Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 616(7956): 390-397, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020030

RESUMEN

The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Elementos Transponibles de ADN , Deinococcus , Endodesoxirribonucleasas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Elementos Transponibles de ADN/genética , ARN Guía de Sistemas CRISPR-Cas/química , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , ARN Guía de Sistemas CRISPR-Cas/ultraestructura , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/ultraestructura , Deinococcus/enzimología , Deinococcus/genética , Especificidad por Sustrato
2.
Cell Host Microbe ; 25(6): 815-826.e4, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31155345

RESUMEN

CRISPR-Cas12a (Cpf1), a type V CRISPR-associated nuclease, provides bacterial immunity against bacteriophages and plasmids but also serves as a tool for genome editing. Foreign nucleic acids are integrated into the CRISPR locus, prompting transcription of CRISPR RNAs (crRNAs) that guide Cas12a cleavage of foreign complementary DNA. However, mobile genetic elements counteract Cas12a with inhibitors, notably type V-A anti-CRISPRs (AcrVAs). We present cryoelectron microscopy structures of Cas12a-crRNA bound to AcrVA1 and AcrVA4 at 3.5 and 3.3 Å resolutions, respectively. AcrVA1 is sandwiched between the recognition (REC) and nuclease (NUC) lobes of Cas12a and inserts into the binding pocket for the protospacer-adjacent motif (PAM), a short DNA sequence guiding Cas12a targeting. AcrVA1 cleaves crRNA in a Cas12a-dependent manner, inactivating Cas12a-crRNA complexes. The AcrVA4 dimer is anchored around the crRNA pseudoknot of Cas12a-crRNA, preventing required conformational changes for crRNA-DNA heteroduplex formation. These results uncover molecular mechanisms for CRISPR-Cas12a inhibition, providing insights into bacteria-phage dynamics.


Asunto(s)
Sistemas CRISPR-Cas , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/metabolismo , Inhibidores Enzimáticos/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Ribonucleasas/metabolismo , Microscopía por Crioelectrón , Endodesoxirribonucleasas/ultraestructura , Unión Proteica , Conformación Proteica , ARN Guía de Kinetoplastida/ultraestructura , Ribonucleasas/ultraestructura
3.
Elife ; 82019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31021314

RESUMEN

CRISPR adaptation immunizes bacteria and archaea against viruses. During adaptation, the Cas1-Cas2 complex integrates fragments of invader DNA as spacers in the CRISPR array. Recently, an additional protein Cas4 has been implicated in selection and processing of prespacer substrates for Cas1-Cas2, although this mechanism remains unclear. We show that Cas4 interacts directly with Cas1-Cas2 forming a Cas4-Cas1-Cas2 complex that captures and processes prespacers prior to integration. Structural analysis of the Cas4-Cas1-Cas2 complex reveals two copies of Cas4 that closely interact with the two integrase active sites of Cas1, suggesting a mechanism for substrate handoff following processing. We also find that the Cas4-Cas1-Cas2 complex processes single-stranded DNA provided in cis or in trans with a double-stranded DNA duplex. Cas4 cleaves precisely upstream of PAM sequences, ensuring the acquisition of functional spacers. Our results explain how Cas4 cleavage coordinates with Cas1-Cas2 integration and defines the exact cleavage sites and specificity of Cas4.


Asunto(s)
Bacillus/enzimología , Proteínas Asociadas a CRISPR/metabolismo , ADN de Cadena Simple/metabolismo , Endodesoxirribonucleasas/metabolismo , Bacillus/genética , Proteínas Asociadas a CRISPR/ultraestructura , Endodesoxirribonucleasas/ultraestructura , Microscopía Electrónica , Conformación Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína
4.
Sci Rep ; 9(1): 3188, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816277

RESUMEN

Adaptation in CRISPR-Cas systems enables the generation of an immunological memory to defend against invading viruses. This process is driven by foreign DNA spacer (termed protospacer) selection and integration mediated by Cas1-Cas2 protein. Recently, different states of Cas1-Cas2, in its free form and in complex with protospacer DNAs, were solved by X-ray crystallography. In this paper, molecular dynamics (MD) simulations are employed to study crystal structures of one free and two protospacer-bound Cas1-Cas2 complexes. The simulated results indicate that the protospacer binding markedly increases the system stability, in particular when the protospacer containing the PAM-complementary sequence. The hydrogen bond and binding free energy calculations explain that PAM recognition introduces more specific interactions to increase the cleavage activity of Cas1. By using principal component analysis (PCA) and intramolecular angle calculation, this study observes two dominant slow motions associated with the binding of Ca1-Cas2 to the protospacer and potential target DNAs respectively. The comparison of DNA structural deformation further implies a cooperative conformational change of Cas1-Cas2 and protospacer for the target DNA capture. We propose that this cooperativity is the intrinsic requirement of the CRISPR integration complex formation. This study provides some new insights into the understanding of CRISPR-Cas adaptation.


Asunto(s)
Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , ADN Helicasas/ultraestructura , Endodesoxirribonucleasas/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Proteínas Asociadas a CRISPR/genética , Cristalografía por Rayos X , ADN Helicasas/genética , ADN Intergénico/genética , ADN Intergénico/ultraestructura , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
5.
DNA Repair (Amst) ; 35: 71-84, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26466357

RESUMEN

In Escherichia coli, errors in newly-replicated DNA, such as the incorporation of a nucleotide with a mis-paired base or an accidental insertion or deletion of nucleotides, are corrected by a methyl-directed mismatch repair (MMR) pathway. While the enzymology of MMR has long been established, many fundamental aspects of its mechanisms remain elusive, such as the structures, compositions, and orientations of complexes of MutS, MutL, and MutH as they initiate repair. Using atomic force microscopy, we--for the first time--record the structures and locations of individual complexes of MutS, MutL and MutH bound to DNA molecules during the initial stages of mismatch repair. This technique reveals a number of striking and unexpected structures, such as the growth and disassembly of large multimeric complexes at mismatched sites, complexes of MutS and MutL anchoring latent MutH onto hemi-methylated d(GATC) sites or bound themselves at nicks in the DNA, and complexes directly bridging mismatched and hemi-methylated d(GATC) sites by looping the DNA. The observations from these single-molecule studies provide new opportunities to resolve some of the long-standing controversies in the field and underscore the dynamic heterogeneity and versatility of MutSLH complexes in the repair process.


Asunto(s)
Adenosina Trifosfatasas/ultraestructura , Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Endodesoxirribonucleasas/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/ultraestructura , Adenosina Trifosfatasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/ultraestructura , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopía de Fuerza Atómica/métodos , Imagen Molecular/métodos , Proteínas MutL , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Ácidos Nucleicos Heterodúplex/ultraestructura
6.
J Mol Biol ; 427(20): 3285-3299, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26301600

RESUMEN

Packaging of viral genomes inside empty procapsids is driven by a powerful ATP-hydrolyzing motor, formed in many double-stranded DNA viruses by a complex of a small terminase (S-terminase) subunit and a large terminase (L-terminase) subunit, transiently docked at the portal vertex during genome packaging. Despite recent progress in elucidating the structure of individual terminase subunits and their domains, little is known about the architecture of an assembled terminase complex. Here, we describe a bacterial co-expression system that yields milligram quantities of the S-terminase:L-terminase complex of the Salmonella phage P22. In vivo assembled terminase complex was affinity-purified and stabilized by addition of non-hydrolyzable ATP, which binds specifically to the ATPase domain of L-terminase. Mapping studies revealed that the N-terminus of L-terminase ATPase domain (residues 1-58) contains a minimal S-terminase binding domain sufficient for stoichiometric association with residues 140-162 of S-terminase, the L-terminase binding domain. Hydrodynamic analysis by analytical ultracentrifugation sedimentation velocity and native mass spectrometry revealed that the purified terminase complex consists predominantly of one copy of the nonameric S-terminase bound to two equivalents of L-terminase (1S-terminase:2L-terminase). Direct visualization of this molecular assembly in negative-stained micrographs yielded a three-dimensional asymmetric reconstruction that resembles a "nutcracker" with two L-terminase protomers projecting from the C-termini of an S-terminase ring. This is the first direct visualization of a purified viral terminase complex analyzed in the absence of DNA and procapsid.


Asunto(s)
Bacteriófago P22/metabolismo , Empaquetamiento del ADN/fisiología , ADN Viral/metabolismo , Endodesoxirribonucleasas/ultraestructura , Subunidades de Proteína/metabolismo , Ensamble de Virus/fisiología , Cristalografía por Rayos X , Endodesoxirribonucleasas/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Virales/metabolismo
7.
Prog Biophys Mol Biol ; 117(2-3): 134-142, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25824682

RESUMEN

Deamination of the exocyclic amines in adenine, guanine and cytosine forms base lesions that may lead to mutations if not removed by DNA repair proteins. Prokaryotic endonuclease V (EndoV/Nfi) has long been known to incise DNA 3' to a variety of base lesions, including deaminated adenine, guanine and cytosine. Biochemical and genetic data implicate that EndoV is involved in repair of these deaminated bases. In contrast to DNA glycosylases that remove a series of modified/damaged bases in DNA by direct excision of the nucleobase, EndoV cleaves the DNA sugar phosphate backbone at the second phosphodiester 3' to the lesion without removing the deaminated base. Structural investigation of this unusual incision by EndoV has unravelled an enzyme with separate base lesion and active site pockets. A novel wedge motif was identified as a DNA strand-separation feature important for damage detection. Human EndoV appears inactive on DNA, but has been shown to incise various RNA substrates containing inosine. Inosine is the deamination product of adenosine and is frequently found in RNA. The structural basis for discrimination between DNA and RNA by human EndoV remains elusive.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , ADN/química , Desoxirribonucleasa (Dímero de Pirimidina)/química , Endodesoxirribonucleasas/química , ARN/química , Adenina/química , Animales , Secuencia de Bases , Sitios de Unión , Simulación por Computador , ADN/genética , ADN/ultraestructura , Desaminación/genética , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Desoxirribonucleasa (Dímero de Pirimidina)/ultraestructura , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/ultraestructura , Activación Enzimática , Humanos , Modelos Químicos , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , ARN/genética , ARN/ultraestructura , Relación Estructura-Actividad
8.
Adv Virus Res ; 82: 119-53, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22420853

RESUMEN

The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at the highest rate known and can package multiple segments. Förster resonance energy transfer-fluorescence correlation spectroscopy studies indicate that DNA gets compressed in the stalled motor and that the terminase-to-portal distance changes during translocation. Current evidence suggests a linear two-component (large terminase plus portal) translocation motor in which electrostatic forces generated by ATP hydrolysis drive DNA translocation by alternating the motor between tensed and relaxed states.


Asunto(s)
Bacteriófago T4/química , Empaquetamiento del ADN/fisiología , ADN Viral/química , Virión/química , Adenosina Trifosfatasas/metabolismo , Bacteriófago T4/genética , Bacteriófago T4/ultraestructura , Cápside/química , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , ADN Viral/ultraestructura , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/ultraestructura , Escherichia coli/virología , Conformación de Ácido Nucleico , Conformación Proteica , Pliegue de Proteína , Virión/ultraestructura , Ensamble de Virus/genética
9.
Proc Natl Acad Sci U S A ; 107(5): 1971-6, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133842

RESUMEN

In herpesviruses and many bacterial viruses, genome-packaging is a precisely mediated process fulfilled by a virally encoded molecular machine called terminase that consists of two protein components: A DNA-recognition component that defines the specificity for packaged DNA, and a catalytic component that provides energy for the packaging reaction by hydrolyzing ATP. The terminase docks onto the portal protein complex embedded in a single vertex of a preformed viral protein shell called procapsid, and pumps the viral DNA into the procapsid through a conduit formed by the portal. Here we report the 1.65 A resolution structure of the DNA-recognition component gp1 of the Shigella bacteriophage Sf6 genome-packaging machine. The structure reveals a ring-like octamer formed by interweaved protein monomers with a highly extended fold, embracing a tunnel through which DNA may be translocated. The N-terminal DNA-binding domains form the peripheral appendages surrounding the octamer. The central domain contributes to oligomerization through interactions of bundled helices. The C-terminal domain forms a barrel with parallel beta-strands. The structure reveals a common scheme for oligomerization of terminase DNA-recognition components, and provides insights into the role of gp1 in formation of the packaging-competent terminase complex and assembly of the terminase with the portal, in which ring-like protein oligomers stack together to form a continuous channel for viral DNA translocation.


Asunto(s)
Endodesoxirribonucleasas/química , Podoviridae/química , Proteínas Virales/química , Cristalografía por Rayos X , Empaquetamiento del ADN , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/fisiología , Endodesoxirribonucleasas/ultraestructura , Genoma Viral , Sustancias Macromoleculares , Microscopía Electrónica de Transmisión , Modelos Moleculares , Conformación de Ácido Nucleico , Podoviridae/genética , Podoviridae/fisiología , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Shigella flexneri/virología , Proteínas Virales/genética , Proteínas Virales/fisiología , Proteínas Virales/ultraestructura , Ensamble de Virus
10.
Biochemistry ; 45(51): 15259-68, 2006 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-17176048

RESUMEN

Terminase enzymes are common to complex double-stranded DNA viruses and function to package viral DNA into the capsid. We recently demonstrated that the bacteriophage lambda terminase gpA and gpNu1 proteins assemble into a stable heterotrimer with a molar ratio gpA1/gpNu1(2). This terminase protomer possesses DNA maturation and packaging activities that are dependent on the E. coli integration host factor protein (IHF). Here, we show that the protomer further assembles into a homogeneous tetramer of protomers of composition (gpA1/gpNu1(2))4. Electron microscopy shows that the tetramer forms a ring structure large enough to encircle duplex DNA. In contrast to the heterotrimer, the ring tetramer can mature and package viral DNA in the absence of IHF. We propose that IHF induced bending of viral DNA facilitates the assembly of four terminase protomers into a ring tetramer that represents the catalytically competent DNA maturation and packaging complex in vivo. This work provides, for the first time, insight into the functional assembly state of a viral DNA packaging motor.


Asunto(s)
Bacteriófago lambda/enzimología , Replicación del ADN/genética , ADN Viral/biosíntesis , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Ensamble de Virus/fisiología , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Bacteriófago lambda/ultraestructura , Catálisis , ADN Viral/química , ADN Viral/ultraestructura , Endodesoxirribonucleasas/ultraestructura , Proteínas Motoras Moleculares/ultraestructura , Peso Molecular , Regiones Promotoras Genéticas , Ultracentrifugación
11.
FEBS Lett ; 563(1-3): 135-40, 2004 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-15063737

RESUMEN

Terminases are a class of proteins which catalyze the generation of unit-length genomes during DNA packaging. These essential proteins are conserved throughout the herpesviruses and many double-stranded DNA bacteriophages. We have determined the structure of the large terminase subunit pUL56 of human cytomegalovirus, a highly pathogenic virus, to 2.6 nm resolution. Image analysis of purified pUL56 suggests that the molecule exists as a dimer formed by the association of two ring-like structures positioned on top of each other and connected by a pronounced density on one side. The 3D reconstruction of pUL56 provides first structural insights into the active protein.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citomegalovirus/enzimología , Endodesoxirribonucleasas/química , Subunidades de Proteína/química , Proteínas Virales/química , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/efectos de los fármacos , Baculoviridae/genética , Bencimidazoles/farmacología , Western Blotting , Reactivos de Enlaces Cruzados/metabolismo , Citomegalovirus/ultraestructura , Dimerización , Electroforesis en Gel de Poliacrilamida , Endodesoxirribonucleasas/aislamiento & purificación , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/ultraestructura , Glutaral/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Imagenología Tridimensional , Peso Molecular , Unión Proteica , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/metabolismo , Ribonucleósidos/farmacología , Relación Estructura-Actividad , Factores de Tiempo , Proteínas Virales/aislamiento & purificación , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura
12.
Nature ; 418(6897): 562-6, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12152085

RESUMEN

The Mre11 complex (Mre11 Rad50 Nbs1) is central to chromosomal maintenance and functions in homologous recombination, telomere maintenance and sister chromatid association. These functions all imply that the linked binding of two DNA substrates occurs, although the molecular basis for this process remains unknown. Here we present a 2.2 A crystal structure of the Rad50 coiled-coil region that reveals an unexpected dimer interface at the apex of the coiled coils in which pairs of conserved Cys-X-X-Cys motifs form interlocking hooks that bind one Zn(2+) ion. Biochemical, X-ray and electron microscopy data indicate that these hooks can join oppositely protruding Rad50 coiled-coil domains to form a flexible bridge of up to 1,200 A. This suggests a function for the long insertion in the Rad50 ABC-ATPase domain. The Rad50 hook is functional, because mutations in this motif confer radiation sensitivity in yeast and disrupt binding at the distant Mre11 nuclease interface. These data support an architectural role for the Rad50 coiled coils in forming metal-mediated bridging complexes between two DNA-binding heads. The resulting assemblies have appropriate lengths and conformational properties to link sister chromatids in homologous recombination and DNA ends in non-homologous end-joining.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Zinc/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Dimerización , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/ultraestructura , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/ultraestructura , Proteínas Fúngicas/genética , Proteínas Fúngicas/ultraestructura , Humanos , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Tolerancia a Radiación/genética , Recombinación Genética/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
EMBO J ; 21(15): 4196-205, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12145219

RESUMEN

It is generally accepted that the damage recognition complex of nucleotide excision repair in Escherichia coli consists of two UvrA and one UvrB molecule, and that in the preincision complex UvrB binds to the damage as a monomer. Using scanning force microscopy, we show here that the damage recognition complex consists of two UvrA and two UvrB subunits, with the DNA wrapped around one of the UvrB monomers. Upon binding the damage and release of the UvrA subunits, UvrB remains a dimer in the preincision complex. After association with the UvrC protein, one of the UvrB monomers is released. We propose a model in which the presence of two UvrB subunits ensures damage recognition in both DNA strands. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one of the UvrB monomers, which will subsequently probe one of the DNA strands for the presence of a lesion. When no damage is found, the DNA will wrap around the second UvrB subunit, which will check the other strand for aberrations.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Daño del ADN , ADN Helicasas/fisiología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/fisiología , Endodesoxirribonucleasas/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , Complejos Multienzimáticos/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/ultraestructura , ADN Helicasas/química , ADN Helicasas/ultraestructura , ADN Bacteriano/química , ADN Bacteriano/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/ultraestructura , Dimerización , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/ultraestructura , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Sustancias Macromoleculares , Microscopía de Fuerza Atómica , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Subunidades de Proteína , Relación Estructura-Actividad
14.
Nucleic Acids Res ; 30(7): 1695-703, 2002 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11917032

RESUMEN

Herpesvirus DNA packaging involves binding and cleavage of DNA containing the specific DNA-packaging motifs. Here we report a first characterization of the terminase subunits pUL56 and pUL89 of human cytomegalovirus (HCMV). Both gene products were shown to have comparable nuclease activities in vitro. Under limiting protein concentrations the nuclease activity is enhanced by interaction of pUL56 and pUL89. High amounts of 2-bromo-5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole partially inhibited the pUL89-associated nuclease activity. It was demonstrated that pUL56 is able to bind to nucleocapsids in vivo. Electron microscopy (EM) and image analysis of purified pUL56 revealed that the molecules occurred as a distinct ring-shaped structure with a pronounced cleft. EM analysis of purified pUL89 demonstrated that this protein is also a toroidal DNA-metabolizing protein. Upon interaction of pUL56 with linearized DNA, the DNA remains uncut while the cutting event itself is mediated by pUL89. Using biochemical assays in conjunction with EM pUL56 was shown to (i) bind to DNA and (ii) associate with the capsid. In contrast to this, EM analysis implied that pUL89 is required to effect DNA cleavage. The data provide the first insights into the terminase-dependent viral DNA-packaging mechanism of HCMV.


Asunto(s)
Citomegalovirus/enzimología , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Animales , Antivirales/farmacología , Bencimidazoles/farmacología , Cápside/metabolismo , Línea Celular , Citomegalovirus/efectos de los fármacos , Citomegalovirus/genética , ADN/genética , Desoxirribonucleasas/efectos de los fármacos , Desoxirribonucleasas/metabolismo , Relación Dosis-Respuesta a Droga , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/ultraestructura , Microscopía Electrónica , Subunidades de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribonucleósidos/farmacología
15.
J Biol Chem ; 273(48): 31637-9, 1998 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-9822621

RESUMEN

The binding of Holliday structure resolving endonuclease VII to cruciform DNA was studied in the electron microscope. The protein was found to bind either to the junction or to one of the arms or an end of one of the arms of the construct. The amount of bound protein was determined by measuring the size of the complexes. On average, one complex containing three dimers was found per one molecule of cruciform DNA.


Asunto(s)
ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Sitios de Unión , ADN/ultraestructura , Dimerización , Endodesoxirribonucleasas/ultraestructura , Cinética , Microscopía Electrónica , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Eliminación de Secuencia
16.
J Mol Biol ; 252(4): 386-98, 1995 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-7563059

RESUMEN

Initiation of SPP1 DNA packaging requires the gene 1 and gene 2 products (G1P and G2P), which are different subunits of the terminase enzyme. G1P specifically recognizes the phage packaging initiation region (pac). The apparent equilibrium constant for the G1P-pac-DNA complex was estimated to be 9 nM. DNase I footprinting experiments reveal that the pac region can be subdivided into three discrete sites (pacL, pacC and pacR). G1P binds co-operatively to the non-adjacent pacL and pacR sites. Several G1P protomers bind to the target sequences which map close to the pac cleavage site (pacC site), but do not overlap with it. G1P interacts in a different fashion with the encapsidated (pacR site) and with the non-encapsidated (pacL site) end of the phage genome. G1P interaction with the intrinsically bent pacL DNA occurs only on one face of the DNA double helix. G1P binding to the pacL and in the pacR region results in a DNA loop. Electron microscopy of purified G1P shows that the protein is an oligomer in solution. G1P binding to the core region of the pacL site could facilitate the formation of a higher-order nucleoprotein structure. This specialized complex would allow the pac DNA to form a loop between binding sites brought together by interaction with G1P. The results presented here suggest that G1P could provide a tool to discriminate the first encapsidated end, which contains pacR, from the non-encapsidated pacL end.


Asunto(s)
Fagos de Bacillus/enzimología , ADN Viral/metabolismo , Endodesoxirribonucleasas/metabolismo , Ensamble de Virus/fisiología , Fagos de Bacillus/fisiología , Bacillus subtilis/virología , Secuencia de Bases , Huella de ADN , ADN Viral/química , Endodesoxirribonucleasas/ultraestructura , Genes Virales/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico
17.
Science ; 258(5081): 434-40, 1992 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-1411536

RESUMEN

The crystal structure of the DNA repair enzyme endonuclease III, which recognizes and cleaves DNA at damaged bases, has been solved to 2.0 angstrom resolution with an R factor of 0.185. This iron-sulfur [4Fe-4S] enzyme is elongated and bilobal with a deep cleft separating two similarly sized domains: a novel, sequence-continuous, six-helix domain (residues 22 to 132) and a Greek-key, four-helix domain formed by the amino-terminal and three carboxyl-terminal helices (residues 1 to 21 and 133 to 211) together with the [4Fe-4S] cluster. The cluster is bound entirely within the carboxyl-terminal loop with a ligation pattern (Cys-X6-Cys-X2-Cys-X5-Cys) distinct from all other known [4Fe-4S] proteins. Sequence conservation and the positive electrostatic potential of conserved regions identify a surface suitable for binding duplex B-DNA across the long axis of the enzyme, matching a 46 angstrom length of protected DNA. The primary role of the [4Fe-4S] cluster appears to involve positioning conserved basic residues for interaction with the DNA phosphate backbone. The crystallographically identified inhibitor binding region, which recognizes the damaged base thymine glycol, is a seven-residue beta-hairpin (residues 113 to 119). Location and side chain orientation at the base of the inhibitor binding site implicate Glu112 in the N-glycosylase mechanism and Lys120 in the beta-elimination mechanism. Overall, the structure reveals an unusual fold and a new biological function for [4Fe-4S] clusters and provides a structural basis for studying recognition of damaged DNA and the N-glycosylase and apurinic/apyrimidinic-lyase mechanisms.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/ultraestructura , Endodesoxirribonucleasas/ultraestructura , Proteínas Hierro-Azufre/ultraestructura , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Cristalografía , Cisteína/química , Desoxirribonucleasa (Dímero de Pirimidina) , Modelos Moleculares , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/metabolismo , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Difracción de Rayos X
18.
J Mol Biol ; 226(2): 425-32, 1992 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-1386387

RESUMEN

Nucleotide excision repair in Escherichia coli is initiated by the UvrA, UvrB and UvrC proteins. UvrA is the damage recognition subunit, makes an A2B1 complex with the targeting subunit UvrB, and the complex binds to the lesion site; UvrA dissociates leaving behind a very stable UvrB-DNA complex that is recognized by the trigger subunit, UvrC, and the ensuing UvrB-UvrC heterodimer makes two incisions, one on either side of the lesion. Using electron microscopy, we investigated the structures of these early A, A-B intermediates on DNA containing ultraviolet light photoproducts. UvrA, which is known to bind to DNA as a dimer and produce a DNase I footprint of 33 base-pairs does not change the trajectory of DNA appreciably. The A2B1 complex clearly shows a bipartite structure and its effect on the trajectory of the DNA was not consistently straight or kinked. In contrast, the DNA in the preincision UvrB-DNA complex appears to be severely kinked; 43% of the molecules are bent by 80 degrees or more, with an average bending angle of 127 degrees. It appears that protein-induced bending is an important step on the pathway leading to excision of the damaged nucleotide by (A)BC excinuclease.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Helicasas , Reparación del ADN , ADN Bacteriano/ultraestructura , Endodesoxirribonucleasas/ultraestructura , Proteínas de Escherichia coli , Adenosina Trifosfatasas/metabolismo , ADN Bacteriano/metabolismo , ADN Bacteriano/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/ultraestructura , Sustancias Macromoleculares , Microscopía Electrónica , Conformación de Ácido Nucleico , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...