Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34919128

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells that self-renew or differentiate to establish the entire blood hierarchy. HSPCs arise from the hemogenic endothelium of the dorsal aorta (DA) during development in a process called endothelial-to-hematopoietic transition. The factors and signals that control HSPC fate decisions from the hemogenic endothelium are not fully understood. We found that Vegfc has a role in HSPC emergence from the zebrafish DA. Using time-lapse live imaging, we show that some HSPCs in the DA of vegfc loss-of-function embryos display altered cellular behavior. Instead of typical budding from the DA, emergent HSPCs exhibit crawling behavior similar to myeloid cells. This was confirmed by increased myeloid cell marker expression in the ventral wall of the DA and the caudal hematopoietic tissue. This increase in myeloid cells corresponded with a decrease in HSPCs that persisted into larval stages. Together, our data suggest that Vegfc regulates HSPC emergence in the hemogenic endothelium, in part by suppressing a myeloid cell fate. Our study provides a potential signal for modulation of HSPC fate in stem cell differentiation protocols.


Asunto(s)
Aorta/citología , Diferenciación Celular , Células Madre Hematopoyéticas/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Aorta/embriología , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/embriología , Células Madre Hematopoyéticas/citología , Mutación con Pérdida de Función , Células Mieloides/citología , Células Mieloides/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Pez Cebra , Proteínas de Pez Cebra/genética
4.
PLoS One ; 16(7): e0254024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234366

RESUMEN

During embryonic development, cells differentiate into a variety of distinct cell types and subtypes with diverse transcriptional profiles. To date, transcriptomic signatures of different cell lineages that arise during development have been only partially characterized. Here we used single-cell RNA-seq to perform transcriptomic analysis of over 20,000 cells disaggregated from the trunk region of zebrafish embryos at the 30 hpf stage. Transcriptional signatures of 27 different cell types and subtypes were identified and annotated during this analysis. This dataset will be a useful resource for many researchers in the fields of developmental and cellular biology and facilitate the understanding of molecular mechanisms that regulate cell lineage choices during development.


Asunto(s)
Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Torso/embriología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Linaje de la Célula/genética , Ectodermo/citología , Ectodermo/embriología , Endodermo/citología , Endodermo/embriología , Endotelio Vascular/citología , Endotelio Vascular/embriología , Eritrocitos/metabolismo , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Mesodermo/embriología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Genes Cells ; 26(8): 611-626, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34081835

RESUMEN

Serum/glucocorticoid-regulated kinase 1 (SGK1) is predominantly expressed in endothelial cells of mouse embryos, and Sgk1 null mice show embryonic lethality due to impaired vascular formation. However, how the SGK1 expression is controlled in developing vasculature remains unknown. In this study, we first identified a proximal endothelial enhancer through lacZ reporter mouse analyses. The mouse Sgk1 proximal enhancer was narrowed down to the 5' region of the major transcription initiation site, while a human corresponding region possessed relatively weak activity. We then searched for distal enhancer candidates using in silico analyses of publicly available databases for DNase accessibility, RNA polymerase association and chromatin modification. A region approximately 500 kb distant from the human SGK1 gene was conserved in the mouse, and the mouse and human genomic fragments drove transcription restricted to embryonic endothelial cells. Minimal fragments of both proximal and distal enhancers had consensus binding elements for the ETS transcription factors, which were essential for the responsiveness to ERG, FLI1 and ETS1 proteins in luciferase assays and the endothelial lacZ reporter expression in mouse embryos. These results suggest that endothelial SGK1 expression in embryonic vasculature is maintained through at least two ETS-regulated enhancers located in the proximal and distal regions.


Asunto(s)
Endotelio Vascular/metabolismo , Elementos de Facilitación Genéticos , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Cromatina/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/embriología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Proteínas Inmediatas-Precoces/genética , Ratones , Proteínas Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Sitio de Iniciación de la Transcripción , Regulador Transcripcional ERG/metabolismo
6.
Mol Nutr Food Res ; 65(12): e2100072, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33938121

RESUMEN

SCOPE: Maternal nutrition during pregnancy is related to intrauterine fetal development. The authors' previous work reports that prenatal high sucrose (HS) diet impaired micro-vascular functions in postnatal offspring. It is unclear whether/how prenatal HS causes vascular injury during fetal life. METHODS AND RESULTS: Pregnant rats are fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Pregnant HS increases maternal weight before delivery. Fetal thoracic aorta is separated for experiments. Angiotensin II (AII)-stimulated vascular contraction of fetal thoracic arteries in HS group is greater, which mainly results from the enhanced AT1 receptor (AT1R) function and the downstream signaling. Nifedipine significantly increases vascular tension in HS group, indicating that the L-type calcium channels (LTCCs) function is strengthened. 2-Aminoethyl diphenylborinate (2-APB), inositol 1,4,5-trisphosphate receptors (IP3Rs) inhibitor, increases vascular tension induced by AII in HS group and ryanodine receptors-sensitive vascular tone shows no difference in the two groups, which suggested that the activity of IP3Rs-operated calcium channels is increased. CONCLUSION: These findings suggest that prenatal HS induces vascular dysfunction of thoracic arteries in fetal offspring by enhancing AT1R, LTCCs function and IP3Rs-associated calcium channels, providing new information regarding the impact of prenatal HS on the functional development of fetal vascular systems.


Asunto(s)
Sacarosa en la Dieta/efectos adversos , Endotelio Vascular/efectos de los fármacos , Arterias Torácicas/efectos de los fármacos , Arterias Torácicas/embriología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Peso Corporal/efectos de los fármacos , Endotelio Vascular/embriología , Endotelio Vascular/fisiopatología , Femenino , Tamaño de la Camada , Losartán/farmacología , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Arterias Torácicas/fisiopatología
7.
Dev Biol ; 477: 117-132, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34048734

RESUMEN

During embryonic stages, vascular endothelial cells (ECs) originate from the mesoderm, at specific extraembryonic and embryonic regions, through a process called vasculogenesis. In the adult, EC renewal/replacement mostly depend on local resident ECs or endothelial progenitor cells (EPCs). Nevertheless, contribution from circulating ECs/EPCs was also reported. In addition, cells lacking from EC/EPC markers with in vitro extended plasticity were shown to originate endothelial-like cells (ELCs). Most of these cells consist of mesenchymal stromal progenitors, which would eventually get mobilized from the bone marrow after injury. Based on that, current knowledge on different mouse and human bone marrow stromal cell (BM-SC) subpopulations, able to contribute with mesenchymal stromal/stem cells (MSCs), is herein reviewed. Such analyses underline an unexpected heterogeneity among sinusoidal LepR+ stromal/CAR cells. For instance, in a recent report a subgroup of LepR+ stromal/CAR progenitors, which express GLAST and is traced in Wnt1Cre;R26RTom mice, was found to contribute with ELCs in vivo. These GLAST â€‹+ â€‹Wnt1+ BM-SCs were shown to get mobilized to the peripheral blood and to contribute with liver regeneration. Other sources of ELCs, such as adipose, neural and dental pulp tissues, were also published. Finally, mechanisms likely involved in the enhanced cellular plasticity properties of bone marrow/adipose tissue stromal cells, able to originate ELCs, are assessed. In the future, strategies to analyze the in vivo expression profile of stromal cells, with MSC properties, in combination with screening of active genomic regions at the single cell-level, during early postnatal development and/or after injury, will likely help understanding properties of these ELC sources.


Asunto(s)
Linaje de la Célula , Células Progenitoras Endoteliales , Endotelio Vascular/citología , Células Madre Mesenquimatosas/citología , Adulto , Células Madre Adultas , Animales , Plasticidad de la Célula , Endotelio Vascular/embriología , Humanos
8.
Dev Biol ; 477: 98-116, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34000274

RESUMEN

Chronic kidney disease (CKD) and end stage renal disease (ESRD) are increasingly frequent and devastating conditions that have driven a surge in the need for kidney transplantation. A stark shortage of organs has fueled interest in generating viable replacement tissues ex vivo for transplantation. One promising approach has been self-organizing organoids, which mimic developmental processes and yield multicellular, organ-specific tissues. However, a recognized roadblock to this approach is that many organoid cell types fail to acquire full maturity and function. Here, we comprehensively assess the vasculature in two distinct kidney organoid models as well as in explanted embryonic kidneys. Using a variety of methods, we show that while organoids can develop a wide range of kidney cell types, as previously shown, endothelial cells (ECs) initially arise but then rapidly regress over time in culture. Vasculature of cultured embryonic kidneys exhibit similar regression. By contrast, engraftment of kidney organoids under the kidney capsule results in the formation of a stable, perfused vasculature that integrates into the organoid. This work demonstrates that kidney organoids offer a promising model system to define the complexities of vascular-nephron interactions, but the establishment and maintenance of a vascular network present unique challenges when grown ex vivo.


Asunto(s)
Endotelio Vascular/embriología , Riñón/irrigación sanguínea , Riñón/embriología , Organogénesis , Organoides/embriología , Animales , Células Cultivadas , Células Endoteliales , Endotelio Vascular/citología , Femenino , Humanos , Riñón/citología , Masculino , Ratones , Organoides/trasplante , RNA-Seq , Técnicas de Cultivo de Tejidos
9.
Genesis ; 59(4): e23416, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33651473

RESUMEN

Embryonic vascular development is achieved through the complex arrays of differentiation, proliferation, migration and mutual interaction of different cell types, and visualization as well as purification of unique cell populations are fundamental in studying its detailed mechanisms using in vivo experimental models. We previously demonstrated that Tmem100 was a novel endothelial gene encoding a small transmembrane protein, and that Tmem100 null mice showed embryonic lethality due to severe impairment of vascular formation. In the present study, we generated an EGFP reporter mouse line using a 216 kb genomic region containing mouse Tmem100 gene. A novel line designated as Tmem100-BAC-EGFP mice precisely recapitulated the Tmem100 expression profile at the mid-gestational stage, which was highly enriched in endothelial cells of large caliber arteries in mouse embryos. FACS experiments demonstrated that Tmem100-BAC-EGFP mice served to selectively purify a specific population of arterial endothelial cells, indicating their usefulness not only for the research concerning Tmem100 expression and function but also for comparative analysis of multiple endothelial cell subgroups in embryonic vascular development.


Asunto(s)
Arterias/embriología , Proteínas de la Mielina/metabolismo , Neovascularización Fisiológica/genética , Animales , Arterias/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas de la Mielina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
J Comp Neurol ; 529(2): 340-366, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32415669

RESUMEN

Vascular structures in the developing brain are thought to form via angiogenesis from preformed blood vessels in the cephalic mesenchyme. Immunohistochemical studies of developing mouse brain from E10.5 to E13.5 revealed the presence of avascular blood islands of primitive erythroid cells expressing hemangioblast markers (Flk1, Tal1/Scl1, platelet endothelial cell adhesion molecule 1, vascular endothelial-cadherin, and CD34) and an endothelial marker recognized by Griffonia simplicifolia isolectin B4 (IB4) in the cephalic mesenchyme. These cells formed a perineural vascular plexus from which angiogenic sprouts originated and penetrated the neuroepithelium. In addition, avascular isolated cells expressing primitive erythroid, hemangioblast and endothelial makers were visible in the neuroepithelium where they generated vasculogenic and hemogenic foci. From E10.5 to E13.5, these vasculogenic foci were a source of new blood vessel formation in the developing brain. In vitro, cultured E13.5 brain endothelial cells contained hemogenic endothelial cells capable of generating erythroid cells. Similar cells were present in primary cultures of dissociated cells from E10.5 embryonic head. Our results provide new evidence that the brain vasculature, like that of the yolk sac and the eye choriocapillaris and hyaloid vascular systems, develops at least in part via hemovasculogenesis, a process in which vasculogenesis and hematopoiesis occur simultaneously.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/embriología , Endotelio Vascular/embriología , Animales , Encéfalo/citología , Endotelio Vascular/citología , Femenino , Ratones , Morfogénesis/fisiología , Embarazo , Saco Vitelino/irrigación sanguínea , Saco Vitelino/citología , Saco Vitelino/embriología
11.
Nat Commun ; 11(1): 6314, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298956

RESUMEN

Blood and lymphatic vessels structurally bear a strong resemblance but never share a lumen, thus maintaining their distinct functions. Although lymphatic vessels initially arise from embryonic veins, the molecular mechanism that maintains separation of these two systems has not been elucidated. Here, we show that genetic deficiency of Folliculin, a tumor suppressor, leads to misconnection of blood and lymphatic vessels in mice and humans. Absence of Folliculin results in the appearance of lymphatic-biased venous endothelial cells caused by ectopic expression of Prox1, a master transcription factor for lymphatic specification. Mechanistically, this phenotype is ascribed to nuclear translocation of the basic helix-loop-helix transcription factor Transcription Factor E3 (TFE3), binding to a regulatory element of Prox1, thereby enhancing its venous expression. Overall, these data demonstrate that Folliculin acts as a gatekeeper that maintains separation of blood and lymphatic vessels by limiting the plasticity of committed endothelial cells.


Asunto(s)
Plasticidad de la Célula , Vasos Linfáticos/embriología , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Supresoras de Tumor/deficiencia , Venas/embriología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Embrión de Mamíferos , Células Endoteliales/metabolismo , Endotelio Linfático/citología , Endotelio Linfático/embriología , Endotelio Vascular/citología , Endotelio Vascular/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Vasos Linfáticos/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Venas/citología
12.
Radiat Res ; 194(4): 411-430, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32936898

RESUMEN

In the event of a major accidental or intentional radiation exposure incident, the affected population could suffer from total- or partial-body exposures to ionizing radiation with acute exposure to organs that would produce life-threatening injury. Therefore, it is necessary to identify markers capable of predicting organ-specific damage so that appropriate directed or encompassing therapies can be applied. In the current work, gene expression changes in response to total-body irradiation (TBI) were identified in heart, lungs and liver tissue of Göttingen minipigs. Animals received 1.7, 1.9, 2.1 or 2.3 Gy TBI and were followed for 45 days. Organ samples were collected at the end of day 45 or sooner if the animal displayed morbidity necessitating euthanasia. Our findings indicate that different organs respond to TBI in a very specific and distinct manner. We also found that the liver was the most affected organ in terms of gene expression changes, and that lipid metabolic pathways were the most deregulated in the liver samples of non-survivors (survival time <45 days). We identified organ-specific gene expression signatures that accurately differentiated non-survivors from survivors and control animals, irrespective of dose and time postirradiation. At what point did these radiation-induced injury markers manifest and how this information could be used for applying intervention therapies are under investigation.


Asunto(s)
Perfilación de la Expresión Génica , Corazón/efectos de la radiación , Hígado/efectos de la radiación , Pulmón/efectos de la radiación , Traumatismos Experimentales por Radiación/genética , Irradiación Corporal Total/efectos adversos , Animales , Apelina/fisiología , Radioisótopos de Cobalto , Sistemas de Computación , Relación Dosis-Respuesta en la Radiación , Endotelio Vascular/embriología , Endotelio Vascular/efectos de la radiación , Rayos gamma/efectos adversos , Sistema Inmunológico/efectos de la radiación , Estimación de Kaplan-Meier , Metabolismo de los Lípidos/efectos de la radiación , Hígado/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Miocardio/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Fantasmas de Imagen , Traumatismos Experimentales por Radiación/etiología , Transducción de Señal/efectos de la radiación , Porcinos , Porcinos Enanos
13.
Circ Res ; 127(10): 1221-1232, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32791884

RESUMEN

RATIONALE: Endothelial cells are thought to emerge de novo from the mesoderm to form the entire circulatory system. Recently, erythro-myeloid progenitors (EMPs) have been proposed to be another remarkable developmental origin for blood vessels in multiple organs, including the hindbrain, liver, lung, and heart, as demonstrated by lineage tracing studies using different genetic tools. These observations challenge the current consensus that intraembryonic vessels are thought to expand solely by the proliferation of preexisting endothelial cells. Resolution of this controversy over the developmental origin of endothelial cells is crucial for developing future therapeutics for vessel-dependent organ repair and regeneration. OBJECTIVE: To examine the contribution of EMPs to intraembryonic endothelial cells. METHODS AND RESULTS: We first used a transgenic mouse expressing a tamoxifen-inducible Mer-iCre fusion protein driven by the Csf1r (colony stimulating factor 1 receptor) promoter. Genetic lineage tracing based on Csf1r-Mer-iCre-Mer showed no contribution of EMPs to brain endothelial cells identified by several markers. We also generated a knock-in mouse line by inserting an internal ribosome entry site-iCre cassette into the 3' untranslated region of Csf1r gene to further investigate the cellular fates of EMPs. Similarly, we did not find any Csf1r-ires-iCre traced endothelial cells in brain, liver, lung, or heart in development either. Additionally, we found that Kit (KIT proto-oncogene receptor tyrosine kinase) was expressed not only in EMPs but also in embryonic hindbrain endothelial cells. Therefore, Kit promoter-driven recombinase, such as Kit-CreER, is a flawed tool for lineage tracing when examining the contribution of EMPs to hindbrain endothelial cells. We also traced CD45 (protein tyrosine phosphatase receptor type C; Ptprc)+ circulating EMPs and did not find any CD45 lineage-derived endothelial cells during development. CONCLUSIONS: Our study suggested that EMPs are not the origin of intraembryonic endothelial cells.


Asunto(s)
Linaje de la Célula , Células Endoteliales/citología , Células Precursoras Eritroides/citología , Animales , Endotelio Vascular/citología , Endotelio Vascular/embriología , Corazón Fetal/citología , Hígado/citología , Hígado/embriología , Pulmón/citología , Pulmón/embriología , Macrófagos/citología , Mesodermo/citología , Ratones , Rombencéfalo/citología , Rombencéfalo/embriología
14.
Development ; 147(10)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32423977

RESUMEN

The thin endothelial wall of a newly formed vessel is under enormous stress at the onset of blood flow, rapidly acquiring support from mural cells (pericytes and vascular smooth muscle cells; vSMCs) during development. Mural cells then develop vasoactivity (contraction and relaxation) but we have little information as to when this first develops or the extent to which pericytes and vSMCs contribute. For the first time, we determine the dynamic developmental acquisition of vasoactivity in vivo in the cerebral vasculature of zebrafish. We show that pericyte-covered vessels constrict in response to α1-adrenergic receptor agonists and dilate in response to nitric oxide donors at 4 days postfertilization (dpf) but have heterogeneous responses later, at 6 dpf. In contrast, vSMC-covered vessels constrict at 6 dpf, and dilate at both stages. Using genetic ablation, we demonstrate that vascular constriction and dilation is an active response. Our data suggest that both pericyte- and vSMC-covered vessels regulate their diameter in early development, and that their relative contributions change over developmental time.


Asunto(s)
Músculo Liso Vascular/embriología , Miocitos del Músculo Liso/fisiología , Pericitos/fisiología , Pez Cebra/embriología , Pez Cebra/genética , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Animales Modificados Genéticamente , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Células Endoteliales/fisiología , Endotelio Vascular/embriología , Silenciador del Gen , Metronidazol/farmacología , Contracción Muscular/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Vasodilatación/efectos de los fármacos
15.
FASEB J ; 34(4): 5223-5239, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32068311

RESUMEN

The embryonic epicardium generates a population of epicardial-derived mesenchymal cells (EPDC) whose contribution to the coronary endothelium is minor or, according to some reports, negligible. We have compared four murine cell-tracing models related to the EPDC in order to elucidate this contribution. Cre recombinase was expressed under control of the promoters of the Wilms' tumor suppressor (Wt1), the cardiac troponin (cTnT), and the GATA5 genes, activating expression of the R26REYFP reporter. We have also used the G2 enhancer of the GATA4 gene as a driver due to its activation in the proepicardium. Recombination was found in most of the epicardium/EPDC in all cases. The contribution of these lineages to the cardiac endothelium was analyzed using confocal microscopy and flow cytometry. G2-GATA4 lineage cells are the most frequent in the endothelium, probably due to the recruitment of circulating endothelial progenitors. The contribution of the WT1 cell lineage increases along gestation due to further endothelial expression of WT1. GATA5 and cTnT lineages represent 4% of the cardiac endothelial cells throughout the gestation, probably standing for the actual EPDC contribution to the coronary endothelium. These results suggest caution when using a sole cell-tracing model to study the fate of the EPDC.


Asunto(s)
Linaje de la Célula , Vasos Coronarios/citología , Endotelio Vascular/citología , Pericardio/citología , Animales , Vasos Coronarios/embriología , Vasos Coronarios/metabolismo , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Integrasas , Ratones , Pericardio/embriología , Pericardio/metabolismo
16.
Development ; 147(7)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32108024

RESUMEN

Endothelial cell adhesion is implicated in blood vessel sprout formation, yet how adhesion controls angiogenesis, and whether it occurs via rapid remodeling of adherens junctions or focal adhesion assembly, or both, remains poorly understood. Furthermore, how endothelial cell adhesion is controlled in particular tissues and under different conditions remains unexplored. Here, we have identified an unexpected role for spatiotemporal c-Src activity in sprouting angiogenesis in the retina, which is in contrast to the dominant focus on the role of c-Src in the maintenance of vascular integrity. Thus, mice specifically deficient in endothelial c-Src displayed significantly reduced blood vessel sprouting and loss in actin-rich filopodial protrusions at the vascular front of the developing retina. In contrast to what has been observed during vascular leakage, endothelial cell-cell adhesion was unaffected by loss of c-Src. Instead, decreased angiogenic sprouting was due to loss of focal adhesion assembly and cell-matrix adhesion, resulting in loss of sprout stability. These results demonstrate that c-Src signaling at specified endothelial cell membrane compartments (adherens junctions or focal adhesions) control vascular processes in a tissue- and context-dependent manner.


Asunto(s)
Adhesión Celular/genética , Células Endoteliales/fisiología , Adhesiones Focales/genética , Genes src/fisiología , Neovascularización Fisiológica/genética , Retina/embriología , Animales , Células Cultivadas , Embrión de Mamíferos , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Femenino , Adhesiones Focales/metabolismo , Adhesiones Focales/fisiología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Noqueados , Retina/metabolismo
17.
Dev Biol ; 457(2): 181-190, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30862465

RESUMEN

To ensure tissue homeostasis the brain needs to be protected from blood-derived fluctuations or pathogens that could affect its function. Therefore, the brain capillaries develop tissue-specific properties to form a selective blood-brain barrier (BBB), allowing the passage of essential molecules to the brain and blocking the penetration of potentially harmful compounds or cells. Previous studies reported the presence of this barrier in zebrafish. The intrinsic features of the zebrafish embryos and larvae in combination with optical techniques, make them suitable for the study of barrier establishment and maturation. In this review, we discuss the most recent contributions to the development and formation of a functional zebrafish BBB. Moreover, we compare the molecular and cellular characteristic of the zebrafish and the mammalian BBB.


Asunto(s)
Barrera Hematoencefálica/embriología , Encéfalo/irrigación sanguínea , Sistema Cardiovascular/embriología , Neovascularización Fisiológica/fisiología , Pez Cebra/embriología , Animales , Encéfalo/embriología , Células Endoteliales/fisiología , Endotelio Vascular/embriología , Endotelio Vascular/fisiología , Uniones Estrechas/fisiología
18.
Nat Commun ; 10(1): 3577, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395869

RESUMEN

Haematopoietic stem cells are generated from the haemogenic endothelium (HE) located in the floor of the dorsal aorta (DA). Despite being integral to arteries, it is controversial whether HE and arterial endothelium share a common lineage. Here, we present a transgenic zebrafish runx1 reporter line to isolate HE and aortic roof endothelium (ARE)s, excluding non-aortic endothelium. Transcriptomic analysis of these populations identifies Runx1-regulated genes and shows that HE initially expresses arterial markers at similar levels to ARE. Furthermore, runx1 expression depends on prior arterial programming by the Notch ligand dll4. Runx1-/- mutants fail to downregulate arterial genes in the HE, which remains integrated within the DA, suggesting that Runx1 represses the pre-existing arterial programme in HE to allow progression towards the haematopoietic fate. These findings strongly suggest that, in zebrafish, aortic endothelium is a precursor to HE, with potential implications for pluripotent stem cell differentiation protocols for the generation of transplantable HSCs.


Asunto(s)
Arterias/embriología , Endotelio Vascular/embriología , Hemangioblastos/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Arterias/citología , Arterias/metabolismo , Linaje de la Célula , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Embrión no Mamífero , Desarrollo Embrionario , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Técnicas de Inactivación de Genes , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
JCI Insight ; 4(16)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31434798

RESUMEN

Left ventricular noncompaction (LVNC) is one of the most common forms of genetic cardiomyopathy characterized by excessive trabeculation and impaired myocardial compaction during fetal development. Patients with LVNC are at higher risk of developing left/right ventricular failure or both. Although the key regulators for cardiac chamber development are well studied, the role of semaphorin (Sema)/plexin signaling in this process remains poorly understood. In this article, we demonstrate that genetic deletion of Plxnd1, a class-3 Sema receptor in endothelial cells, leads to severe cardiac chamber defects. They were characterized by excessive trabeculation and noncompaction similar to patients with LVNC. Loss of Plxnd1 results in decreased expression of extracellular matrix proteolytic genes, leading to excessive deposition of cardiac jelly. We demonstrate that Plxnd1 deficiency is associated with an increase in Notch1 expression and its downstream target genes. In addition, inhibition of the Notch signaling pathway partially rescues the excessive trabeculation and noncompaction phenotype present in Plxnd1 mutants. Furthermore, we demonstrate that Semaphorin 3E (Sema3E), one of PlexinD1's known ligands, is expressed in the developing heart and is required for myocardial compaction. Collectively, our study uncovers what we believe to be a previously undescribed role of the Sema3E/PlexinD1 signaling pathway in myocardial trabeculation and the compaction process.


Asunto(s)
Cardiopatías Congénitas/embriología , Ventrículos Cardíacos/embriología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Semaforinas/metabolismo , Transducción de Señal , Animales , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Glicoproteínas de Membrana/genética , Ratones Noqueados , Receptor Notch1/metabolismo , Regulación hacia Arriba
20.
Development ; 146(11)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31097478

RESUMEN

The development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. Zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we have combined complementary genome-wide approaches, including transcriptome analyses and chromatin immunoprecipitation. The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes that are crucial for hematoendothelial specification, such as etv2, tal1 and lmo2 We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Endotelio Vascular/embriología , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Diferenciación Celular/genética , Mapeo Cromosómico/métodos , Conjuntos de Datos como Asunto , Embrión no Mamífero , Células Endoteliales/fisiología , Endotelio Vascular/metabolismo , Genómica/métodos , Proteínas con Dominio LIM/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...