Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Front Cell Infect Microbiol ; 12: 896504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967852

RESUMEN

The gut microbiome profile of COVID-19 patients was found to correlate with a viral load of SARS-CoV-2, COVID-19 severity, and dysfunctional immune responses, suggesting that gut microbiota may be involved in anti-infection. In order to investigate the role of gut microbiota in anti-infection against SARS-CoV-2, we established a high-throughput in vitro screening system for COVID-19 therapeutics by targeting the endoribonuclease (Nsp15). We also evaluated the activity inhibition of the target by substances of intestinal origin, using a mouse model in an attempt to explore the interactions between gut microbiota and SARS-CoV-2. The results unexpectedly revealed that antibiotic treatment induced the appearance of substances with Nsp15 activity inhibition in the intestine of mice. Comprehensive analysis based on functional profiling of the fecal metagenomes and endoribonuclease assay of antibiotic-enriched bacteria and metabolites demonstrated that the Nsp15 inhibitors were the primary bile acids that accumulated in the gut as a result of antibiotic-induced deficiency of bile acid metabolizing microbes. This study provides a new perspective on the development of COVID-19 therapeutics using primary bile acids.


Asunto(s)
Ácidos y Sales Biliares , Tratamiento Farmacológico de COVID-19 , COVID-19 , Endorribonucleasas , Microbioma Gastrointestinal , SARS-CoV-2 , Proteínas no Estructurales Virales , Animales , Antibacterianos/farmacología , Ácidos y Sales Biliares/fisiología , COVID-19/fisiopatología , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/metabolismo , Endorribonucleasas/fisiología , Microbioma Gastrointestinal/fisiología , Ratones , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/fisiología
2.
Eur J Immunol ; 52(7): 1069-1076, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35419836

RESUMEN

The intracellular mechanisms safeguarding DC function are of biomedical interest in several immune-related diseases. Type 1 conventional DCs (cDC1s) are prominent targets of immunotherapy typified by constitutive activation of the unfolded protein response (UPR) sensor IRE1. Through its RNase domain, IRE1 regulates key processes in cDC1s including survival, ER architecture and function. However, most evidence linking IRE1 RNase with cDC1 biology emerges from mouse studies and it is currently unknown whether human cDC1s also activate the enzyme to preserve cellular homeostasis. In this work, we report that human cDC1s constitutively activate IRE1 RNase in steady state, which is evidenced by marked expression of IRE1, XBP1s, and target genes, and low levels of mRNA substrates of the IRE1 RNase domain. On a functional level, pharmacological inhibition of the IRE1 RNase domain curtailed IL-12 and TNF production by cDC1s upon stimulation with TLR agonists. Altogether, this work demonstrates that activation of the IRE1/XBP1s axis is a conserved feature of cDC1s across species and suggests that the UPR sensor may also play a relevant role in the biology of the human lineage.


Asunto(s)
Células Dendríticas , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box , Células Dendríticas/inmunología , Endorribonucleasas/fisiología , Humanos , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular , Proteínas Serina-Treonina Quinasas/fisiología , Proteostasis , Transducción de Señal , Proteína 1 de Unión a la X-Box/fisiología
3.
Cancer Res ; 81(20): 5325-5335, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34548333

RESUMEN

The SWI/SNF chromatin-remodeling complex is frequently altered in human cancers. For example, the SWI/SNF component ARID1A is mutated in more than 50% of ovarian clear cell carcinomas (OCCC), for which effective treatments are lacking. Here, we report that ARID1A transcriptionally represses the IRE1α-XBP1 axis of the endoplasmic reticulum (ER) stress response, which confers sensitivity to inhibition of the IRE1α-XBP1 pathway in ARID1A-mutant OCCC. ARID1A mutational status correlated with response to inhibition of the IRE1α-XBP1 pathway. In a conditional Arid1aflox/flox/Pik3caH1047R genetic mouse model, Xbp1 knockout significantly improved survival of mice bearing OCCCs. Furthermore, the IRE1α inhibitor B-I09 suppressed the growth of ARID1A-inactivated OCCCs in vivo in orthotopic xenograft, patient-derived xenograft, and the genetic mouse models. Finally, B-I09 synergized with inhibition of HDAC6, a known regulator of the ER stress response, in suppressing the growth of ARID1A-inactivated OCCCs. These studies define the IRE1α-XBP1 axis of the ER stress response as a targetable vulnerability for ARID1A-mutant OCCCs, revealing a promising therapeutic approach for treating ARID1A-mutant ovarian cancers. SIGNIFICANCE: These findings indicate that pharmacological inhibition of the IRE1α-XBP1 pathway alone or in combination with HDAC6 inhibition represents an urgently needed therapeutic strategy for ARID1A-mutant ovarian cancers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico , Endorribonucleasas/antagonistas & inhibidores , Mutación , Neoplasias Ováricas/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Factores de Transcripción/genética , Proteína 1 de Unión a la X-Box/antagonistas & inhibidores , Adenocarcinoma de Células Claras/tratamiento farmacológico , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patología , Animales , Apoptosis , Proliferación Celular , Proteínas de Unión al ADN/fisiología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Ratones Noqueados , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Factores de Transcripción/fisiología , Células Tumorales Cultivadas , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nucleic Acids Res ; 49(12): 7088-7102, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34157109

RESUMEN

RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase-α, ß, ß'. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the ß or ß' subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Endorribonucleasas/fisiología , ARN Mensajero/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Endorribonucleasas/genética , Evolución Molecular , Eliminación de Gen , Duplicación de Gen , Genes Bacterianos , Homeostasis , Mutación , Supresión Genética , Transcripción Genética , Transcriptoma
5.
Nucleic Acids Res ; 49(6): 3003-3019, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33706375

RESUMEN

Many different protein domains are conserved among numerous species, but their function remains obscure. Proteins with DUF1127 domains number >17 000 in current databases, but a biological function has not yet been assigned to any of them. They are mostly found in alpha- and gammaproteobacteria, some of them plant and animal pathogens, symbionts or species used in industrial applications. Bioinformatic analyses revealed similarity of the DUF1127 domain of bacterial proteins to the RNA binding domain of eukaryotic Smaug proteins that are involved in RNA turnover and have a role in development from Drosophila to mammals. This study demonstrates that the 71 amino acid DUF1127 protein CcaF1 from the alphaproteobacterium Rhodobacter sphaeroides participates in maturation of the CcsR sRNAs that are processed from the 3' UTR of the ccaF mRNA and have a role in the oxidative stress defense. CcaF1 binds to many cellular RNAs of different type, several mRNAs with a function in cysteine / methionine / sulfur metabolism. It affects the stability of the CcsR RNAs and other non-coding RNAs and mRNAs. Thus, the widely distributed DUF1127 domain can mediate RNA-binding, affect stability of its binding partners and consequently modulate the bacterial transcriptome, thereby influencing different physiological processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Proteínas de Unión al ARN/metabolismo , Rhodobacter sphaeroides/genética , Alphaproteobacteria/genética , Proteínas Bacterianas/fisiología , Simulación por Computador , Endorribonucleasas/fisiología , Estabilidad del ARN , Proteínas de Unión al ARN/fisiología , Rhodobacter sphaeroides/metabolismo , Estrés Fisiológico , Transcriptoma
6.
Virus Res ; 296: 198350, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33626380

RESUMEN

The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Evasión Inmune , Interferón beta/antagonistas & inhibidores , Proteínas Virales/fisiología , Factor de Transcripción Activador 6/fisiología , Endorribonucleasas/fisiología , Células HEK293 , Humanos , Interferón beta/biosíntesis , Proteínas Serina-Treonina Quinasas/fisiología , Alineación de Secuencia , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada , Proteínas Virales/química , Proteína 1 de Unión a la X-Box/fisiología , eIF-2 Quinasa/fisiología
7.
Nucleic Acids Res ; 49(4): 2085-2101, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33544858

RESUMEN

Antibiotic resistance is a serious problem which may be caused by bacterial dormancy. It has been suggested that bacterial toxin-antitoxin systems induce dormancy. We analyzed the genome-wide role of Staphylococcus aureus endoribonuclease toxin MazF using RNA-Seq, Ribo-Seq and quantitative proteomics. We characterized changes in transcriptome, translatome and proteome caused by MazF, and proposed that MazF decreases translation directly by cleaving mRNAs, and indirectly, by decreasing translation factors and by promoting ribosome hibernation. Important pathways affected during the early stage of MazF induction were identified: MazF increases cell wall thickness and decreases cell division; MazF activates SsrA-system which rescues stalled ribosomes, appearing as a result of MazF mRNA cleavage. These pathways may be promising targets for new antibacterial drugs that prevent bacteria dormancy. Finally, we described the overall impact of MazF on S. aureus cell physiology, and propose one of the mechanisms by which MazF might regulate cellular changes leading to dormancy.


Asunto(s)
Toxinas Bacterianas/metabolismo , Endorribonucleasas/fisiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Toxinas Bacterianas/biosíntesis , División Celular/genética , Pared Celular/genética , Pared Celular/metabolismo , Endorribonucleasas/biosíntesis , Endorribonucleasas/metabolismo , Biosíntesis de Proteínas , Proteoma , Staphylococcus aureus/enzimología , Transcriptoma
8.
Virology ; 553: 35-45, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33220618

RESUMEN

We report the generation of a full-length infectious cDNA clone for porcine deltacoronavirus strain USA/IL/2014/026. Similar to the parental strain, the infectious clone virus (icPDCoV) replicated efficiently in cell culture and caused mild clinical symptoms in piglets. To investigate putative viral interferon (IFN) antagonists, we generated two mutant viruses: a nonstructural protein 15 mutant virus that encodes a catalytically-inactive endoribonuclease (icEnUmut), and an accessory gene NS6-deletion virus in which the NS6 gene was replaced with the mNeonGreen sequence (icDelNS6/nG). By infecting PK1 cells with these recombinant PDCoVs, we found that icDelNS6/nG elicited similar levels of type I IFN responses as icPDCoV, however icEnUmut stimulated robust type I IFN responses, demonstrating that the deltacoronavirus endoribonuclease, but not NS6, functions as an IFN antagonist in PK1 cells. Collectively, the construction of a full-length infectious clone and the identification of an IFN-antagonistic endoribonuclease will aid in the development of live-attenuated deltacoronavirus vaccines.


Asunto(s)
ADN Complementario/aislamiento & purificación , Deltacoronavirus/genética , Porcinos/virología , Animales , Células Clonales , Infecciones por Coronavirus/patología , Deltacoronavirus/patogenicidad , Deltacoronavirus/fisiología , Endorribonucleasas/fisiología , Interferones/antagonistas & inhibidores , Replicación Viral
9.
Yi Chuan ; 42(7): 669-679, 2020 Jul 20.
Artículo en Chino | MEDLINE | ID: mdl-32694106

RESUMEN

Long interspersed nuclear element-1 (LINE-1) is the only active autonomous transposon in the human genome. Its transposition frequently induces host genome instability, leading to a variety of genetic diseases, including cancers. The host factors play important roles in inhibiting LINE-1 retrotransposition. As an important component of the immune system, the host factor SLFN14 has antiviral activity. Our laboratory shows that SLFN14 possesses potent inhibitory activity against LINE-1 retrotransposition. To explore the potential mechanism of SLFN14 inhibition, we analyzed its effects on transcription, translation, reverse transcription and insertion in the LINE-1 replication cycle. We confirmed that SLFN14 could suppress the LINE-1 mRNA level by affecting its transcription and degradation, thereby diminishing the protein and cDNA levels of LINE-1, which eventually block the LINE-1 retrotransposition. Further, by mapping the active domains of SLFN14, we found its inhibitory activity on LINE-1 being closely related to its endoribonuclease and ribosome binding domains. These results demonstrate the mechanism of SLFN14 in regulating LINE-1 replication, which further provide new insights for improving the regulation network of host factors for controlling genomic instability caused by LINE-1 replication.


Asunto(s)
Endorribonucleasas , Genoma Humano , Elementos de Nucleótido Esparcido Largo , Endorribonucleasas/fisiología , Inestabilidad Genómica , Humanos , Elementos de Nucleótido Esparcido Largo/genética , ARN Mensajero , Transcripción Reversa
10.
Int J Mol Sci ; 21(14)2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-32664681

RESUMEN

Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.


Asunto(s)
Remodelación Ósea/genética , Epigénesis Genética , Osteoporosis/genética , Adipogénesis , Animales , Autofagia , Resorción Ósea/genética , Metilación de ADN , Modelos Animales de Enfermedad , Endorribonucleasas/fisiología , Código de Histonas , Histona Desacetilasas/fisiología , Histona Metiltransferasas/fisiología , Homeostasis , Humanos , Ratones , MicroARNs/sangre , MicroARNs/genética , Mitofagia , Orgánulos/fisiología , Osteoblastos/fisiología , Osteoblastos/ultraestructura , Osteoporosis/metabolismo , Polimorfismo de Nucleótido Simple
11.
Gastroenterology ; 159(4): 1487-1503.e17, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32574624

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum to nucleus signaling 1 (ERN1, also called IRE1A) is a sensor of the unfolded protein response that is activated in the livers of patients with nonalcoholic steatohepatitis (NASH). Hepatocytes release ceramide-enriched inflammatory extracellular vesicles (EVs) after activation of IRE1A. We studied the effects of inhibiting IRE1A on release of inflammatory EVs in mice with diet-induced steatohepatitis. METHODS: C57BL/6J mice and mice with hepatocyte-specific disruption of Ire1a (IRE1αΔhep) were fed a diet high in fat, fructose, and cholesterol to induce development of steatohepatitis or a standard chow diet (controls). Some mice were given intraperitoneal injections of the IRE1A inhibitor 4µ8C. Mouse liver and primary hepatocytes were transduced with adenovirus or adeno-associated virus that expressed IRE1A. Livers were collected from mice and analyzed by quantitative polymerase chain reaction and chromatin immunoprecipitation assays; plasma samples were analyzed by enzyme-linked immunosorbent assay. EVs were derived from hepatocytes and injected intravenously into mice. Plasma EVs were characterized by nanoparticle-tracking analysis, electron microscopy, immunoblots, and nanoscale flow cytometry; we used a membrane-tagged reporter mouse to detect hepatocyte-derived EVs. Plasma and liver tissues from patients with NASH and without NASH (controls) were analyzed for EV concentration and by RNAscope and gene expression analyses. RESULTS: Disruption of Ire1a in hepatocytes or inhibition of IRE1A reduced the release of EVs and liver injury, inflammation, and accumulation of macrophages in mice on the diet high in fat, fructose, and cholesterol. Activation of IRE1A, in the livers of mice, stimulated release of hepatocyte-derived EVs, and also from cultured primary hepatocytes. Mice given intravenous injections of IRE1A-stimulated, hepatocyte-derived EVs accumulated monocyte-derived macrophages in the liver. IRE1A-stimulated EVs were enriched in ceramides. Chromatin immunoprecipitation showed that IRE1A activated X-box binding protein 1 (XBP1) to increase transcription of serine palmitoyltransferase genes, which encode the rate-limiting enzyme for ceramide biosynthesis. Administration of a pharmacologic inhibitor of serine palmitoyltransferase to mice reduced the release of EVs. Levels of XBP1 and serine palmitoyltransferase were increased in liver tissues, and numbers of EVs were increased in plasma, from patients with NASH compared with control samples and correlated with the histologic features of inflammation. CONCLUSIONS: In mouse hepatocytes, activated IRE1A promotes transcription of serine palmitoyltransferase genes via XBP1, resulting in ceramide biosynthesis and release of EVs. The EVs recruit monocyte-derived macrophages to the liver, resulting in inflammation and injury in mice with diet-induced steatohepatitis. Levels of XBP1, serine palmitoyltransferase, and EVs are all increased in liver tissues from patients with NASH. Strategies to block this pathway might be developed to reduce liver inflammation in patients with NASH.


Asunto(s)
Endorribonucleasas/fisiología , Vesículas Extracelulares/patología , Hepatocitos/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
12.
Biomolecules ; 10(6)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545307

RESUMEN

While the role of hypoxia and the induction of the hypoxia inducible factors (HIFs) and the unfolded protein response (UPR) pathways in the cancer microenvironment are well characterized, their roles and relationship in normal human endothelium are less clear. Here, we examined the effects of IRE1 on HIF-1α protein levels during hypoxia in primary human umbilical vein endothelial cells (HUVECs). The results demonstrated that HIF-1α levels peaked at 6 h of hypoxia along with two of their target genes, GLUT1 and VEGFA, whereas at up to 12 h of hypoxia the mRNA levels of markers of the UPR, IRE1, XBP1s, BiP, and CHOP, did not increase, suggesting that the UPR was not activated. Interestingly, the siRNA knockdown of IRE1 or inhibition of IRE1 endonuclease activity with 4µ8C during hypoxia significantly reduced HIF-1α protein without affecting HIF1A mRNA expression. The inhibition of the endonuclease activity with 4µ8C in two other primary endothelial cells during hypoxia, human cardiac microvascular endothelial cells and human aortic endothelial cells showed the same reduction in the HIF-1α protein. Surprisingly, the siRNA knockdown of XBP1s during hypoxia did not decrease the HIF1α protein levels, indicating that the IRE1-mediated effect on stabilizing the HIF1α protein levels was XBP1s-independent. The studies presented here, therefore, provide evidence that IRE1 activity during hypoxia increases the protein levels of HIF1α in an XBP1s-independent manner.


Asunto(s)
Hipoxia de la Célula , Endorribonucleasas/fisiología , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Células Cultivadas , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/metabolismo , Células Endoteliales/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
13.
Environ Res ; 188: 109824, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32593899

RESUMEN

Exposure to arsenic is a risk factor for nonalcoholic steatohepatitis (NASH). Ferroptosis is a form of regulated cell death defined by the accumulation of lipid peroxidation. In the current study, we observed the occurrence of ferroptosis in arsenic-induced NASH by assessing ferroptosis related hallmarks. In vitro, we found that ferrostatin-1 effectively attenuated the executing of ferroptosis and NASH. Simultaneously, the expression of ACSL4 (acyl-CoA synthetase long-chain family member 4) was upregulated in rat's liver and L-02 cells exposed to arsenic. While, suppression of ACSL4 with rosiglitazone or ACSL4 siRNA remarkably alleviated arsenic-induced NASH and ferroptosis through diminishing 5-hydroxyeicosatetraenoic acid (5-HETE) content. Additionally, Mitofusin 2 (Mfn2), a physical tether between endoplasmic reticulum and mitochondria, has rarely been explored in the ferroptosis. Using Mfn2 siRNA or inositol-requiring enzyme 1 alpha (IRE1α) inhibitor, we found NASH and ferroptosis were obviously mitigated through reducing 5-HETE content. Importantly, Co-IP assay indicated that Mfn2 could interact with IRE1α and promoted the production of 5-HETE, ultimately led to ferroptosis and NASH. Collectively, our data showed that ferroptosis is involved in arsenic-induced NASH. These data provide insightful viewpoints into the mechanism of arsenic-induced NASH.


Asunto(s)
Arsénico , Enfermedad del Hígado Graso no Alcohólico , Animales , Arsénico/toxicidad , Coenzima A Ligasas , Endorribonucleasas/efectos de los fármacos , Endorribonucleasas/fisiología , Ferroptosis , GTP Fosfohidrolasas/efectos de los fármacos , GTP Fosfohidrolasas/fisiología , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/fisiología , Complejos Multienzimáticos/efectos de los fármacos , Complejos Multienzimáticos/fisiología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/fisiología , Ratas
14.
Cancer Lett ; 486: 29-37, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32446861

RESUMEN

Estrogen receptor 1 (ESR1, which encodes estrogen receptor-alpha) is a key driver gene for the initiation and progression of hormone receptor-positive breast cancer. Estrogen receptor-alpha (ER) is expressed in up to 70% of cases, and patients are routinely treated with endocrine therapies. However, the development of resistance over time is common and occurs in one-third of ER-positive breast tumors, leading to disease progression and death. X-box binding protein 1 (XBP1), a key component of the unfolded protein response (UPR) and ER signaling pathway, generates a positive feedback regulatory loop that leads to increased expression of XBP1 and ER in luminal breast cancer. In this review, we highlight new insights into the mechanisms of crosstalk between XBP1 and ER signaling and its clinical implications. Next, we describe the key signaling nodes that play an important role in XBP1-mediated endocrine resistance in breast cancer. Further, we discuss XBP1 gene mutations in breast cancer and the role of these mutations in the emergence of endocrine resistance and response to treatment. Finally, we discuss the current state and future directions for targeting XBP1 in combination with standard endocrine therapy to improve clinical outcomes in endocrine-resistant breast cancer patients.


Asunto(s)
Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Endorribonucleasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteína 1 de Unión a la X-Box/antagonistas & inhibidores , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/química , Resistencia a Antineoplásicos , Endorribonucleasas/fisiología , Receptor alfa de Estrógeno/análisis , Femenino , Humanos , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Tamoxifeno/uso terapéutico , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/fisiología
15.
Elife ; 92020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32366357

RESUMEN

Eukaryotic 5'-3' mRNA decay plays important roles during development and in response to stress, regulating gene expression post-transcriptionally. In Caenorhabditis elegans, deficiency of DCAP-1/DCP1, the essential co-factor of the major cytoplasmic mRNA decapping enzyme, impacts normal development, stress survival and ageing. Here, we show that overexpression of dcap-1 in neurons of worms is sufficient to increase lifespan through the function of the insulin/IGF-like signaling and its effector DAF-16/FOXO transcription factor. Neuronal DCAP-1 affects basal levels of INS-7, an ageing-related insulin-like peptide, which acts in the intestine to determine lifespan. Short-lived dcap-1 mutants exhibit a neurosecretion-dependent upregulation of intestinal ins-7 transcription, and diminished nuclear localization of DAF-16/FOXO. Moreover, neuronal overexpression of DCP1 in Drosophila melanogaster confers longevity in adults, while neuronal DCP1 deficiency shortens lifespan and affects wing morphogenesis, cell non-autonomously. Our genetic analysis in two model-organisms suggests a critical and conserved function of DCAP-1/DCP1 in developmental events and lifespan modulation.


Asunto(s)
Envejecimiento/genética , Sistemas Neurosecretores/fisiología , Estabilidad del ARN/genética , ARN Mensajero/genética , Envejecimiento/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Endorribonucleasas/fisiología , Factores de Transcripción Forkhead/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/fisiología , Sistemas Neurosecretores/crecimiento & desarrollo , Estabilidad del ARN/fisiología , ARN Mensajero/fisiología
16.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32295917

RESUMEN

Virus infection leads to activation of the interferon (IFN)-induced endoribonuclease RNase L, which results in degradation of viral and cellular RNAs. Both cellular and viral RNA cleavage products of RNase L bind pattern recognition receptors (PRRs), like retinoic acid-inducible I (Rig-I) and melanoma differentiation-associated protein 5 (MDA5), to further amplify IFN production and antiviral response. Although much is known about the mechanics of ligand binding and PRR activation, how cells coordinate RNA sensing with signaling response and interferon production remains unclear. We show that RNA cleavage products of RNase L activity induce the formation of antiviral stress granules (avSGs) by regulating activation of double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) and recruit the antiviral proteins Rig-I, PKR, OAS, and RNase L to avSGs. Biochemical analysis of purified avSGs showed interaction of a key stress granule protein, G3BP1, with only PKR and Rig-I and not with OAS or RNase L. AvSG assembly during RNase L activation is required for IRF3-mediated IFN production, but not IFN signaling or proinflammatory cytokine induction. Consequently, cells lacking avSG formation or RNase L signaling produced less IFN and showed higher susceptibility during Sendai virus infection, demonstrating the importance of avSGs in RNase L-mediated host defense. We propose a role during viral infection for RNase L-cleaved RNAs in inducing avSGs containing antiviral proteins to provide a platform for efficient interaction of RNA ligands with pattern recognition receptors to enhance IFN production to mount an effective antiviral response.IMPORTANCE Double-stranded RNAs produced during viral infections serve as pathogen-associated molecular patterns (PAMPs) and bind pattern recognition receptors to stimulate IFN production. RNase L is an IFN-regulated endoribonuclease that is activated in virus-infected cells and cleaves single-stranded viral and cellular RNAs. The RNase L-cleaved dsRNAs signal to Rig-like helicases to amplify IFN production. This study identifies a novel role of antiviral stress granules induced by RNase L as an antiviral signaling hub to coordinate the RNA ligands with cognate receptors to mount an effective host response during viral infections.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Endorribonucleasas/metabolismo , eIF-2 Quinasa/metabolismo , Línea Celular Tumoral , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Endorribonucleasas/fisiología , Humanos , Interferón beta/genética , Interferones/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Bicatenario/metabolismo , ARN Viral/genética , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal/genética , eIF-2 Quinasa/fisiología
17.
Cell Metab ; 31(4): 822-836.e5, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32220307

RESUMEN

Immune-mediated destruction of insulin-producing ß cells causes type 1 diabetes (T1D). However, how ß cells participate in their own destruction during the disease process is poorly understood. Here, we report that modulating the unfolded protein response (UPR) in ß cells of non-obese diabetic (NOD) mice by deleting the UPR sensor IRE1α prior to insulitis induced a transient dedifferentiation of ß cells, resulting in substantially reduced islet immune cell infiltration and ß cell apoptosis. Single-cell and whole-islet transcriptomics analyses of immature ß cells revealed remarkably diminished expression of ß cell autoantigens and MHC class I components, and upregulation of immune inhibitory markers. IRE1α-deficient mice exhibited significantly fewer cytotoxic CD8+ T cells in their pancreata, and adoptive transfer of their total T cells did not induce diabetes in Rag1-/- mice. Our results indicate that inducing ß cell dedifferentiation, prior to insulitis, allows these cells to escape immune-mediated destruction and may be used as a novel preventive strategy for T1D in high-risk individuals.


Asunto(s)
Desdiferenciación Celular , Diabetes Mellitus Tipo 1/metabolismo , Endorribonucleasas/fisiología , Células Secretoras de Insulina , Proteínas Serina-Treonina Quinasas/fisiología , Respuesta de Proteína Desplegada , Animales , Linfocitos T CD8-positivos/citología , Endorribonucleasas/genética , Eliminación de Gen , Hiperglucemia/metabolismo , Células Secretoras de Insulina/citología , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
18.
Toxicol Lett ; 324: 20-29, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31987890

RESUMEN

Similar to other types of neuronal degeneration, Parkinson's disease (PD) is characterized by the aggregation of a pathological protein, α-synuclein. The endoplasmic reticulum (ER) is the principal site of protein synthesis, quality control and degradation. Genetic mutants, environmental insults and other factors disturb ER balance and induce the accumulation of misfolded/unfolded proteins, which initiate ER stress and disturb normal cell function. ER stress perturbs Ca2+ homeostasis and initiates the activation of autophagy and inflammasomes, which have been identified as risk factors for the development of PD. However, the mechanisms by which ER stress contributes to the processed of PD pathogenesis and development remain unclear. This review summarizes current knowledge of ER stress and highlights the principal role of ER stress in PD pathogenesis which may help reveal novel sight to illustrate the pathomechanism of PD.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Enfermedad de Parkinson/etiología , Factor de Transcripción Activador 6/fisiología , Adaptación Fisiológica , Animales , Autofagia , Calcio/metabolismo , Endorribonucleasas/fisiología , Humanos , Enfermedad de Parkinson/fisiopatología , Proteínas Serina-Treonina Quinasas/fisiología , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/fisiología , eIF-2 Quinasa/fisiología
19.
J Cell Biol ; 219(2)2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31985747

RESUMEN

IRE1ß is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1ß have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1ß diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1ß can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1ß has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1ß to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host-environment interface.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/fisiología , Proteínas de la Membrana/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Células CACO-2 , Endorribonucleasas/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Serina-Treonina Quinasas/genética , Proteostasis , Análisis de Secuencia de Proteína , Transducción de Señal , Estrés Fisiológico , Respuesta de Proteína Desplegada
20.
ACS Chem Biol ; 14(12): 2595-2605, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31609569

RESUMEN

The dual kinase endoribonuclease IRE1 is a master regulator of cell fate decisions in cells experiencing endoplasmic reticulum (ER) stress. In mammalian cells, there are two paralogs of IRE1: IRE1α and IRE1ß. While IRE1α has been extensively studied, much less is understood about IRE1ß and its role in signaling. In addition, whether the regulation of IRE1ß's enzymatic activities varies compared to IRE1α is not known. Here, we show that the RNase domain of IRE1ß is enzymatically active and capable of cleaving an XBP1 RNA mini-substrate in vitro. Using ATP-competitive inhibitors, we find that, like IRE1α, there is an allosteric relationship between the kinase and RNase domains of IRE1ß. This allowed us to develop a novel toolset of both paralog specific and dual-IRE1α/ß kinase inhibitors that attenuate RNase activity (KIRAs). Using sequence alignments of IRE1α and IRE1ß, we propose a model for paralog-selective inhibition through interactions with nonconserved residues that differentiate the ATP-binding pockets of IRE1α and IRE1ß.


Asunto(s)
Endorribonucleasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Regulación Alostérica , Animales , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...