Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673788

RESUMEN

Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.


Asunto(s)
Cannabinoides , Humanos , Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Animales , Cannabis/química , Endocannabinoides/metabolismo , Endocannabinoides/uso terapéutico , Cannabidiol/uso terapéutico , Cannabidiol/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/farmacología , Dronabinol/uso terapéutico , Dronabinol/farmacología
2.
Curr Opin Pharmacol ; 75: 102438, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401317

RESUMEN

Low back pain (LBP) is a major unmet clinical need. The endocannabinoid system (ECS) has emerged as a promising therapeutic target for pain, including LBP. This review examines the evidence for the ECS as a therapeutic target for LBP. While preclinical studies demonstrate the potential of the ECS as a viable therapeutic target, clinical trials have presented conflicting findings. This review underscores the need for innovative LBP treatments and biomarkers and proposes the ECS as a promising avenue for their exploration. A deeper mechanistic understanding of the ECS in LBP could inform the development of new pain management strategies.


Asunto(s)
Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/tratamiento farmacológico , Endocannabinoides/uso terapéutico
3.
WIREs Mech Dis ; 16(1): e1633, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37920964

RESUMEN

Melanoma is one of the leading fatal forms of cancer, yet from a treatment perspective, we have minimal control over its reoccurrence and resistance to current pharmacotherapies. The endocannabinoid system (ECS) has recently been accepted as a multifaceted homeostatic regulator, influencing various physiological processes across different biological compartments, including the skin. This review presents an overview of the pathophysiology of melanoma, current pharmacotherapy used for treatment, and the challenges associated with the different pharmacological approaches. Furthermore, it highlights the utility of cannabinoids as an additive remedy for melanoma by restoring the balance between downregulated immunomodulatory pathways and elevated inflammatory cytokines during chronic skin conditions as one of the suggested critical approaches in treating this immunogenic tumor. This article is categorized under: Cancer > Molecular and Cellular Physiology.


Asunto(s)
Cannabinoides , Melanoma , Humanos , Cannabinoides/farmacología , Melanoma/tratamiento farmacológico , Estudios Prospectivos , Endocannabinoides/uso terapéutico , Piel/metabolismo
4.
Exp Neurol ; 370: 114560, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37783412

RESUMEN

The present study aimed to investigate the effect of corticolimbic cannabinoid CB1 receptors activity on memory impairment in the intracerebroventricular (ICV)-streptozotocin (STZ) animal model of Alzheimer's like-disease. This study also assessed whether the corticolimbic overexpression of miRNA-137 or -let-7a could increase the endocannabinoids by inhibiting the monoglyceride lipase (MAGL) to ameliorate STZ response. The results showed that ICV microinjection of STZ (3 mg/kg/10 µl) impaired passive avoidance memory retrieval. The chronic microinjection of arachidonylcyclopropylamide (ACPA; 10 ng/0.5 µl), a selective cannabinoid CB1 receptor agonist, into the hippocampal CA1 region, the central amygdala (CeA) or the medial prefrontal cortex (mPFC) ameliorated the amnesic effect of ICV-STZ. Intra-CA1 or -CeA microinjection of ACPA alone did not affect memory retrieval, while its microinjection into the mPFC impaired memory formation. Based on bioinformatics analysis and verification of the MAGL gene, miRNA-137 and -let-7a were chosen to target the expression levels of MAGL in the corticolimbic regions. The chronic corticolimbic microinjection of lentiviral particles containing miRNA-137 or -let-7a ameliorated ICV-STZ-induced memory impairment. The high transfection efficiency was determined for each virus using comparing fluorescent and conventional vision. Corticolimbic overexpression of miRNA-137 or -let-7a decreased the MAGL gene expression that encodes the MAGL enzyme to increase the endocannabinoids. Thus, among the molecular mechanisms and signaling pathways involved in the pathophysiology of Alzheimer's disease (AD), it is worth mentioning the role of endocannabinoids in the corticolimbic regions. CB1 receptor agonists, miRNA-137 or -let-7a, may be potential therapeutic targets against cognitive decline in AD.


Asunto(s)
Enfermedad de Alzheimer , Cannabinoides , Ratas , Animales , Estreptozocina , Ratas Wistar , Endocannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Microinyecciones , Receptor Cannabinoide CB1/uso terapéutico , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/uso terapéutico , Modelos Animales de Enfermedad
5.
Biomed Pharmacother ; 168: 115714, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865988

RESUMEN

Chronic wounds represent a significant burden on the individual, and the healthcare system. Individuals with chronic wounds report pain to be the most challenging aspect of living with a chronic wound, with current therapeutic options deemed insufficient. The cutaneous endocannabinoid system is an important regulator of skin homeostasis, with evidence of system dysregulation in several cutaneous disorders. Herein, we describe the cutaneous endocannabinoid system, chronic wound-related pain, and comorbidities, and review preclinical and clinical evidence investigating endocannabinoid system modulation for wound-related pain and wound healing. Based on the current literature, there is some evidence to suggest efficacy of endocannabinoid system modulation for promotion of wound healing, attenuation of cutaneous disorder-related inflammation, and for the management of chronic wound-related pain. However, there is 1) a paucity of preclinical studies using validated models, specific for the study of chronic wound-related pain and 2) a lack of randomised control trials and strong clinical evidence relating to endocannabinoid system modulation for wound-related pain. In conclusion, while there is some limited evidence of benefit of endocannabinoid system modulation in wound healing and wound-related pain management, further research is required to better realise the potential of targeting the endocannabinoid system for these therapeutic applications.


Asunto(s)
Cannabinoides , Dolor Crónico , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Endocannabinoides/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Manejo del Dolor , Cicatrización de Heridas
6.
Biomolecules ; 13(9)2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37759788

RESUMEN

In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.


Asunto(s)
Enfermedad de Alzheimer , Cannabinoides , Enfermedad de Huntington , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Endocannabinoides/uso terapéutico , Neoplasias/tratamiento farmacológico
7.
J Pharmacol Exp Ther ; 387(3): 265-276, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37739804

RESUMEN

Cardiovascular disease represents a leading cause of death, morbidity, and societal economic burden. The prevalence of cannabis use has significantly increased due to legalization and an increased societal acceptance of cannabis. Therefore, it is critically important that we gain a greater understanding of the effects and risks of cannabinoid use on cardiovascular diseases as well as the potential for cannabinoid-directed drugs to be used as therapeutics for the treatment of cardiovascular disease. This review summarizes our current understanding of the role of cannabinoid receptors in the pathophysiology of atherosclerosis and myocardial ischemia and explores their use as therapeutic targets in the treatment of ischemic heart disease. Endocannabinoids are elevated in patients with atherosclerosis, and activation of cannabinoid type 1 receptors (CB1Rs) generally leads to an enhancement of plaque formation and atherosclerosis. In contrast, selective activation of cannabinoid type 2 receptors (CB2Rs) appears to exert protective effects against atherosclerosis. Endocannabinoid signaling is also activated by myocardial ischemia. CB2R signaling appears to protect the heart from ischemic injury, whereas the role of CB1R in ischemic injury is less clear. This narrative review serves to summarize current research on the role of cannabinoid signaling in cardiovascular function with the goal of identifying critical knowledge gaps and future studies to address those gaps in a way that facilitates the development of new treatments and better cardiovascular health. SIGNIFICANCE STATEMENT: Cardiovascular diseases, including atherosclerosis and myocardial infarction, are a leading cause of death. Cannabinoid drugs have well known acute effects on cardiovascular function, including tachycardia and orthostatic hypotension. The recent legalization of marijuana and cannabinoids for both medical and recreational use has dramatically increased their prevalence of use. This narrative review on the role of cannabinoid signaling in cardiovascular disease contributes to a better understanding of this topic by integrating current knowledge and identifying critical gaps.


Asunto(s)
Aterosclerosis , Cannabinoides , Infarto del Miocardio , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Endocannabinoides/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Receptores de Cannabinoides , Infarto del Miocardio/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico
8.
Exp Dermatol ; 32(12): 2072-2083, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37726950

RESUMEN

Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune skin disease which occurs independently and in conjunction with systemic lupus erythematosus. Drug development for CLE is severely lacking. Anandamide (AEA) is a primary endocannabinoid which exhibits immunomodulatory effects through mixed cannabinoid receptor agonism. We evaluated AEA as topical treatment for CLE and assessed benefits of nanoparticle encapsulation (AEA-NP) on cutaneous drug penetration, delivery and biological activity. Compared to untreated controls, AEA-NP decreased IL-6 and MCP-1 in UVB-stimulated keratinocytes (p < 0.05) in vitro. In BALB/c mice, AEA-NP displayed improved cutaneous penetration, extended release and persistence of AEA in the follicular unit extending to the base after 24 h. Utilizing the MRL-lpr lupus murine model, twice weekly treatment of lesions with topical AEA-NP for 10 weeks led to decreased clinical and histologic lesion scores compared to unencapsulated AEA and untreated controls (p < 0.05). Prophylactic application of AEA-NP to commonly involved areas on MRL-lpr mice similarly resulted in decreased clinical and histologic scores when compared to controls (p < 0.05), and reduced C3 and IBA-1 in lesional tissue (p < 0.05). The demonstrated clinical and immunomodulatory effects of treatment with AEA support its potential as therapy for CLE. This work also suggests that encapsulation of AEA improves penetration and treatment efficacy. Future studies will be conducted to assess full therapeutic potential.


Asunto(s)
Lupus Eritematoso Cutáneo , Lupus Eritematoso Sistémico , Ratones , Animales , Citocinas , Endocannabinoides/farmacología , Endocannabinoides/uso terapéutico , Modelos Animales de Enfermedad , Ratones Endogámicos MRL lpr , Lupus Eritematoso Cutáneo/tratamiento farmacológico
9.
Eur J Neurol ; 30(10): 3212-3220, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37337838

RESUMEN

BACKGROUND AND PURPOSE: The endocannabinoid system (ECS) has been found altered in patients with multiple sclerosis (MS). However, whether the ECS alteration is present in the early stage of MS remains unknown. First, we aimed to compare the ECS profile between newly diagnosed MS patients and healthy controls (HCs). Next, we explored the association of the ECS, biomarkers of inflammation, and clinical parameters in newly diagnosed MS patients. METHODS: Whole blood gene expression of ECS components and levels of endocannabinoids in plasma were measured by real-time quantitative polymerase chain reaction and ultra-high-pressure liquid chromatography-mass spectrometry, respectively, in 66 untreated MS patients and 46 HCs. RESULTS: No differences were found in the gene expression or plasma levels of the selected ECS components between newly diagnosed MS patients and HCs. Interferon-γ, encoded by the gene IFNG, correlated positively (ρ = 0.60) with the expression of G protein-coupled receptor 55 (GPR55), and interleukin1ß (IL1B) correlated negatively (ρ = -0.50) with cannabinoid receptor 2 (CNR2) in HCs. CONCLUSIONS: We found no alteration in the peripheral ECS between untreated patients with MS and HC. Furthermore, our results indicate that the ECS has a minor overall involvement in the early stage of MS on inflammatory markers and clinical parameters when compared with HCs.


Asunto(s)
Endocannabinoides , Esclerosis Múltiple , Humanos , Endocannabinoides/genética , Endocannabinoides/metabolismo , Endocannabinoides/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Inflamación , Espectrometría de Masas , Biomarcadores
10.
Life Sci ; 327: 121862, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37330042

RESUMEN

AIMS: This study established the in vitro anti-lymphoma pharmacodynamic actions of the endocannabinoids (anandamide-AEA and 2-arachidonoylglycerol-2AG) on canine non-Hodgkin lymphoma (NHL) and human NHL cells. MAIN METHODS: The expression of cannabinoid (CB1 and CB2) receptors in various canine NHL cells {1771, CLBL-1, CLL-1, peripheral blood mononuclear cells (PBMCs)} was studied using Quantitative real-time PCR (RT-qPCR). Anti-lymphoma cell viability assay was performed to assess the effect of endocannabinoids on various canine and human NHL cells (1771, CLBL-1, CLL-1, Ramos cells). The spectrophotometric and fluorometric procedures evaluated oxidative stress, inflammation, apoptosis, and mitochondrial function markers. SAS® and Prism-V La Jolla, CA, USA, were used for statistical analysis. KEY FINDINGS: The current study validated the presence of CB1 and CB2 receptors in the canine NHL cells. There was a significantly higher expression of CB1 and CB2 receptors in B-cell lymphoma (BCL) cells (1771, CLBL-1, Ramos) compared to canine T-cell lymphoma (TCL) cells (CL-1). AEA and 2AG dose and time-dependently exhibited significant but differential anti-lymphoma effects on canine and human NHL cells. Anti-lymphoma pharmacodynamic actions of the endocannabinoids in the canine 1771 NHL cells revealed a significant alteration in the markers of oxidative stress, inflammation, and a decrease in mitochondrial function without altering the apoptotic markers. SIGNIFICANCE: Establishing the anti-lymphoma pharmacodynamic actions of endocannabinoids may provide new therapeutic interventions and expedite cannabinoid research.


Asunto(s)
Cannabinoides , Leucemia Linfocítica Crónica de Células B , Linfoma no Hodgkin , Animales , Perros , Humanos , Endocannabinoides/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucocitos Mononucleares , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/veterinaria , Cannabinoides/uso terapéutico , Alcamidas Poliinsaturadas/farmacología , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2
11.
J Neuroinflammation ; 20(1): 108, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149645

RESUMEN

BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous group of early onset and progressive neurodegenerative disorders, characterized by degeneration in the frontal and temporal lobes, which causes deterioration in cognition, personality, social behavior and language. Around 45% of the cases are characterized by the presence of aggregates of the RNA-binding protein TDP-43. METHODS: In this study, we have used a murine model of FTD that overexpresses this protein exclusively in the forebrain (under the control of the CaMKIIα promoter) for several biochemical, histological and pharmacological studies focused on the endocannabinoid system. RESULTS: These mice exhibited at postnatal day 90 (PND90) important cognitive deficits, signs of emotional impairment and disinhibited social behaviour, which were, in most of cases, maintained during the first year of life of these animals. Motor activity was apparently normal, but FTD mice exhibited higher mortality. Their MRI imaging analysis and their ex-vivo histopathological evaluation proved changes compatible with atrophy (loss of specific groups of pyramidal neurons: Ctip2- and NeuN-positive cells) and inflammatory events (astroglial and microglial reactivities) in both cortical (medial prefrontal cortex) and subcortical (hippocampus) structures at PND90 and also at PND365. The analysis of the endocannabinoid system in these mice proved a decrease in the hydrolysing enzyme FAAH in the prefrontal cortex and the hippocampus, with an increase in the synthesizing enzyme NAPE-PLD only in the hippocampus, responses that were accompanied by modest elevations in anandamide and related N-acylethanolamines. The potentiation of these elevated levels of anandamide after the pharmacological inactivation of FAAH with URB597 resulted in a general improvement in behaviour, in particular in cognitive deterioration, associated with the preservation of pyramidal neurons of the medial prefrontal cortex and the CA1 layer of the hippocampus, and with the reduction of gliosis in both structures. CONCLUSIONS: Our data confirmed the potential of elevating the endocannabinoid tone as a therapy against TDP-43-induced neuropathology in FTD, limiting glial reactivity, preserving neuronal integrity and improving cognitive, emotional and social deficits.


Asunto(s)
Demencia Frontotemporal , Enfermedad de Pick , Masculino , Ratones , Animales , Demencia Frontotemporal/genética , Endocannabinoides/uso terapéutico , Ratones Transgénicos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
12.
J Cataract Refract Surg ; 49(11): 1160-1167, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37232414

RESUMEN

Acute corneal pain is a common complaint that causes significant distress to patients and continues to challenge therapeutic avenues for pain management. Current topical treatment options have marked limitations in terms of both efficacy and safety, thus often prompting the adjunctive use of systemic analgesics, including opioids. In general, there have not been extensive advancements in pharmacologic options for the management of corneal pain over the past several decades. Despite this, multiple promising therapeutic avenues exist which hold the potential to transform the ocular pain landscape, including druggable targets within the endocannabinoid system. This review will summarize the current evidence base for topical nonsteroidal anti-inflammatory drugs, anticholinergic agents, and anesthetics before focusing on several potential avenues in the setting of acute corneal pain management, including autologous tear serum, topical opioids and endocannabinoid system modulators.


Asunto(s)
Analgésicos , Endocannabinoides , Humanos , Endocannabinoides/uso terapéutico , Analgésicos/uso terapéutico , Dolor/tratamiento farmacológico , Antiinflamatorios no Esteroideos/uso terapéutico , Manejo del Dolor , Analgésicos Opioides
13.
Environ Res ; 228: 115914, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37062475

RESUMEN

Despite numerous prevention methodologies and treatment options, hepatocellular carcinoma (HCC) still remains as the third leading life-threatening cancer. It is thus pertinent to develop new treatment modality to fight this devastating carcinoma. Ample recent studies have shown the anti-inflammatory and antitumor roles of the endocannabinoid system in various forms of cancers. Preclinical studies have also confirmed that cannabinoid therapy can be an optimal regimen for cancer treatments. The endocannabinoid system is involved in many cancer-related processes, including induction of endoplasmic reticulum (ER) stress-dependent apoptosis, autophagy, PITRK and ERK signaling pathways, cell invasion, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) phenotypes. Moreover, changes in signaling transduction of the endocannabinoid system can be a potential diagnostic and prognostic biomarker for HCC. Due to its pivotal role in lipid metabolism, the endocannabinoid system affects metabolic reprogramming as well as lipid content of exosomes. In addition, due to the importance of non-coding RNAs (ncRNAs), several studies have examined the relationship between microRNAs and the endocannabinoid system in HCC. However, HCC is a pathological condition with high heterogeneity, and therefore using the endocannabinoid system for treatment has faced many controversies. While some studies favored a role of the endocannabinoid system in carcinogenesis and tumor induction, others exhibited the anticancer potential of endocannabinoids in HCC. In this review, specific studies delineating the relationship between endocannabinoids and HCC are examined. Based on collected findings, detailed studies of the molecular mechanism of endocannabinoids as well as preclinical studies for investigating therapeutic or carcinogenic impacts in HCC cancer are strongly suggested.


Asunto(s)
Cannabinoides , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Endocannabinoides/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/uso terapéutico , Cannabinoides/uso terapéutico , Línea Celular Tumoral
14.
Eur Neuropsychopharmacol ; 72: 79-94, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37094409

RESUMEN

The endocannabinoid system is a promising candidate for anxiolytic therapy, but translation to the clinic has been lagging. We meta-analyzed the evidence for anxiety-reduction by compounds that facilitate endocannabinoid signaling in humans and animals. To identify areas of specific potential, effects of moderators were assessed. Literature was searched in Pubmed and Embase up to May 2021. A placebo/vehicle-control group was required and in human studies, randomization. We excluded studies that co-administered other substances. Risk of bias was assessed with SYRCLE's RoB tool and Cochrane RoB 2.0. We conducted three-level random effects meta-analyses and explored sources of heterogeneity using Bayesian regularized meta-regression (BRMA). The systematic review yielded 134 studies. We analyzed 120 studies (114 animal, 6 human) that investigated cannabidiol (CBD, 61), URB597 (39), PF-3845 (6) and AM404 (14). Pooled effects on conditioned and unconditioned anxiety in animals (with the exception of URB597 on unconditioned anxiety) and on experimentally induced anxiety in humans favored the investigational drugs over placebo/vehicle. Publication year was negatively associated with effects of CBD on unconditioned anxiety. Compared to approach avoidance tests, tests of repetitive-compulsive behavior were associated with larger effects of CBD and URB597, and the social interaction test with smaller effects of URB597. Larger effects of CBD on unconditioned anxiety were observed when anxiety pre-existed. Studies reported few side effects at therapeutic doses. The evidence quality was low with indications of publication bias. More clinical trials are needed to translate the overall positive results to clinical applications.


Asunto(s)
Ansiolíticos , Cannabidiol , Animales , Humanos , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Endocannabinoides/uso terapéutico , Teorema de Bayes , Ansiedad/tratamiento farmacológico , Cannabidiol/farmacología
15.
J Integr Med ; 21(2): 120-129, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805391

RESUMEN

Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; 21(2): 120-128.


Asunto(s)
Neoplasias Encefálicas , Cannabinoides , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Endocannabinoides/farmacología , Endocannabinoides/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Línea Celular Tumoral , Cannabinoides/farmacología , Cannabinoides/uso terapéutico
16.
Int Immunopharmacol ; 114: 109586, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36700769

RESUMEN

BACKGROUND: Arachidonoyl ethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG) are the most studies endocannabinoids. AEA and 2-AG are degraded by fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) enzymes, respectively. FAAH and MAGL enzymes are widely expressed in many tissues, including kidney. Recent works have depicted that AEA and 2-AG levels are associated with ischemia-reperfusion (IR) injury. In this study, we investigated the effects of MAGL inhibitor KML29 and FAAH inhibitor URB597 against kidney IR injury. METHODS: The kidneys of the rats underwent ischemia for 45 min and then reperfusion for 24 h. KML29 and URB597 were administered intraperitoneally with kidney IR to two different treatment groups. RESULTS: IR application increased serum blood urea nitrogen (BUN), creatinine (Cre), interleukin-18 (IL-18), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels, while these parameters were decreased following KML29 and URB597 administration. KML29 and URB597 administration also reduced the increased toll-like receptor-4 (TRL-4), phosphorylated-NF-κB, phosphorylated-IκB-α, tumor necrosis factor alpha (TNF-α), interleukin-1beta (IL-1ß), interleukin-6 (IL-6), caspase-3 levels and histopathological damage in kidney tissue. CONCLUSIONS: Our results reveal that MAGL inhibitor KML29 and FAAH inhibitor URB597 have a protective effect on kidney IR injury by preventing apoptosis and inflammation. Inhibition of MAGL and FAAH may be a new therapeutic strategy to prevent kidney IR injury.


Asunto(s)
Monoacilglicerol Lipasas , Daño por Reperfusión , Animales , Ratas , Amidohidrolasas , Endocannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Riñón/metabolismo , Monoacilglicerol Lipasas/metabolismo , Monoglicéridos , FN-kappa B , Daño por Reperfusión/tratamiento farmacológico , Receptor Toll-Like 4
17.
Exp Neurol ; 360: 114287, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36455638

RESUMEN

Chronic pain, one of the most common reasons adults seek medical care, has been linked to restrictions in mobility and daily activities, dependence on opioids, anxiety, depression, sleep deprivation, and reduced quality of life. Alzheimer's disease (AD), a devastating neurodegenerative disorder (characterized by a progressive impairment of cognitive functions) in the elderly, is often co-morbid with chronic pain. AD is one of the most common neurodegenerative disorders in the aged population. The reported prevalence of chronic pain is 45.8% of the 50 million people with AD. As the population ages, the number of older people who experience AD and chronic pain will also increase. The current treatment options for chronic pain are limited, often ineffective, and have associated side effects. This review summarizes the role of the endocannabinoid system in pain, its potential role in chronic pain in AD, and addresses gaps and future directions.


Asunto(s)
Enfermedad de Alzheimer , Dolor Crónico , Anciano , Adulto , Humanos , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/tratamiento farmacológico , Dolor Crónico/epidemiología , Endocannabinoides/uso terapéutico , Calidad de Vida , Analgésicos Opioides
18.
Curr Neuropharmacol ; 21(3): 715-726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35105293

RESUMEN

Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer's disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer's disease and the roles of the endocannabinoid system in Alzheimer's disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer's disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Cannabinoides , Cannabis , Enfermedades Neurodegenerativas , Animales , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Endocannabinoides/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico
19.
Exp Neurol ; 359: 114232, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36179876

RESUMEN

Chemotherapy-induced neuropathic pain is a serious clinical problem and one of the major side effects in cancer treatment. The endocannabinoid system (ECS) plays a crucial role in regulating pain neurotransmission, and changes in the expression of different components of the ECS have been reported in experimental models of persistent pain. In addition, sex differences have been observed in ECS regulation and function. The aim of our study was to evaluate whether administration of oxaliplatin, a neurotoxic antineoplastic agent, induced changes in the expression of ECS components in peripheral and central stations of the pain pathway, and if those changes exhibited sexual dimorphism. Adult male and female rats were injected with oxaliplatin or saline, and mechanical and cold hypersensitivity and allodynia were evaluated using Von Frey and Choi Tests. The mRNA levels corresponding to cannabinoid receptors (CB1, CB2), cannabinoid-related receptors (GPR55, 5HT1A, TRPV1) and to the main enzymes involved in the synthesis (DAGL, DAGL, NAPE-PLD) and degradation (MGL, FAAH) of endocannabinoids were assessed in lumbar dorsal root ganglia (DRGs) and spinal cord by using real time RT-PCR. In addition, the levels of the main endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide (AEA), were evaluated using commercial ELISA kits. Oxaliplatin administration induced the development of mechanical and cold hypersensitivity and allodynia in male and female animals. Oxaliplatin also induced early and robust changes in the expression of several components of the ECS in DRGs. A marked upregulation of CB1, CB2, 5HT1A and TRPV1 was detected in both sexes. Interestingly, while DAGL mRNA levels remained unchanged, DAGL was downregulated in male and upregulated in female rats. Finally, MGL and NAPE-PLD showed increased levels only in male animals, while FAAH resulted upregulated in both sexes. In parallel, reduced 2-AG and AEA levels were detected in DRGs from male or female rats, respectively. In the lumbar spinal cord, only TRPV1 mRNA levels were found to be upregulated in both sexes. Our results reveal previously unreported changes in the expression of cannabinoid receptors, ligands and enzymes occurring mainly in the peripheral nervous system and displaying certain sexual dimorphism. These changes may contribute to the physiopathology of oxaliplatin-induced neuropathic pain in male and female rats. A better understanding of these dynamic changes will facilitate the development of mechanism- and sex-specific approaches to optimize the use of cannabinoid-based medicines for the treatment of chemotherapy-induced pain.


Asunto(s)
Antineoplásicos , Cannabinoides , Neuralgia , Femenino , Masculino , Ratas , Animales , Endocannabinoides/metabolismo , Endocannabinoides/uso terapéutico , Caracteres Sexuales , Hiperalgesia/metabolismo , Oxaliplatino/toxicidad , Canales Catiónicos TRPV/metabolismo , Neuralgia/metabolismo , Receptores de Cannabinoides/metabolismo , Antineoplásicos/toxicidad , Antineoplásicos/uso terapéutico , ARN Mensajero , Modelos Teóricos , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/uso terapéutico , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo
20.
Nat Rev Gastroenterol Hepatol ; 20(1): 5-25, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36168049

RESUMEN

The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.


Asunto(s)
Cannabinoides , Cannabis , Síndrome del Colon Irritable , Humanos , Endocannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Dolor Abdominal/tratamiento farmacológico , Dolor Abdominal/etiología , Cannabis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...