Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.251
Filtrar
1.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691832

RESUMEN

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Asunto(s)
Colitis , Sulfato de Dextran , Factor 2 Relacionado con NF-E2 , FN-kappa B , Polisacáridos , Animales , Ratones , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/administración & dosificación , Sulfato de Dextran/efectos adversos , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Humanos , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Células RAW 264.7 , FN-kappa B/metabolismo , FN-kappa B/genética , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Estrés Oxidativo/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/inmunología , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Mucina 2/genética , Mucina 2/metabolismo
2.
Sci Rep ; 14(1): 10846, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736008

RESUMEN

Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.


Asunto(s)
Diferenciación Celular , Hepatocitos , Nanofibras , Organoides , Humanos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/citología , Diferenciación Celular/efectos de los fármacos , Nanofibras/química , Células Cultivadas , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética
3.
Zhongguo Zhen Jiu ; 44(5): 549-54, 2024 May 12.
Artículo en Chino | MEDLINE | ID: mdl-38764105

RESUMEN

OBJECTIVE: To observe the protective effect of wheat-grain moxibustion on cyclophosphamide (CTX)-induced liver injury in mice, and explore its mechanism based on the nuclear factor E2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) signaling pathway. METHODS: Twenty-four male CD-1 (ICR) mice were randomly divided into a blank group, a model group, and a moxibustion group, with 8 mice in each group. The mice in the model group and the moxibustion group were intraperitoneally injected with CTX (80 mg/kg) to induce liver injury. The mice in the moxibustion group were treated with wheat-grain moxibustion at "Guanyuan" (CV 4) and bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with each acupoint being treated by 3 cones, approximately 30 seconds per cone, once daily for 7 days. After intervention, the general condition of the mice was observed; the liver mass was measured and the liver index was calculated; HE staining was used to observe the morphology of the liver, and the liver tissue pathological score was assessed; ELISA was used to detect the serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH) and the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in the liver; Western blot and real-time fluorescence quantitative PCR were used to detect the protein and mRNA expression of Nrf2, Keap1, and quinione acceptor oxidoreductase 1 (NQO1) in the liver. RESULTS: Compared with the blank group, the mice in the model group showed sluggishness, unsteady gait, and decreased body weight; liver index was increased (P<0.01); liver cells were loosely arranged, with a small number of cell swollen and exhibiting balloon-like changes; liver tissue pathological score was increased (P<0.05); the serum levels of AST, ALT, GLDH, and level of MDA in the liver were increased (P<0.05), and the levels of SOD and GSH-Px in the liver were decreased (P<0.05); protein and mRNA expression of Nrf2 and NQO1 in the liver was decreased (P<0.01), protein and mRNA expression of Keap1 in the liver was increased (P<0.01). Compared with the model group, the mice in the moxibustion group showed improvement in general condition; liver index was decreased (P<0.01); liver cell structure was relatively intact and clear, and liver tissue pathological score was decreased (P<0.05); the serum levels of AST, ALT, GLDH, and level of MDA in the liver were decreased (P<0.05), and the levels of SOD and GSH-Px in the liver were increased (P<0.05, P<0.01); protein and mRNA expression of Nrf2 and NQO1 in the liver was increased (P<0.05), protein and mRNA expression of Keap1 in the liver was decreased (P<0.05). CONCLUSION: The wheat-grain moxibustion may alleviate CTX-induced liver injury by activating the Nrf2-Keap1 signaling pathway and enhancing the expression of antioxidative enzyme system in the body.


Asunto(s)
Ciclofosfamida , Proteína 1 Asociada A ECH Tipo Kelch , Hígado , Moxibustión , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Triticum , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Masculino , Transducción de Señal/efectos de los fármacos , Humanos , Ciclofosfamida/efectos adversos , Triticum/química , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones Endogámicos ICR , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Antioxidantes/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
4.
Int J Immunopathol Pharmacol ; 38: 3946320241250286, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764158

RESUMEN

Background: Aluminum phosphide (AlP) poisoning is prevalent in numerous countries, resulting in high mortality rates. Phosphine gas, the primary agent responsible for AlP poisoning, exerts detrimental effects on various organs, notably the heart, liver and kidneys. Numerous studies have documented the advantageous impact of Coenzyme Q10 (CoQ10) in mitigating hepatic injuries. The objective of this investigation is to explore the potential protective efficacy of CoQ10 against hepatic toxicity arising from AlP poisoning. Method: The study encompassed distinct groups receiving almond oil, normal saline, exclusive CoQ10 (at a dosage of 100 mg/kg), AlP at 12 mg/kg; LD50 (lethal dose for 50%), and four groups subjected to AlP along with CoQ10 administration (post-AlP gavage). CoQ10 was administered at 10, 50, and 100 mg/kg doses via Intraparietal (ip) injections. After 24 h, liver tissue specimens were scrutinized for mitochondrial complex activities, oxidative stress parameters, and apoptosis as well as biomarkers such as aspartate transaminase (AST) and alanine transaminase (ALT). Results: AlP induced a significant decrease in the activity of mitochondrial complexes I and IV, as well as a reduction in catalase activity, Ferric Reducing Antioxidant Power (FRAP), and Thiol levels. Additionally, AlP significantly elevated oxidative stress levels, indicated by elevated reactive oxygen species (ROS) production, and resulted in the increment of hepatic biomarkers such as AST and ALT. Administration of CoQ10 led to a substantial improvement in the aforementioned biochemical markers. Furthermore, phosphine exposure resulted in a significant reduction in viable hepatocytes and an increase in apoptosis. Co-treatment with CoQ10 exhibited a dose-dependent reversal of these observed alterations. Conclusion: CoQ10 preserved mitochondrial function, consequently mitigating oxidative damage. This preventive action impeded the progression of heart cells toward apoptosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado , Estrés Oxidativo , Fosfinas , Ubiquinona , Fosfinas/envenenamiento , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Animales , Estrés Oxidativo/efectos de los fármacos , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ratas , Aspartato Aminotransferasas/sangre , Aspartato Aminotransferasas/metabolismo , Compuestos de Aluminio/toxicidad , Alanina Transaminasa/sangre , Alanina Transaminasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas Wistar
5.
Anal Chim Acta ; 1309: 342673, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772656

RESUMEN

BACKGROUND: Over-consumption of drugs can result in drug-induced liver damage (DILI), which can worsen liver failure. Numerous studies have shown the significant role ferroptosis plays in the pathophysiology of DILI, which is typified by a marked imbalance between the generation and breakdown of lipid reactive oxygen species (ROS). The content of peroxynitrite (ONOO-) rapidly increased during this process and was thought to be a significant marker of early liver injury. Therefore, the construction of fluorescence probe for the detection and imaging of ONOO- holds immense importance in the early diagnosis and treatment of ferroptosis-mediated DILI. RESULTS: We designed a probe DILI-ONOO based on the ICT mechanism for the purpose of measuring and visualizing ONOO- in ferroptosis-mediated DILI processes and associated studies. This probe exhibited significant fluorescence changes with good sensitivity, selectivity, and can image exogenous and endogenous ONOO- in cells with low cytotoxicity. Using this probe, we were able to show changes in ONOO- content in ferroptosis-mediated DILI cells and mice models induced by the intervention of acetaminophen (APAP) and isoniazid (INH). By measuring the concentration of ferroptosis-related indicators in mice liver tissue, we were able to validate the role of ferroptosis in DILI. It is worth mentioning that compared to existing alanine transaminase (ALT) and aspartate aminotransferase (AST) detection methods, this probe can achieve early identification of DILI prior to serious liver injury. SIGNIFICANCE: This work has significant reference value in researching the relationship between ferroptosis and DILI and visualizing research. The results indicate a strong correlation between the progression of DILI and ferroptosis. Additionally, the use of DILI-ONOO shows promise in investigating the DILI process and assessing the effectiveness of medications in treating DILI.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Ferroptosis , Colorantes Fluorescentes , Ácido Peroxinitroso , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen , Ferroptosis/efectos de los fármacos , Animales , Ácido Peroxinitroso/metabolismo , Ratones , Colorantes Fluorescentes/química , Humanos , Acetaminofén/toxicidad , Imagen Óptica , Ratones Endogámicos C57BL , Masculino , Isoniazida/química , Rayos Infrarrojos
6.
World J Gastroenterol ; 30(18): 2454-2466, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38764769

RESUMEN

BACKGROUND: Drug-induced liver injury (DILI) is one of the most common adverse events of medication use, and its incidence is increasing. However, early detection of DILI is a crucial challenge due to a lack of biomarkers and noninvasive tests. AIM: To identify salivary metabolic biomarkers of DILI for the future development of noninvasive diagnostic tools. METHODS: Saliva samples from 31 DILI patients and 35 healthy controls (HCs) were subjected to untargeted metabolomics using ultrahigh-pressure liquid chromatography coupled with tandem mass spectrometry. Subsequent analyses, including partial least squares-discriminant analysis modeling, t tests and weighted metabolite coexpression network analysis (WMCNA), were conducted to identify key differentially expressed metabolites (DEMs) and metabolite sets. Furthermore, we utilized least absolute shrinkage and selection operato and random fores analyses for biomarker prediction. The use of each metabolite and metabolite set to detect DILI was evaluated with area under the receiver operating characteristic curves. RESULTS: We found 247 differentially expressed salivary metabolites between the DILI group and the HC group. Using WMCNA, we identified a set of 8 DEMs closely related to liver injury for further prediction testing. Interestingly, the distinct separation of DILI patients and HCs was achieved with five metabolites, namely, 12-hydroxydodecanoic acid, 3-hydroxydecanoic acid, tetradecanedioic acid, hypoxanthine, and inosine (area under the curve: 0.733-1). CONCLUSION: Salivary metabolomics revealed previously unreported metabolic alterations and diagnostic biomarkers in the saliva of DILI patients. Our study may provide a potentially feasible and noninvasive diagnostic method for DILI, but further validation is needed.


Asunto(s)
Biomarcadores , Enfermedad Hepática Inducida por Sustancias y Drogas , Metabolómica , Saliva , Humanos , Biomarcadores/análisis , Biomarcadores/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Saliva/química , Saliva/metabolismo , Masculino , Femenino , Metabolómica/métodos , Persona de Mediana Edad , Adulto , Estudios de Casos y Controles , Espectrometría de Masas en Tándem/métodos , Curva ROC , Anciano , Cromatografía Líquida de Alta Presión , Diagnóstico Precoz
7.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745150

RESUMEN

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Asunto(s)
Antígeno CD11b , Cirrosis Hepática , Regeneración Hepática , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Animales , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Ratones , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Regeneración Hepática/fisiología , Antígeno CD11b/metabolismo , Masculino , Modelos Animales de Enfermedad , Hígado/patología , Hígado/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Concanavalina A , Ligadura , Lipopolisacáridos , Interleucina-10/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Estrelladas Hepáticas/metabolismo , Técnicas de Cocultivo , Hepatocitos/metabolismo , Hepatocitos/patología , Conductos Biliares
8.
J Oleo Sci ; 73(5): 729-742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692895

RESUMEN

Astaxanthin is a keto-based carotenoid mainly obtained from marine organisms, like Haematococcus pluvialis (H. pluvialis). Previous studies indicated the protective effects of Astaxanthin and H. pluvialis on aging related oxidative injury in liver, while the potential mechanisms are largely unknown. In addition, H. pluvialis residue is a by-product after astaxanthin extraction, which is rarely studied and utilized. The present study aimed to compare the effects of astaxanthin, H. pluvialis and H. pluvialis residue on the oxidant injury of liver in D-galactose-induced aging mice and explore the potential mechanisms through gut-liver axis. The results showed that all the three supplements prevented D-galactose-induced tissue injury, oxidative stress and chronic inflammation in liver and improved liver function. Gut microbiota analysis indicated that astaxanthin notably increased fecal levels of Bacteroidetes, unclassified_f__ Lachnospiraceae, norank_f__Lachnospiraceae, norank_f__norank_o__Clostridia_UCG-014, Prevotellaceae_ UCG-001, unclassified_f__Prevotellaceae in D-galactose-fed mice (p < 0.05). Compared to aging mice, H. pluvialis group had higher fecal levels of norank_f__Lachnospiraceae and Lachnospiraceae_UCG-006 (p < 0.05). H. pluvialis residue group displayed higher relative levels of Bacteroidetes, Streptococcus, and Rikenellaceae_RC9_gut_group (p < 0.05). Moreover, the production of fecal microbial metabolites, like SCFAs and LPS was also differently restored by the three supplements. Overall, our results suggest astaxanthin, H. pluvialis and H. pluvialis residue could prevent aging related hepatic injury through gutliver axis and provide evidence for exploiting of H. pluvialis residue as a functional ingredient for the treatment of liver diseases. Future studies are needed to further clarify the effect and mechanism of dominant components of H. pluvialis residue on liver injury, which is expected to provide a reference for the high-value utilization of H. pluvialis resources.


Asunto(s)
Envejecimiento , Galactosa , Microbioma Gastrointestinal , Hígado , Estrés Oxidativo , Xantófilas , Animales , Masculino , Ratones , Envejecimiento/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Suplementos Dietéticos , Galactosa/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/aislamiento & purificación
9.
Ecotoxicol Environ Saf ; 275: 116278, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564860

RESUMEN

Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.


Asunto(s)
Aflatoxina B1 , Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Ratones , Animales , Simulación del Acoplamiento Molecular , Aflatoxina B1/toxicidad , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores ErbB/metabolismo
10.
Biochem Biophys Res Commun ; 710: 149880, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38581952

RESUMEN

Drug-induced liver injury (DILI) occurs frequently and can be life-threatening. Increasing researches suggest that acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury. Indole-3-carboxaldehyde (I3A) alleviates hepatic inflammation, fibrosis and atherosclerosis, suggesting a potential role in different disease development. However, the question of whether and how I3A protects against acetaminophen-induced liver injury remains unanswered. In this study, we demonstrated that I3A treatment effectively mitigates acetaminophen-induced liver injury. Serum alanine/aspartate aminotransferases (ALT/AST), liver malondialdehyde (MDA) activity, liver glutathione (GSH), and superoxide dismutase (SOD) levels confirmed the protective effect of I3A against APAP-induced liver injury. Liver histological examination provided further evidence of I3A-induced protection. Mechanistically, I3A reduced the expression of apoptosis-related factors and oxidative stress, alleviating disease symptoms. Finally, I3A treatment improved survival in mice receiving a lethal dose of APAP. In conclusion, our study demonstrates that I3A modulates hepatotoxicity and can be used as a potential therapeutic agent for DILI.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Indoles , Animales , Ratones , Acetaminofén/efectos adversos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Estrés Oxidativo , Hígado/metabolismo , Apoptosis , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Aspartato Aminotransferasas , Alanina Transaminasa
11.
J Ethnopharmacol ; 330: 118196, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631488

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rosmarinic acid (RA), a natural polyphenol abundant in numerous herbal remedies, has been attracting growing interest owing to its exceptional ability to protect the liver. Toosendanin (TSN), a prominent bioactive compound derived from Melia toosendan Siebold & Zucc., boasts diverse pharmacological properties. Nevertheless, TSN possesses remarkable hepatotoxicity. Intriguingly, the potential of RA to counteract TSN-induced liver damage and its probable mechanisms remain unexplored. AIM OF THE STUDY: This study is aimed at exploring whether RA can alleviate TSN-induced liver injury and the potential mechanisms involved autophagy. MATERIALS AND METHODS: CCK-8 and LDH leakage rate assay were used to evaluate cytotoxicity. Balb/c mice were intraperitoneally administered TSN (20 mg/kg) for 24 h after pretreatment with RA (0, 40, 80 mg/kg) by gavage for 5 days. The autophagic proteins P62 and LC3B expressions were detected using western blot and immunohistochemistry. RFP-GFP-LC3B and transmission electron microscopy were applied to observe the accumulation levels of autophagosomes and autolysosomes. LysoTracker Red and DQ-BSA staining were used to evaluate the lysosomal acidity and degradation ability respectively. Western blot, immunohistochemistry and immunofluorescence staining were employed to measure the expressions of JAK2/STAT3/CTSC pathway proteins. Dual-luciferase reporter gene was used to measure the transcriptional activity of CTSC and RT-PCR was used to detect its mRNA level. H&E staining and serum biochemical assay were employed to determine the degree of damage to the liver. RESULTS: TSN-induced damage to hepatocytes and livers was significantly alleviated by RA. RA markedly diminished the autophagic flux blockade and lysosomal dysfunction caused by TSN. Mechanically, RA alleviated TSN-induced down-regulation of CTSC by activating JAK2/STAT3 signaling pathway. CONCLUSION: RA could protect against TSN-induced liver injury by activating the JAK2/STAT3/CTSC pathway-mediated autophagy and lysosomal function.


Asunto(s)
Autofagia , Enfermedad Hepática Inducida por Sustancias y Drogas , Cinamatos , Depsidos , Janus Quinasa 2 , Lisosomas , Ratones Endogámicos BALB C , Ácido Rosmarínico , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Depsidos/farmacología , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Cinamatos/farmacología , Autofagia/efectos de los fármacos , Ratones , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Transducción de Señal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Medicamentos Herbarios Chinos/farmacología , Humanos
12.
J Ethnopharmacol ; 330: 118224, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38642623

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sophorae tonkinensis Radix et Rhizoma (STR) is an extensively applied traditional Chinese medicine (TCM) in southwest China. However, its clinical application is relatively limited due to its hepatotoxicity effects. AIM OF THE STUDY: To understand the material foundation and liver injury mechanism of STR. MATERIALS AND METHODS: Chemical compositions in STR and its prototypes in mice were profiled by ultra-performance liquid chromatography coupled quadrupole-time of flight mass spectrometry (UPLC-Q/TOF MS). STR-induced liver injury (SILI) was comprehensively evaluated by STR-treated mice mode. The histopathologic and biochemical analyses were performed to evaluate liver injury levels. Subsequently, network pharmacology and multi-omics were used to analyze the potential mechanism of SILI in vivo. And the target genes were further verified by Western blot. RESULTS: A total of 152 compounds were identified or tentatively characterized in STR, including 29 alkaloids, 21 organic acids, 75 flavonoids, 1 quinone, and 26 other types. Among them, 19 components were presented in STR-medicated serum. The histopathologic and biochemical analysis revealed that hepatic injury occurred after 4 weeks of intragastric administration of STR. Network pharmacology analysis revealed that IL6, TNF, STAT3, etc. were the main core targets, and the bile secretion might play a key role in SILI. The metabolic pathways such as taurine and hypotaurine metabolism, purine metabolism, and vitamin B6 metabolism were identified in the STR exposed groups. Among them, taurine, hypotaurine, hypoxanthine, pyridoxal, and 4-pyridoxate were selected based on their high impact value and potential biological function in the process of liver injury post STR treatment. CONCLUSIONS: The mechanism and material foundation of SILI were revealed and profiled by a multi-omics strategy combined with network pharmacology and chemical profiling. Meanwhile, new insights were taken into understand the pathological mechanism of SILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Rizoma , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Ratones , Masculino , Medicamentos Herbarios Chinos/farmacología , Sophora/química , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Metabolómica , Cromatografía Líquida de Alta Presión , Farmacología en Red , Multiómica , Animales no Consanguíneos
13.
J Ethnopharmacol ; 330: 118253, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38679400

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl. (DNL) is a well-known traditional Chinese medicine that has been recorded in the Chinese Pharmacopoeia (2020 edition). The previous data showed that Dendrobium nobile Lindl. alkaloids (DNLA) protect against CCl4-induced liver damage via oxidative stress reduction and mitochondrial function improvement, yet the exact regulatory signaling pathways remain undefined. AIM OF THE STUDY: The aim of the present study was to investigate the role of necroptosis in the mode of CCl4-induced liver injury and determine whether DNLA protects against CCl4-induced acute liver injury (ALI) by inhibiting mitochondrial ROS (mtROS)-mediated necroptosis. MATERIALS AND METHODS: DNLA was extracted from DNL, and the content was determined using liquid chromatograph mass spectrometer (LC-MS). In vivo experiments were conducted in C57BL/6J mice. Animals were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 µL/kg, ip). CCl4-induced liver injury in mice was evaluated through the assessment of biochemical indicators in mouse serum and histopathological examination of hepatic tissue using hematoxylin and eosin (H&E) staining. The protein and gene expressions were determined with western blotting and quantitative real-time PCR (RT-qPCR). Reactive oxygen species (ROS) production was detected using the fluorescent probe DCFH-DA, and mitochondrial membrane potential was evaluated using a fluorescent probe JC-1. The mtROS level was assessed using a fluorescence probe MitoSOX. RESULTS: DNLA lessened CCl4-induced liver injury, evident by reduced AST and ALT levels and improved liver pathology. DNLA suppressed necroptosis by decreasing RIPK1, RIPK3, and MLKL phosphorylation, concurrently enhancing mitochondrial function. It also broke the positive feedback loop between mtROS and RIPK1/RIPK3/MLKL activation. Similar findings were observed with resveratrol and mitochondrial SOD2 overexpression, both mitigating mtROS and necroptosis. Further mechanistic studies found that DNLA inhibited the oxidation of RIPK1 and reduced its phosphorylation level, whereby lowering the phosphorylation of RIPK3 and MLKL, blocking necroptosis, and alleviating liver injury. CONCLUSIONS: This study demonstrates that DNLA inhibits the necroptosis signaling pathway by reducing mtROS mediated oxidation of RIPK1, thereby reducing the phosphorylation of RIPK1, RIPK3, and MLKL, and protecting against liver injury.


Asunto(s)
Alcaloides , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Dendrobium , Ratones Endogámicos C57BL , Necroptosis , Especies Reactivas de Oxígeno , Animales , Dendrobium/química , Especies Reactivas de Oxígeno/metabolismo , Necroptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Masculino , Ratones , Tetracloruro de Carbono/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-38583696

RESUMEN

Existing evidence shows that currently used pesticides pose toxicological risks to exposed wildlife. Chemically, bifenox belongs to diphenyl ethers, a well-known group of herbicides. Its mechanism of action primarily involves inducing lipid peroxidation and blocking protoporphyrinogen oxidases. Toxicity of diphenyl ether herbicides has been elucidated in animal cells; however, in vivo toxicological evaluations of bifenox are required to determine its unexpected effects. This study aimed to determine the negative effects of bifenox, and its effects on higher eukaryotes. We found that early stages of zebrafish embryo exposed to bifenox demonstrated increased mortality and physiological defects, based on the LC50 value. Bifenox severely inhibited blood vessel growth by reducing key elements of complex connectivity; fluorescently tagged transgenic lines (fli1a:EGFP) showed morphological changes. Additionally, transgenic lines that selectively identified hepatocytes (fabp10a:DsRed) showed reduced fluorescence, indicating that bifenox may inhibit liver development. To evaluate the level of oxidative stress, we used 2',7'-dichlorofluorescein diacetate (DCFH-DA) probes in zebrafish embryos to identify the underlying mechanisms causing developmental damage. Our findings demonstrate that exposure to bifenox causes abnormalities in the hepatic and cardiovascular systems during zebrafish embryogenesis. Therefore, this study provides new information for the evaluation of toxicological risks of bifenox in vertebrates.


Asunto(s)
Embrión no Mamífero , Especies Reactivas de Oxígeno , Transducción de Señal , Pez Cebra , Animales , Pez Cebra/embriología , Embrión no Mamífero/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales Modificados Genéticamente , Herbicidas/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/embriología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Éteres Difenilos Halogenados/toxicidad
15.
Exp Cell Res ; 437(2): 114028, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582338

RESUMEN

Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Flavanonas , Hígado , Humanos , Animales , Ratones , Hígado/metabolismo , Transducción de Señal , Hepatocitos/metabolismo , Inflamación/metabolismo , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
16.
Toxicology ; 504: 153804, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614205

RESUMEN

Fifty percent of all acute liver failure (ALF) cases in the United States are due to acetaminophen (APAP) overdose. Assessment of canonical features of liver injury, such as plasma alanine aminotransferase activities are poor predictors of acute liver failure (ALF), suggesting the involvement of additional mechanisms independent of hepatocyte death. Previous work demonstrated a severe overdose of APAP results in impaired regeneration, the induction of senescence by p21, and increased mortality. We hypothesized that a discrete population of p21+ hepatocytes acquired a secretory phenotype that directly impedes liver recovery after a severe APAP overdose. Leveraging in-house human APAP explant liver and publicly available single-nuclei RNAseq data, we identified a subpopulation of p21+ hepatocytes enriched in a unique secretome of factors, such as CXCL14. Spatial transcriptomics in the mouse model of APAP overdose confirmed the presence of a p21+ hepatocyte population that directly surrounded the necrotic areas. In both male and female mice, we found a dose-dependent induction of p21 and persistent circulating levels of the p21-specific constituent, CXCL14, in the plasma after a severe APAP overdose. In parallel experiments, we targeted either the putative senescent hepatocytes with the senolytic drugs, dasatinib and quercetin, or CXCL14 with a neutralizing antibody. We found that targeting CXCL14 greatly enhanced liver recovery after APAP-induced liver injury, while targeting senescent hepatocytes had no effect. These data support the conclusion that the sustained induction of p21 in hepatocytes with persistent CXCL14 secretion are critical mechanistic events leading to ALF in mice and human patients.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Quimiocinas CXC , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Hepatocitos , Ratones Endogámicos C57BL , Acetaminofén/toxicidad , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Masculino , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Ratones , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Regeneración Hepática/efectos de los fármacos , Sobredosis de Droga , Analgésicos no Narcóticos/toxicidad
17.
Mol Immunol ; 170: 60-75, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626622

RESUMEN

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.


Asunto(s)
Tetracloruro de Carbono , Cromolin Sódico , Cirrosis Hepática , Hígado , Mastocitos , Animales , Mastocitos/metabolismo , Mastocitos/inmunología , Mastocitos/efectos de los fármacos , Tetracloruro de Carbono/toxicidad , Ratas , Masculino , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/inmunología , Cirrosis Hepática/inducido químicamente , Cromolin Sódico/farmacología , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Ratas Sprague-Dawley , Cetotifen/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
18.
J Hazard Mater ; 471: 134319, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38657511

RESUMEN

Deoxynivalenol (DON), a widespread mycotoxin, represents a substantial public health hazard due to its propensity to contaminate agricultural produce, leading to both acute and chronic health issues in humans and animals upon consumption. The role of ferroptosis in DON-induced hepatic damage remains largely unexplored. This study investigates the impact of 18ß-glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza, on DON hepatotoxicity and elucidates the underlying mechanisms. Our results indicate that GA effectively attenuates liver injury inflicted by DON. This was achieved by inhibiting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and ferroptosis, as well as by adjusting mitochondrial quality control (MQC). Specifically, GA curtails ferritinophagy by diminishing NCOA4 expression without affecting the autophagic flux. At a molecular level, GA binds to and stabilizes programmed cell death protein 4 (PDCD4), thereby inhibiting its ubiquitination and subsequent degradation. This stabilization of PDCD4 leads to the downregulation of NCOA4 via the JNK-Jun-NCOA4 axis. Knockdown of PDCD4 weakened GA's protective action against DON exposure. Furthermore, GA improved mitochondrial function and limited excessive mitophagy and mitochondrial division induced by DON. Disrupting GA's modulation of MQC nullified its anti-ferroptosis effects. Overall, GA offers protection against DON-induced ferroptosis by blocking ferritinophagy and managing MQC. ENVIRONMENTAL IMPLICATION: Food contamination from mycotoxins, is a problem for agricultural and food industries worldwide. Deoxynivalenol (DON), the most common mycotoxins in cereal commodities. A survey in 2023 showed that the positivity rate for DON contamination in food reached more than 70% globally. DON can damage the health of humans whether exposed to high doses for short periods of time or low doses for long periods of time. We have discovered 18ß-Glycyrrhetinic acid (GA), a prominent constituent of glycyrrhiza. Liver damage caused by low-dose DON can be successfully treated with GA. This study will support the means of DON control, including antidotes.


Asunto(s)
Autofagia , Enfermedad Hepática Inducida por Sustancias y Drogas , Ácido Glicirretínico , Tricotecenos , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/análogos & derivados , Animales , Tricotecenos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Humanos , Autofagia/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Ferritinas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Sustancias Protectoras/farmacología , Coactivadores de Receptor Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones , Ratones Endogámicos C57BL , Células Hep G2
19.
Chem Res Toxicol ; 37(5): 698-710, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38619497

RESUMEN

Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cianuros , Cianuros/metabolismo , Cianuros/química , Humanos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Iminas/química , Iminas/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Estructura Molecular
20.
Chem Res Toxicol ; 37(5): 731-743, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38634348

RESUMEN

Acrylamide (ACR) is a common industrial contaminant with endocrine-disrupting toxicity. Numerous studies have indicated that females and diabetics are more sensitive to environmental contaminants. However, it remains unknown whether female diabetics are susceptible to ACR-induced toxicity and its potential mechanisms. Thus, the female ACR-exposure diabetic Balb/c mice model was established to address these issues. Results showed that ACR could induce liver injury in normal mice and cause more serious inflammatory cell infiltration, hepatocyte volume increase, and fusion in diabetic mice liver. Meanwhile, ACR could lead to exacerbation of diabetic symptoms in diabetic mice by disturbing the glucose and lipid metabolism in the liver, which mainly manifests as the accumulation of liver glycogen and liver lipids, the reduction of the activity/content of glycolytic and metabolizing enzyme as well as pentose phosphatase, upregulation of the gene expression in fatty acid transporter and gluconeogenesis, and downregulation of the gene expression in fatty acid synthesis and metabolism. Moreover, ACR exposure could induce oxidative stress, inflammation, and endoplasmic reticulum stress in the liver by a decrease in hepatic antioxidant enzyme activity and antioxidant content, an increase in inflammatory factor levels, and a change in the related protein expression of endoplasmic reticulum stress (ERS) and apoptosis-related pathways in diabetic mice. Statistical analysis results revealed that ACR-induced liver injury was highly correlated with inflammation and oxidative stress, and ERS and diabetic mice had a higher risk of liver injury than normal mice. Overall results suggested that female diabetic mice easily suffer from ACR-induced toxicity, and the reason was that ACR could induce further damage to the liver by worsening the condition of inflammation, oxidative stress, and ERS in the liver.


Asunto(s)
Acrilamida , Diabetes Mellitus Experimental , Estrés del Retículo Endoplásmico , Ratones Endogámicos BALB C , Animales , Femenino , Acrilamida/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...