-S3 isolate identified the mutations selected during the mouse passage of the virus. Overall, we present an in-depth characterization of a robust and reproducible mouse model of JEV infection. The JEV-S3 isolate will be a useful tool to screen antivirals and study virus pathogenesis in the adolescent mouse model.


Asunto(s)
Envejecimiento/patología , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Adaptación Fisiológica , Sustitución de Aminoácidos , Animales , Antivirales/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/patología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Caspasas/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/complicaciones , Encefalitis Japonesa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Genoma Viral , Inflamación/complicaciones , Inflamación/patología , Interferones/farmacología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Mutación/genética , Virulencia/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
9.
PLoS One ; 16(6): e0252595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086776

RESUMEN

Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in South East Asia. It has been suggested that, as a consequence of the inflammatory process during JEV infection, there is disruption of the blood-brain barrier (BBB) tight junctions that in turn allows the virus access to the central nervous system (CNS). However, what happens at early times of JEV contact with the BBB is poorly understood. In the present work, we evaluated the ability of both a virulent and a vaccine strain of JEV (JEV RP9 and SA14-14-2, respectively) to cross an in vitro human BBB model. Using this system, we demonstrated that both JEV RP9 and SA14-14-2 are able to cross the BBB without disrupting it at early times post viral addition. Furthermore, we find that almost 10 times more RP9 infectious particles than SA14-14 cross the model BBB, indicating this BBB model discriminates between the virulent RP9 and the vaccine SA14-14-2 strains of JEV. Beyond contributing to the understanding of early events in JEV neuroinvasion, we demonstrate this in vitro BBB model can be used as a system to study the viral determinants of JEV neuroinvasiveness and the molecular mechanisms by which this flavivirus crosses the BBB during early times of neuroinvasion.


Asunto(s)
Barrera Hematoencefálica/virología , Virus de la Encefalitis Japonesa (Especie)/fisiología , Modelos Biológicos , Barrera Hematoencefálica/fisiología , Línea Celular , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Endoteliales/virología , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Virulencia , Replicación Viral
10.
J Biomed Sci ; 28(1): 46, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34116654

RESUMEN

Dysregulated formation of neutrophil extracellular traps (NETs) is observed in acute viral infections. Moreover, NETs contribute to the pathogenesis of acute viral infections, including those caused by the dengue virus (DV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, excessive NET formation (NETosis) is associated with disease severity in patients suffering from SARS-CoV-2-induced multiple organ injuries. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and other members of C-type lectin family (L-SIGN, LSECtin, CLEC10A) have been reported to interact with viral glycans to facilitate virus spreading and exacerbates inflammatory reactions. Moreover, spleen tyrosine kinase (Syk)-coupled C-type lectin member 5A (CLEC5A) has been shown as the pattern recognition receptor for members of flaviviruses, and is responsible for DV-induced cytokine storm and Japanese encephalomyelitis virus (JEV)-induced neuronal inflammation. Moreover, DV activates platelets via CLEC2 to release extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs). The DV-activated EXOs (DV-EXOs) and MVs (DV-MVs) stimulate CLEC5A and Toll-like receptor 2 (TLR2), respectively, to enhance NET formation and inflammatory reactions. Thus, EVs from virus-activated platelets (PLT-EVs) are potent endogenous danger signals, and blockade of C-type lectins is a promising strategy to attenuate virus-induced NETosis and intravascular coagulopathy.


Asunto(s)
COVID-19/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/inmunología , Trampas Extracelulares/inmunología , Lectinas Tipo C/inmunología , SARS-CoV-2/inmunología , Plaquetas/inmunología , Plaquetas/patología , COVID-19/patología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/patología , Encefalitis Japonesa/patología , Humanos , Activación Plaquetaria/inmunología , Transducción de Señal/inmunología
11.
J Neuroinflammation ; 17(1): 315, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097065

RESUMEN

BACKGROUND: Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in Asia. JEV infection of mice and humans can lead to an uncontrolled inflammatory response in the central nervous system (CNS), resulting in a detrimental outcome. Pigs act as important amplification and reservoir hosts, and JEV infection of pigs is mostly subclinical. Information on virus spread in the CNS and immune responses controlling JEV infection in the CNS of pigs, however remains scarce. METHODS: Nine-week-old pigs were inoculated intranasal or intradermal with a relevant dose of 105 TCID50 of JEV genotype 3 Nakayama strain. Clinical signs were assessed daily, and viral spread was followed by RT-qPCR. mRNA expression profiles were determined to study immune responses in the CNS. RESULTS: Besides a delay of 2 days to reach the peak viremia upon intranasal compared to intradermal inoculation, the overall virus spread via both inoculation routes was highly similar. JEV appearance in lymphoid and visceral organs was in line with a blood-borne JEV dissemination. JEV showed a particular tropism to the CNS but without the induction of neurological signs. JEV entry in the CNS probably occurred via different hematogenous and neuronal pathways, but replication in the brain was mostly efficiently suppressed and associated with a type I IFN-independent activation of OAS1 expression. In the olfactory bulb and thalamus, where JEV replication was not completely controlled by this mechanism, a short but strong induction of chemokine gene expression was detected. An increased IFNy expression was simultaneously observed, probably originating from infiltrating T cells, correlating with a fast suppression of JEV replication. The chemokine response was however not associated with the induction of a strong inflammatory response, nor was an induction of the NLRP3 inflammasome observed. CONCLUSIONS: These findings indicate that an adequate antiviral response and an attenuated inflammatory response contribute to a favorable outcome of JEV infection in pigs and help to explain the limited neurological disease compared to other hosts. We show that the NLRP3 inflammasome, a key mediator of neurologic disease in mice, is not upregulated in pigs, further supporting its important role in JEV infections.


Asunto(s)
Sistema Nervioso Central/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/inmunología , Inmunidad/inmunología , Mediadores de Inflamación/inmunología , Animales , Sistema Nervioso Central/patología , Chlorocebus aethiops , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/patología , Inflamación/inmunología , Inflamación/patología , Mediadores de Inflamación/metabolismo , Porcinos , Células Vero
12.
Nat Commun ; 11(1): 5178, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057066

RESUMEN

Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus that causes encephalitis and reproductive disorders in mammalian species. However, the host factors critical for its entry, replication, and assembly are poorly understood. Here, we design a porcine genome-scale CRISPR/Cas9 knockout (PigGeCKO) library containing 85,674 single guide RNAs targeting 17,743 protein-coding genes, 11,053 long ncRNAs, and 551 microRNAs. Subsequently, we use the PigGeCKO library to identify key host factors facilitating JEV infection in porcine cells. Several previously unreported genes required for JEV infection are highly enriched post-JEV selection. We conduct follow-up studies to verify the dependency of JEV on these genes, and identify functional contributions for six of the many candidate JEV-related host genes, including EMC3 and CALR. Additionally, we identify that four genes associated with heparan sulfate proteoglycans (HSPGs) metabolism, specifically those responsible for HSPGs sulfurylation, facilitate JEV entry into porcine cells. Thus, beyond our development of the largest CRISPR-based functional genomic screening platform for pig research to date, this study identifies multiple potentially vulnerable targets for the development of medical and breeding technologies to treat and prevent diseases caused by JEV.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/patología , Interacciones Huésped-Patógeno/genética , Replicación Viral , Animales , Sistemas CRISPR-Cas/genética , Calreticulina/genética , Calreticulina/metabolismo , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/virología , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Biblioteca de Genes , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo , Sus scrofa
13.
Am J Trop Med Hyg ; 103(4): 1691-1693, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32783793

RESUMEN

Japanese encephalitis (JE) virus is a mosquito-borne flavivirus endemic throughout Asia. Incidence in non-endemic countries is rare, with an estimate of less than one case per one million travelers. Most human JE infections are asymptomatic or cause a mild, nonspecific febrile illness. Neurological involvement, if present, is usually severe and associated with high mortality or ongoing neurological sequelae in survivors. Ocular manifestations are rare with JE, but uveitis has been described to be associated with other flavivirus infections, including West Nile virus. We report the first probable case of JE chorioretinitis acquired by a 45-year-old Australian traveler to Bali. This case highlights the importance of a detailed ocular examination when there is clinical suspicion of JE.


Asunto(s)
Coriorretinitis/diagnóstico por imagen , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/diagnóstico por imagen , Australia , Coriorretinitis/virología , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Ojo/diagnóstico por imagen , Ojo/patología , Ojo/virología , Humanos , Indonesia , Masculino , Persona de Mediana Edad , Viaje
14.
PLoS One ; 15(5): e0232585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32374750

RESUMEN

Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.


Asunto(s)
Culicidae/metabolismo , Encefalitis Japonesa/metabolismo , Neuronas/patología , Proteoma/metabolismo , Fiebre del Nilo Occidental/metabolismo , Animales , Línea Celular Tumoral , Culicidae/virología , Virus de la Encefalitis Japonesa (Subgrupo)/aislamiento & purificación , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Femenino , Humanos , Neuronas/metabolismo , Neuronas/virología , Proteoma/análisis , Saliva/metabolismo , Saliva/virología , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/aislamiento & purificación
15.
J Vet Sci ; 20(6): e65, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31775192

RESUMEN

A 10-year-old male spotted seal presented with loss of appetite and decreased activity. Grossly, the internal organs revealed several filarial nematodes in the right ventricle of the heart and the pulmonary vessels. Histopathological examination of the brain revealed moderate nonsuppurative meningoencephalitis with glial nodules and neuronophagia. Japanese encephalitis virus (JEV) of genotype I was isolated from the brain. All nematodes were identified as Dirofilaria immitis. This is the first clinical case of co-infection with D. immitis and JEV in a seal, suggesting that the seal, may be a dead-end host, like the human and horse, for JEV.


Asunto(s)
Coinfección/veterinaria , Dirofilaria immitis/aislamiento & purificación , Dirofilariasis/diagnóstico , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Encefalitis Japonesa/veterinaria , Phoca , Animales , Coinfección/diagnóstico , Coinfección/parasitología , Coinfección/virología , Dirofilariasis/parasitología , Dirofilariasis/patología , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Masculino , República de Corea
16.
J Neurochem ; 149(4): 518-534, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30556910

RESUMEN

MicroRNAs (miRNAs) released from the activated microglia upon neurotropic virus infection may exacerbate the neuronal damage. Here, we identified let-7a and let-7b (let-7a/b) as one of the essential miRNAs over-expressed upon Japanese Encephalitis virus (JEV) infection and released in the culture supernatant of the JEV-infected microglial cells through extracellular vesicles. The let-7a/b was previously reported to modulate inflammation in microglial cells through Toll-like receptor 7 (TLR7) pathways; although their role in accelerating JEV pathogenesis remain unexplored. Therefore, we studied the role of let-7a/b in modulating microglia-mediated inflammation during JEV infection and investigated the effect of let-7a/b-containing exosomes on primary neurons. To this end, we examined let-7a/b and NOTCH signaling pathway in TLR7 knockdown (KD) mice. We observed that TLR7 KD or inhibition of let-7a/b suppressed the JEV-induced NOTCH activation possibly via NF-κB dependent manner and subsequently, attenuated JEV-induced TNFα production in microglial cells. Furthermore, exosomes secreted from let-7a/b over-expressed microglia when transferred to uninfected mice brain induced caspase activation. Exosomes secreted from virus-infected or let-7a/b over-expressed microglia when co-incubated with mouse neuronal (Neuro2a) cells or primary cortical neurons also facilitated caspase activation leading to neuronal death. Thus, our results provide evidence for the multifaceted role of let-7a/b miRNAs in JEV pathogenesis. Let-7a/b can interact with TLR7 and NOTCH signaling pathway and enhance TNFα release from microglia. On the other hand, the exosomes secreted by JEV-infected microglia can activate caspases in uninfected neuronal cells which possibly contribute to bystander neuronal death. Cover Image for this issue: doi: 10.1111/jnc.14506.


Asunto(s)
Encefalitis Japonesa/metabolismo , MicroARNs/metabolismo , Microglía/metabolismo , Microglía/virología , Neuronas/patología , Animales , Caspasas/metabolismo , Muerte Celular/fisiología , Células Cultivadas , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa/patología , Exosomas/metabolismo , Técnicas de Silenciamiento del Gen , Glicoproteínas de Membrana/metabolismo , Ratones , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 7/metabolismo
17.
Viral Immunol ; 32(1): 68-74, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30585774

RESUMEN

Japanese encephalitis (JE) is a vector-borne viral disease with clinical manifestations ranging from asymptomatic to severe neurological symptoms and even leading to death. The exact pathophysiology for diverse clinical spectrum of the disease is complex and has not yet been defined. Studies have postulated that during JE infection, inflammatory cytokines and chemokines are produced after the initial recognition of viral antigens through the engagement of toll-like receptors (TLR) pathways. However, there is paucity of knowledge on the expression levels of chemokines and TLRs among mild and severely affected JE patients. Hence, to better understand disease pathogenesis, we examined the mRNA expression of chemokines, CCL2 and CCL5, and their respective receptors CCR2 and CCR5 along with TLRs viz. TLR3, TLR7, TLR8, and TLR9 in context of mild and severely Japanese encephalitis virus (JEV)-infected (n = 19) and healthy (n = 19) individuals. Our study showed significant downregulation of CCL2, CCL5, CCR2, CCR5, and TLR3 by log 0.87, 1.02, 0.82, 0.68, and 0.37-fold respectively, among mild cases compared with controls. Significant difference of gene expression among mild and severe JE cases for CCL2 (p < 0.001), CCL5 (p < 0.01), and TLR7 (p < 0.05) was observed. In conclusion, our results proposes that chemokines viz. CCL2 and CCL5 along with TLR7 may be associated with degree of pathogenesis of JE and could be putative therapeutic targets for preventing severe inflammation during viral encephalitis.


Asunto(s)
Quimiocinas/genética , Encefalitis Japonesa/inmunología , Expresión Génica , Receptores Toll-Like/genética , Adolescente , Adulto , Anciano , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CCL5/genética , Quimiocina CCL5/inmunología , Quimiocinas/inmunología , Niño , Regulación hacia Abajo , Encefalitis Japonesa/patología , Femenino , Humanos , India , Inflamación , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/inmunología , Receptores Toll-Like/inmunología , Adulto Joven
18.
Indian J Med Res ; 150(5): 498-503, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31939394

RESUMEN

Background & objectives: Mouse is a preferred animal model for studying pathogenesis of Japanese encephalitis virus (JEV) infections, and different routes of inoculation have been tried. Some neurotropic viruses can reach the brain following infection through ocular route. This study was undertaken to establish JEV-induced clinical disease in mouse model through conjunctival route and document the neuropathological effects. Methods: Ten two-week old Swiss albino mice were inoculated with 5 µl Vero cell cultured virus containing 104.7 TCID50 JEV through conjunctival route. Clinical signs of mice were observed twice daily. After necropsy examination, different organs including eyes and olfactory bulbs were collected for histopathological examination, quantification of viral copy number and antigen by real-time TaqMan assay and immunohistochemistry, respectively. Results: Infected mice showed characteristic clinical signs of JE by 4 days post-infection (dpi). Histopathological lesions in brain included perivascular cuffing by mononuclear cells, focal gliosis, necrosis of neurons and neuronophagia and astrocytosis in the cerebrum, cerebellum and the brainstem. JEV viral load was highest in the brain followed by intestine, heart, liver, spleen, lung and kidney. JEV antigen was detected in the bipolar and ganglion cells of the retina and in the mitral cells and periglomerular cells of olfactory bulb and other parts of the brain. Interpretation & conclusions: JEV infection in mice through conjunctival route produced characteristic clinical signs of the disease and neuropathological lesions. Demonstration of JEV antigen in association with neuropathological lesions in the central nervous system and neuronal cells of the eye showed that conjunctival route could be an effective alternate route for virus invasion into the brain. These findings have biosafety implications for researchers, veterinary practitioners and pig farmers.


Asunto(s)
Conjuntiva/virología , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/transmisión , Encefalitis Japonesa/virología , Animales , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Chlorocebus aethiops , Conjuntiva/patología , Modelos Animales de Enfermedad , Encefalitis Japonesa/patología , Humanos , Ratones , Neuropatología , Células Ganglionares de la Retina/virología , Células Vero
20.
J Neuroinflammation ; 15(1): 238, 2018 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-30144801

RESUMEN

BACKGROUND: Overstimulation of glutamate receptors, especially neuronal N-methyl-D-aspartate receptor (NMDAR), mediates excitatory neurotoxicity in multiple neurodegenerative diseases. However, the role of NMDAR in the regulation of Japanese encephalitis virus (JEV)-mediated neuropathogenesis remains undisclosed. The primary objective of this study was to understand the function of NMDAR to JEV-induced neuronal cell damage and inflammation in the central nervous system. METHODS: The effect of JEV-induced NMDAR activation on the progression of Japanese encephalitis was evaluated using the primary mouse neuron/glia cultures and a mouse model of JEV infection. A high-affinity NMDAR antagonist MK-801 was employed to block the activity of NMDAR both in vitro and in vivo. The subsequent impact of NMDAR blockade was assessed by examining the neuronal cell death, glutamate and inflammatory cytokine production, and JEV-induced mice mortality. RESULTS: JEV infection enhanced the activity of NMDAR which eventually led to increased neuronal cell damage. The data obtained from our in vitro and in vivo assays demonstrated that NMDAR blockade significantly abrogated the neuronal cell death and inflammatory response triggered by JEV infection. Moreover, administration of NMDAR antagonist protected the mice from JEV-induced lethality. CONCLUSION: NMDAR plays an imperative role in regulating the JEV-induced neuronal cell damage and neuroinflammation. Thus, NMDAR targeting may constitute a captivating approach to rein in Japanese encephalitis.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/patología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Anexina A5/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Maleato de Dizocilpina/uso terapéutico , Embrión de Mamíferos , Encefalitis Japonesa/tratamiento farmacológico , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/patología , Neuronas/virología , Fosfopiruvato Hidratasa/metabolismo , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...