Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.060
Filtrar
1.
Sci Rep ; 14(1): 10361, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710754

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a progressive disease that is characterized by chronic airway inflammation. A Japanese herbal medicine, hochuekkito (TJ-41), is prominently used for chronic inflammatory diseases in Japan. This study aimed to analyze the anti-inflammatory effect of TJ-41 in vivo and its underlying mechanisms. We created a COPD mouse model using intratracheal administration of porcine pancreatic elastase and lipopolysaccharide (LPS) and analyzed them with and without TJ-41 administration. A TJ-41-containing diet reduced inflammatory cell infiltration of the lungs in the acute and chronic phases and body weight loss in the acute phase. In vitro experiments revealed that TJ-41 treatment suppressed the LPS-induced inflammatory cytokines in BEAS-2B cells. Furthermore, TJ-41 administration activated the AMP-activated protein kinase (AMPK) pathway and inhibited the mechanistic target of the rapamycin (mTOR) pathway, both in cellular and mouse experiments. We concluded that TJ-41 administration reduced airway inflammation in the COPD mouse model, which might be regulated by the activated AMPK pathway, and inhibited the mTOR pathway.


Asunto(s)
Antiinflamatorios , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Medicina Kampo , Enfermedad Pulmonar Obstructiva Crónica , Animales , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Medicamentos Herbarios Chinos/farmacología , Antiinflamatorios/farmacología , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Lipopolisacáridos , Masculino , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Elastasa Pancreática/metabolismo , Pueblos del Este de Asia
2.
Sci Rep ; 14(1): 10822, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734742

RESUMEN

With high prevalence and substantial mortality, metabolic dysfunction-associated steatotic liver disease and chronic obstructive pulmonary disease (COPD) are significant public health concerns. Utilizing a large, population-based dataset from the National Health and Nutrition Examination Survey, our study probes the relationship between COPD prevalence and hepatic steatosis and fibrosis, as measured by Vibration-Controlled Transient Elastography. We analyzed data from 693 individuals with COPD and 7229 without. Through weighted multivariate logistic regression analysis, a restricted cubic spline curve, and threshold effect analysis, we investigated the correlation between the severity of hepatic steatosis and fibrosis and the presence of COPD. Our findings revealed a positive correlation between the controlled attenuation parameter (CAP) and COPD prevalence [OR = 1.03 (95% CI 1.01, 1.05)], even after multivariate adjustment. Furthermore, we observed a U-shaped association between CAP and COPD, where the inflection point, CAP value of 264.85 dB/m, corresponded to the lowest COPD prevalence. Our study emphasizes a substantial and complex link between hepatic steatosis and COPD. These findings urge healthcare professionals to factor liver health into COPD management and prompt further exploration into the underlying mechanisms. This could pave the way for the development of improved prevention and treatment strategies.


Asunto(s)
Hígado Graso , Cirrosis Hepática , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Masculino , Femenino , Cirrosis Hepática/complicaciones , Cirrosis Hepática/epidemiología , Cirrosis Hepática/patología , Persona de Mediana Edad , Hígado Graso/complicaciones , Hígado Graso/epidemiología , Hígado Graso/patología , Prevalencia , Anciano , Encuestas Nutricionales , Diagnóstico por Imagen de Elasticidad , Adulto
3.
Ecotoxicol Environ Saf ; 276: 116309, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599156

RESUMEN

Emerging evidence has suggested that exposure to PM2.5 is a significant contributing factor to the development of chronic obstructive pulmonary disease (COPD). However, the underlying biological effects and mechanisms of PM2.5 in COPD pathology remain elusive. In this study, we aimed to investigate the implication and regulatory effect of biomass fuels related-PM2.5 (BRPM2.5) concerning the pathological process of fibroblast-to-myofibroblast transition (FMT) in the context of COPD. In vivo experimentation revealed that exposure to biofuel smoke was associated with airway inflammation in rats. After 4 weeks of exposure, there was inflammation in the small airways, but no significant structural changes in the airway walls. However, after 24 weeks, airway remodeling occurred due to increased collagen deposition, myofibroblast proliferation, and tracheal wall thickness. In vitro, cellular immunofluorescence results showed that with stimulation of BRPM2.5 for 72 h, the cell morphology of fibroblasts changed significantly, most of the cells changed from spindle-shaped to star-shaped irregular, α-SMA stress fibers appeared in the cytoplasm and the synthesis of type I collagen increased. The collagen gel contraction experiment showed that the contractility of fibroblasts was enhanced. The expression level of TRPC1 in fibroblasts was increased. Specific siRNA-TRPC1 blocked BRPM2.5-induced FMT and reduced cell contractility. Additionally, specific siRNA-TRPC1 resulted in a decrease in the augment of intracellular Ca2+ concentration ([Ca2+]i) induced by BRPM2.5. Notably, it was found that the PI3K inhibitor, LY294002, inhibited enhancement of AKT phosphorylation level, FMT occurrence, and elevation of TRPC1 protein expression induced by BRPM2.5. The findings indicated that BRPM2.5 is capable of inducing the FMT, with the possibility of mediation by PI3K/AKT/TRPC1. These results hold potential implications for the understanding of the molecular mechanisms involved in BRPM2.5-induced COPD and may aid in the development of novel therapeutic strategies for pathological conditions characterized by fibrosis.


Asunto(s)
Fibroblastos , Pulmón , Miofibroblastos , Material Particulado , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Canales Catiónicos TRPC , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fibroblastos/efectos de los fármacos , Ratas , Miofibroblastos/efectos de los fármacos , Material Particulado/toxicidad , Pulmón/efectos de los fármacos , Pulmón/patología , Canales Catiónicos TRPC/metabolismo , Masculino , Biomasa , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Enfermedad Pulmonar Obstructiva Crónica/patología
4.
Exp Gerontol ; 191: 112441, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685507

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease characterised by irreversible airflow limitation. The elderly are a vulnerable population for developing COPD. With the growth of age, physiological degenerative changes occur in the thorax, bronchus, lung and vascular wall, which can lead to age-related physiological attenuation of lung function in the elderly, so the prevalence of COPD increases with age. Its pathogenesis has not yet been truly clarified. Mitophagy plays an important role in maintaining the stability of mitochondrial function and intracellular environment by scavenging damaged mitochondria. Currently, studies have shown that trophoblast antigen 2 (TROP2) expression is up-regulated in airway basal cells of patients with COPD, suggesting that TROP2 is involved in the progression of COPD. However, whether it is involved in disease progression by regulating mitochondrial function remains unclear. In this study, compared with non-smoking non-COPD patients, the expression of TROP2 in lung tissues of smoking non-COPD patients and patients with COPD increased, and TROP2 expression in patients with COPD was higher than that in smoking non-COPD patients. To further explore the role of TROP2, we stimulated BEAS-2B with cigarette smoke to construct an in vitro model. We found that TROP2 expression increased, whereas TROP2 silencing reversed the cigarette smoke extract-induced decrease in mitochondrial membrane potential, increased reactive oxygen species content, decreased adenosine triphosphate (ATP) production, increased inflammatory factor secretion and increased apoptosis. In addition, we searched online bioinformatics and screened the gene dynamin-related protein 1 (DRP1) related to mitophagy as the research object. Co-IP assay verified the binding relationship between DRP1 and TROP2. Further study found that TROP2 promoted mitophagy and apoptosis of BEAS-2B cells by up-regulating the expression of DRP1. In addition, PTEN-induced putative kinase 1 (PINK1) is a potential binding protein of DRP1, and DRP1 accelerated mitophagy and apoptosis of BEAS-2B cells by promoting the expression of PINK1. We established a COPD SD rat model by cigarette smoke exposure and LPS instillation and treated it by intraperitoneal injection of si-TROP2. The results showed that TROP2 silencing restored lung function and reduced the secretion of inflammatory factors in bronchoalveolar lavage fluid. In conclusion, TROP2 can be used as a new reference for COPD treatment.


Asunto(s)
Antígenos de Neoplasias , Apoptosis , Moléculas de Adhesión Celular , Progresión de la Enfermedad , Dinaminas , Mitofagia , Proteínas Quinasas , Enfermedad Pulmonar Obstructiva Crónica , Regulación hacia Arriba , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/genética , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Anciano , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Femenino , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Animales , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Pulmón/metabolismo , Pulmón/patología , Persona de Mediana Edad , Ratas , Mitocondrias/metabolismo , Línea Celular , Ratas Sprague-Dawley
5.
Artículo en Inglés | MEDLINE | ID: mdl-38633565

RESUMEN

Background: Airway remodeling is a significant pathological characteristic of chronic obstructive pulmonary disease (COPD). In recent years, hypoxia-inducible factor 1-α (HIF-1α), a member of the hypoxia-inducible factor protein family, has gained attention. However, the potential correlation between HIF-1α and COPD airway remodeling remains unclear. Objective: This study explored the expression patterns of HIF-1α in patients with COPD and its association with airway remodelling. This investigation aims to furnish novel insights for the clinical identification of prospective therapeutic targets for ameliorating COPD-related airway remodelling. Patients and Methods: A total of 88 subjects were included, consisting of 28 controls and 60 COPD patients. Various staining methods were employed to observe the pathological changes in airway tissues. Immunohistochemistry was utilized to detect the expression of HIF-1α and MMP9 (matrix metalloproteinase 9) in airway tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure the concentration in serum of HIF-1α and MMP9. Computed tomography (CT) airway parameters were measured in all participants to assess airway remodeling. The relationship between serum HIF-1α and MMP9 concentrations and airway parameters was analyzed. Results: Staining of airway structures in COPD patients revealed significant pathological changes associated with airway remodelling, including mixed cilia and subepithelial fibrosis. The expression of HIF-1α and MMP9 was significantly higher in both human airway tissue and serum compared to controls. Chest CT scans exhibited typical imaging features of airway remodeling and increased airway parameters. Conclusion: The findings suggest a correlation between increased HIF-1α expression and COPD airway remodelling. This study provides novel evidence that HIF-1α may be a potential biomarker for airway remodelling in COPD patients.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Subunidad alfa del Factor 1 Inducible por Hipoxia , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Remodelación de las Vías Aéreas (Respiratorias)/genética , Biomarcadores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Metaloproteinasa 9 de la Matriz , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología
6.
Adv Med Sci ; 69(1): 160-166, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38518832

RESUMEN

PURPOSE: Acute exacerbations (AE) are severe complications of chronic obstructive pulmonary disease (COPD); however, the need for biomarkers which predict them is still unmet. High platelet count (PLC) and platelet-to-lymphocyte ratio (PLR) are associated with higher mortality in patients with COPD. We investigated if PLC and PLR at the onset of a severe AE could predict the time of the next relapse. METHODS: In a prospective observational cohort study, data of 152 patients hospitalized with AECOPD were collected, and patients were divided into PLC-low (<239 â€‹× â€‹109/L, n â€‹= â€‹51), PLC-medium (239-297 â€‹× â€‹109/L, n â€‹= â€‹51) and PLC-high (>297 â€‹× â€‹109/L, n â€‹= â€‹50) or PLR-low (<147, N â€‹= â€‹51), PLR-medium (147-295, n â€‹= â€‹51) and PLR high (>295, n â€‹= â€‹50) groups based on PLC and PLR tertiles using admission laboratory results. Clinical characteristics and the time to the next severe or moderate AE within 52 weeks were compared among subgroups using log-rank test. RESULTS: PLC and PLR tertiles did not differ in clinical characteristics or the time till the next AE (p â€‹> â€‹0.05). PLC and PLR showed a direct weak correlation to neutrophil count (Pearson r â€‹= â€‹0.26, p â€‹< â€‹0.01 and r â€‹= â€‹0.20, p â€‹= â€‹0.01) and PLC also demonstrated a weak relationship to white blood cell counts (Pearson r â€‹= â€‹0.29, p â€‹< â€‹0.001). However, PLR presented an inverse relationship to monocyte and eosinophil counts (r â€‹= â€‹-0.32, p â€‹< â€‹0.001 and r â€‹= â€‹-0.17, p â€‹= â€‹0.03). CONCLUSION: PLC and PLR do not predict the time till the next relapse; however, they may reflect on neutrophilic inflammatory response during an exacerbation of COPD.


Asunto(s)
Plaquetas , Linfocitos , Enfermedad Pulmonar Obstructiva Crónica , Recurrencia , Humanos , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/patología , Femenino , Masculino , Recuento de Plaquetas , Anciano , Estudios Prospectivos , Plaquetas/patología , Persona de Mediana Edad , Progresión de la Enfermedad , Recuento de Linfocitos , Pronóstico , Biomarcadores/sangre , Índice de Severidad de la Enfermedad
7.
J Trace Elem Med Biol ; 83: 127415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38377659

RESUMEN

BACKGROUND: Environmental arsenic (As) exposure is strongly related to the progression of chronic obstructive pulmonary disease (COPD). Pulmonary epithelial cells apoptosis is implicated in the pathophysiological mechanisms of COPD. However, the role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), one biomarker of apoptosis, remains unclear in As-mediated pulmonary function alternations in COPD patients. METHODS: This study included 239 COPD patients. The serum level of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was measured by enzyme-linked immunosorbent assay (ELISA). The blood As level was determined through inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: Blood As levels exhibited a negative and dose-dependent correlation with pulmonary function. Per unit elevation of blood arsenic concentrations was related to reductions of 0.339 L in FEV1, 0.311 L in FVC, 1.171% in FEV1/FVC%, and 7.999% in FEV1% in COPD subjects. Additionally, a positive dose-response correlation of blood As with serum TRAIL was found in COPD subjects. Additionally, the level of serum TRAIL was negatively linked to lung function. Elevated TRAIL significantly mediated As-induced decreases of 11.05%, 13.35%, and 31.78% in FVC, FEV1, and FEV1%, respectively among the COPD patients. CONCLUSION: Blood As level is positively correlated with pulmonary function decline and serum TRAIL increase in individuals with COPD. Our findings suggest that elevated TRAIL levels may serve as a mediating mechanism through which As contributes to declining lung function in COPD patients.


Asunto(s)
Arsénico , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ligandos , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Factor de Necrosis Tumoral alfa , Apoptosis
8.
Sci Rep ; 14(1): 4821, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413800

RESUMEN

Abnormal mitochondria have been observed in bronchial- and alveolar epithelial cells of patients with chronic obstructive pulmonary disease (COPD). However, it is unknown if alterations in the molecular pathways regulating mitochondrial turnover (mitochondrial biogenesis vs mitophagy) are involved. Therefore, in this study, the abundance of key molecules controlling mitochondrial turnover were assessed in peripheral lung tissue from non-COPD patients (n = 6) and COPD patients (n = 11; GOLDII n = 4/11; GOLDIV n = 7/11) and in both undifferentiated and differentiated human primary bronchial epithelial cells (PBEC) from non-COPD patients and COPD patients (n = 4-7 patients/group). We observed significantly decreased transcript levels of key molecules controlling mitochondrial biogenesis (PPARGC1B, PPRC1, PPARD) in peripheral lung tissue from severe COPD patients. Interestingly, mRNA levels of the transcription factor TFAM (mitochondrial biogenesis) and BNIP3L (mitophagy) were increased in these patients. In general, these alterations were not recapitulated in undifferentiated and differentiated PBECs with the exception of decreased PPARGC1B expression in both PBEC models. Although these findings provide valuable insight in these pathways in bronchial epithelial cells and peripheral lung tissue of COPD patients, whether or not these alterations contribute to COPD pathogenesis, underlie changes in mitochondrial function or may represent compensatory mechanisms remains to be established.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Recambio Mitocondrial , Mitocondrias/metabolismo , Células Epiteliales/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
Front Immunol ; 15: 1325090, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348034

RESUMEN

Smoking is a leading risk factor of chronic obstructive pulmonary disease (COPD), that is characterized by chronic lung inflammation, tissue remodeling and emphysema. Although inflammation is critical to COPD pathogenesis, the cellular and molecular basis underlying smoking-induced lung inflammation and pathology remains unclear. Using murine smoke models and single-cell RNA-sequencing, we show that smoking establishes a self-amplifying inflammatory loop characterized by an influx of molecularly heterogeneous neutrophil subsets and excessive recruitment of monocyte-derived alveolar macrophages (MoAM). In contrast to tissue-resident AM, MoAM are absent in homeostasis and characterized by a pro-inflammatory gene signature. Moreover, MoAM represent 46% of AM in emphysematous mice and express markers causally linked to emphysema. We also demonstrate the presence of pro-inflammatory and tissue remodeling associated MoAM orthologs in humans that are significantly increased in emphysematous COPD patients. Inhibition of the IRAK4 kinase depletes a rare inflammatory neutrophil subset, diminishes MoAM recruitment, and alleviates inflammation in the lung of cigarette smoke-exposed mice. This study extends our understanding of the molecular signaling circuits and cellular dynamics in smoking-induced lung inflammation and pathology, highlights the functional consequence of monocyte and neutrophil recruitment, identifies MoAM as key drivers of the inflammatory process, and supports their contribution to pathological tissue remodeling.


Asunto(s)
Enfisema , Neumonía , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Ratones , Animales , Macrófagos Alveolares/patología , Monocitos/patología , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/etiología , Enfisema Pulmonar/patología , Inflamación/patología , Enfisema/patología
10.
Respir Res ; 25(1): 84, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331841

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung disease and a major health burden worldwide. Extracellular vesicles (EVs) are nanosized vesicles which possess a lipid bilayer structure that are secreted by various cells. They contain a variety of bioactive substances, which can regulate various physiological and pathological processes and are closely related to the development of diseases. Recently, EVs have emerged as a novel tool for intercellular crosstalk, which plays an essential role in COPD development. This paper reviews the role of EVs in the development of COPD and their potential clinical value, in order to provide a reference for further research on COPD.


Asunto(s)
Vesículas Extracelulares , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/patología , Vesículas Extracelulares/fisiología , Enfermedades Pulmonares/patología
11.
J Cachexia Sarcopenia Muscle ; 15(2): 646-659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38333944

RESUMEN

BACKGROUND: Accumulating evidence has demonstrated that chronic tobacco smoking directly contributes to skeletal muscle dysfunction independent of its pathological impact to the cardiorespiratory systems. The mechanisms underlying tobacco smoke toxicity in skeletal muscle are not fully resolved. In this study, the role of the aryl hydrocarbon receptor (AHR), a transcription factor known to be activated with tobacco smoke, was investigated. METHODS: AHR related gene (mRNA) expression was quantified in skeletal muscle from adult controls and patients with chronic obstructive pulmonary disease (COPD), as well as mice with and without cigarette smoke exposure. Utilizing both skeletal muscle-specific AHR knockout mice exposed to chronic repeated (5 days per week for 16 weeks) cigarette smoke and skeletal muscle-specific expression of a constitutively active mutant AHR in healthy mice, a battery of assessments interrogating muscle size, contractile function, mitochondrial energetics, and RNA sequencing were employed. RESULTS: Skeletal muscle from COPD patients (N = 79, age = 67.0 ± 8.4 years) had higher levels of AHR (P = 0.0451) and CYP1B1 (P < 0.0001) compared to healthy adult controls (N = 16, age = 66.5 ± 6.5 years). Mice exposed to cigarette smoke displayed higher expression of Ahr (P = 0.008), Cyp1b1 (P < 0.0001), and Cyp1a1 (P < 0.0001) in skeletal muscle compared to air controls. Cigarette smoke exposure was found to impair skeletal muscle mitochondrial oxidative phosphorylation by ~50% in littermate controls (Treatment effect, P < 0.001), which was attenuated by deletion of the AHR in muscle in male (P = 0.001), but not female, mice (P = 0.37), indicating there are sex-dependent pathological effects of smoking-induced AHR activation in skeletal muscle. Viral mediated expression of a constitutively active mutant AHR in the muscle of healthy mice recapitulated the effects of cigarette smoking by decreasing muscle mitochondrial oxidative phosphorylation by ~40% (P = 0.003). CONCLUSIONS: These findings provide evidence linking chronic AHR activation secondary to cigarette smoke exposure to skeletal muscle bioenergetic deficits in male, but not female, mice. AHR activation is a likely contributor to the decline in muscle oxidative capacity observed in smokers and AHR antagonism may provide a therapeutic avenue aimed to improve muscle function in COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Contaminación por Humo de Tabaco , Anciano , Animales , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Músculo Esquelético/patología , Nicotiana , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Fumar/efectos adversos , Fumar Tabaco , Femenino
12.
Artículo en Inglés | MEDLINE | ID: mdl-38343495

RESUMEN

Purpose: Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is a sudden worsening of symptoms in patients with Chronic Obstructive Pulmonary Disease (COPD), such as cough, increased sputum volume, and sputum purulence. COPD and AECOPD are characterized by damage to cilia and increased mucus secretion. Mucociliary clearance (MCC) functions as part of the primary innate system of the lung to remove harmful particles and pathogens together with airway mucus and is therefore crucial for patients with COPD. Methods: AECOPD was induced by cigarette smoke exposure (80 cigarettes/day, 5 days/week for 12 weeks) and lipopolysaccharide (LPS) instillation (200 µg, on days 1, 14, and 84). Rats administered Lianhua Qingke (LHQK) (0.367, 0.732, and 1.465 g/kg/d) or Eucalyptol, Limonene, and Pinene Enteric Soft Capsules (ELP, 0.3 g/kg/d) intragastrically. Pulmonary pathology, Muc5ac+ goblet cell and ß-tubulin IV+ ciliated cells, and mRNA levels of forkhead box J1 (Foxj1) and multiciliate differentiation and DNA synthesis associated cell cycle protein (MCIDAS) were assessed by hematoxylin and eosin staining, immunofluorescence staining, and RT-qPCR, respectively. Ciliary morphology and ultrastructure were examined through scanning electron microscopy and transmission electron microscopy. Ciliary beat frequency (CBF) was recorded using a high-speed camera. Results: Compared to the model group, LHQK treatment groups showed a reduction in inflammatory cell infiltration, significantly reduced goblet cell and increased ciliated cell proportion. LHQK significantly upregulated mRNA levels of MCIDAS and Foxj1, indicating promoted ciliated cell differentiation. LHQK protected ciliary structure and maintained ciliary function via increasing the ciliary length and density, reducing ciliary ultrastructure damage, and ameliorating random ciliary oscillations, consequently enhancing CBF. Conclusion: LHQK enhances the MCC capability of ciliated cells in rat with AECOPD by preserving the structural integrity and beating function of cilia, indicating its therapeutic potential on promoting sputum expulsion in patients with AECOPD.


Asunto(s)
Cilios , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratas , Animales , Cilios/patología , Cilios/ultraestructura , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/patología , Depuración Mucociliar , Células Epiteliales , ARN Mensajero
13.
Stem Cells ; 42(4): 346-359, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38279981

RESUMEN

BACKGROUND: The use of human umbilical cord mesenchymal stem cells (UC-MSCs) has shown promise in improving the pathophysiological characteristics of rats with chronic obstructive pulmonary disease (COPD). However, more research is needed to understand the exact mechanism behind their therapeutic effects and their impact on lung microbiota. METHODS: To investigate this, rats were randomly assigned to one of 3 groups: Control, COPD + vehicle, and COPD + UC-MSCs group. Lung function changes after UC-MSCs therapy were evaluated weekly for 6 weeks. Additionally, lactate dehydrogenase (LDH), TNF (tumor necrosis factor)-α, IL (interleukin)-6, and IL-1ß level in bronchoalveolar lavage fluid (BALF) were analyzed. Arterial blood gas and weight were recorded. Hematoxylin and eosin (HE) staining was used to examine lung pathology, while changes in the lung microbiota were evaluated through 16S rRNA sequencing. RESULTS: The administration of UC-MSCs in rats led to a progressive amelioration of COPD, as demonstrated by enhanced lung function and reduced inflammatory response. UC-MSCs treatment significantly altered the structure and diversity of the lung microbiota, effectively preventing microbiota dysbiosis. This was achieved by increasing the abundance of Bacteroidetes and reducing the levels of Proteobacteria. Additionally, treatment with UC-MSCs reduced the activation of pathways associated with COPD, including microbial metabolism, ABC transporters, and Quorum sensing. The group of UC-MSCs showed increased metabolic pathways, such as amino acid biosynthesis, purine metabolism, starch and sucrose metabolism, and biosynthesis of secondary metabolites, compared to the COPD group. CONCLUSIONS: The use of UC-MSCs was found to reduce inflammation and improve lung function in rats with COPD. The mechanism may be related to the lung microbiota, as UC-MSCs improved the communities of lung microbiota and regulated dysregulated metabolic pathways.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedad Pulmonar Obstructiva Crónica , Ratas , Humanos , Animales , ARN Ribosómico 16S , Ratas Sprague-Dawley , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/patología , Factor de Necrosis Tumoral alfa , Interleucina-6 , Cordón Umbilical
14.
Mol Med Rep ; 29(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38214374

RESUMEN

Chronic obstructive pulmonary disorder (COPD) is a chronic respiratory disease that is a major cause of morbidity and mortality worldwide. Previous studies have shown that miR­186­5p expression is significantly increased in COPD and is involved in multiple physiological and pathological processes. However, the role of miRNA­186­5p in the inflammatory response of COPD remains unclear. In this study, an in vitro model of COPD was established using lipopolysaccharide (LPS)­induced human bronchial epithelial cells (BEAS­2B). CCK­8 assays, flow cytometry, and a Muse cell analyzer were used to determine cell viability, cell cycle distribution, and apoptosis, respectively. The production of TNF­α and IL­6 were measured by ELISA. Reverse­transcription­quantitative PCR and western blotting were used to analyze mRNA and protein expression levels. The targeting relation between miR­186­5p and HIF­1α was discovered using dual­luciferase reporter assays. The results showed that transfection of miR­186­5p inhibitor inhibited cell proliferation and promoted cell apoptosis in the LPS­induced BEAS­2B cells. Inhibition of miR­186­5p markedly increased the levels of TNF­α and IL­6. miR­186­5p directly targeted and negatively regulated HIF­1α expression. In addition, inhibition of miR­186­5p increased the expression of the NF­κB pathway protein p­p65. In conclusion, it was found that inhibiting miR­186­5p may improve inflammation of COPD through HIF­1α in LPS­induced BEAS­2B cells, possibly by regulating NF­κB signaling. These findings provide a novel potential avenue for the clinical management of COPD. Future research is required to determine the mechanism of the interaction between miR­186­5p and HIF­1α in COPD.


Asunto(s)
MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Humanos , FN-kappa B/metabolismo , Línea Celular , Factor de Necrosis Tumoral alfa/genética , Lipopolisacáridos , Interleucina-6/genética , MicroARNs/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología
15.
Int Rev Immunol ; 43(1): 41-61, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37353973

RESUMEN

With the change in global environment, respiratory disorders are becoming more threatening to the health of people all over the world. These diseases are closely linked to performance of immune system. Within the innate arm of immune system, Neutrophils are an important moiety to serve as an immune defense barrier. They are one of the first cells recruited to the site of infection and plays a critical role in pathogenesis of various pulmonary diseases. It is established that the migration and activation of neutrophils can lead to inflammation either directly or indirectly and this inflammation caused is very crucial for the clearance of pathogens and resolution of infection. However, the immunopathological mechanisms involved to carry out the same is very complex and not well understood. Despite there being studies concentrating on the role of neutrophils in multiple respiratory diseases, there is still a long way to go in order to completely understand the complexity of the participation of neutrophils and mechanisms involved in the development of these respiratory diseases. In the present article, we have reviewed the literature to comprehensively provide an insight in the current development and advancements about the role of neutrophils in infectious respiratory disorders including viral respiratory disorders such as Coronavirus disease (COVID-19) and bacterial pulmonary disorders with a focused review on pulmonary tuberculosis as well as in noninfectious disorders like Chronic obstructive pulmonary disease (COPD) and asthma. Also, future directions into research and therapeutic targets have been discussed for further exploration.


Respiratory illnesses are becoming more prevalent and a substantial source of sickness and mortality worldwide as a result of the changes in the global environment. Although diagnostic and therapeutic approaches for respiratory disorders have improved over the years, a thorough and in-depth approach is still required to understand the underlying immuno-pathophysiological mechanisms. Neutrophils are a crucial part of innate immune system which functions as a first line defense against various pulmonary infections. They are known to be involved in resistance against invading pulmonary pathogens and also play an important role in repairing of damaged lung tissue by removing debris. However, emerging evidences suggest that neutrophils may also be involved in promoting and aggravating the unabating inflammation in several pulmonary disorders by release of various proteases, forming neutrophil extracellular traps or by attracting and activating other immune cells at the site of inflammation. In this article, we have discussed diverse roles and responses of neutrophils and their use in potential future research and therapeutic approaches in infectious pulmonary disorders like Tuberculosis and COVID-19 and noninfectious pulmonary disorders like Chronic obstructive pulmonary disease (COPD) and asthma.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Enfermedades Respiratorias , Humanos , Neutrófilos , Inmunidad Innata , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Inflamación , Enfermedades Respiratorias/complicaciones , Enfermedades Respiratorias/patología
16.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L98-L110, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050687

RESUMEN

miR-146a, a microRNA (miRNA) that regulates inflammatory responses, plays an important role in many inflammatory diseases. Although an in vitro study had suggested that miR-146a is involved in abnormal inflammatory response, being a critical factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), in vivo evidence of its pathogenic role in COPD remains limited. Eight-week-old male B6(FVB)-Mir146tm1.1Bal/J [miR-146a knockout (KO)] and C57BL/6J mice were intratracheally administered elastase and evaluated after 28 days or exposed to cigarette smoke (CS) and evaluated after 5 mo. miR-146a expression was significantly increased in C57BL/6J mouse lungs due to elastase administration (P = 0.027) or CS exposure (P = 0.019) compared with that in the control group. Compared with C57BL/6J mice, elastase-administered miR-146a-KO mice had lower average computed tomography (CT) values (P = 0.017) and increased lung volume-to-weight ratio (P = 0.016), mean linear intercept (P < 0.001), and destructive index (P < 0.001). Moreover, total cell (P = 0.006), macrophage (P = 0.001), neutrophil (P = 0.026), chemokine (C-X-C motif) ligand 2/macrophage inflammatory protein-2 [P = 0.045; in bronchoalveolar lavage fluid (BALF)], cyclooxygenase-2, and matrix metalloproteinase-2 levels were all increased (in the lungs). Following long-term CS exposure, miR-146a-KO mice showed a greater degree of emphysema formation in their lungs and inflammatory response in the BALF and lungs than C57BL/6J mice. Collectively, miR-146a protected against emphysema formation and the associated abnormal inflammatory response in two murine models.NEW & NOTEWORTHY This study demonstrates that miR-146a expression is upregulated in mouse lungs because of elastase- and CS-induced emphysema and that the inflammatory response by elastase or CS is enhanced in the lungs of miR-146a-KO mice than in those of control mice, resulting in the promotion of emphysema. This is the first study to evaluate the protective role of miR-146a in emphysema formation and the associated abnormal inflammatory response in different in vivo models.


Asunto(s)
Enfisema , MicroARNs , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Masculino , Ratones , Enfisema/etiología , Inflamación/patología , Pulmón/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Elastasa Pancreática/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/genética
17.
Am J Respir Crit Care Med ; 209(6): 683-692, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38055196

RESUMEN

Rationale: Small airway disease is an important pathophysiological feature of chronic obstructive pulmonary disease (COPD). Recently, "pre-COPD" has been put forward as a potential precursor stage of COPD that is defined by abnormal spirometry findings or significant emphysema on computed tomography (CT) in the absence of airflow obstruction. Objective: To determine the degree and nature of (small) airway disease in pre-COPD using microCT in a cohort of explant lobes/lungs. Methods: We collected whole lungs/lung lobes from patients with emphysematous pre-COPD (n = 10); Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (n = 6), II (n = 6), and III/IV (n = 7) COPD; and controls (n = 10), which were analyzed using CT and microCT. The degree of emphysema and the number and morphology of small airways were compared between groups, and further correlations were investigated with physiologic measures. Airway and parenchymal pathology was also validated with histopathology. Measurements and Main Results: The numbers of transitional bronchioles and terminal bronchioles per milliliter of lung were significantly lower in pre-COPD and GOLD stages I, II, and III/IV COPD compared with controls. In addition, the number of alveolar attachments of the transitional bronchioles and terminal bronchioles was also lower in pre-COPD and all COPD groups compared with controls. We did not find any differences between the pre-COPD and COPD groups in CT or microCT measures. The percentage of emphysema on CT showed the strongest correlation with the number of small airways in the COPD groups. Histopathology showed an increase in the mean chord length and a decrease in alveolar surface density in pre-COPD and all GOLD COPD stages compared with controls. Conclusions: Lungs of patients with emphysematous pre-COPD already show fewer small airways and airway remodeling even in the absence of physiologic airway obstruction.


Asunto(s)
Asma , Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Humanos , Estudios Transversales , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/complicaciones , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/patología , Pulmón , Asma/patología , Microtomografía por Rayos X
18.
Am J Respir Crit Care Med ; 209(2): 153-163, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37931077

RESUMEN

Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.


Asunto(s)
Enfisema , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Humanos , Ratones , Epitelio/metabolismo , Pulmón , Enfermedad Pulmonar Obstructiva Crónica/patología
19.
Respir Med ; 221: 107499, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104786

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation, respiratory symptoms, inflammation of the airways, and systemic manifestations of the disease. Genetic susceptibility and environmental factors are important in the development of the disease, particularly exposure to cigarette smoke which is the most notable risk factor. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are the cause of cystic fibrosis (CF), which shares several pathophysiological pulmonary features with COPD, including airway obstruction, chronic airway inflammation and bacterial colonization; in addition, both diseases also present systemic defects leading to comorbidities such as pancreatic, gastrointestinal, and bone-related diseases. In patients with COPD, systemic CFTR dysfunction can be acquired by cigarette smoking, inflammation, and infection. This dysfunction is, on average, about half of that found in CF. Herein we review the literature focusing on acquired CFTR dysfunction and the potential role in the pathogenesis of comorbidities associated with COPD and chronic bronchitis.


Asunto(s)
Bronquitis Crónica , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Fibrosis Quística/complicaciones , Fibrosis Quística/genética , Inflamación , Productos de Tabaco
20.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L266-L279, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150543

RESUMEN

Small airway disease (SAD) is a key early-stage pathology of chronic obstructive pulmonary disease (COPD). COPD is associated with cellular senescence whereby cells undergo growth arrest and express the senescence-associated secretory phenotype (SASP) leading to chronic inflammation and tissue remodeling. Parenchymal-derived fibroblasts have been shown to display senescent properties in COPD, however small airway fibroblasts (SAFs) have not been investigated. Therefore, this study investigated the role of these cells in COPD and their potential contribution to SAD. To investigate the senescent and fibrotic phenotype of SAF in COPD, SAFs were isolated from nonsmoker, smoker, and COPD lung resection tissue (n = 9-17 donors). Senescence and fibrotic marker expressions were determined using iCELLigence (proliferation), qPCR, Seahorse assay, and ELISAs. COPD SAFs were further enriched for senescent cells using FACSAria Fusion based on cell size and autofluorescence (10% largest/autofluorescent vs. 10% smallest/nonautofluorescent). The phenotype of the senescence-enriched population was investigated using RNA sequencing and pathway analysis. Markers of senescence were observed in COPD SAFs, including senescence-associated ß-galactosidase, SASP release, and reduced proliferation. Because the pathways driving this phenotype were unclear, we used cell sorting to enrich senescent COPD SAFs. This population displayed increased p21CIP1 and p16INK4a expression and mitochondrial dysfunction. RNA sequencing suggested these senescent cells express genes involved in oxidative stress response, fibrosis, and mitochondrial dysfunction pathways. These data suggest COPD SAFs are senescent and may be associated with fibrotic properties and mitochondrial dysfunction. Further understanding of cellular senescence in SAFs may lead to potential therapies to limit SAD progression.NEW & NOTEWORTHY Fibroblasts and senescence are thought to play key roles in the pathogenesis of small airway disease and COPD; however, the characteristics of small airway-derived fibroblasts are not well explored. In this study we isolate and enrich the senescent small airway-derived fibroblast (SAF) population from COPD lungs and explore the pathways driving this phenotype using bulk RNA-seq.


Asunto(s)
Asma , Enfermedades Mitocondriales , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/patología , Pulmón/metabolismo , Senescencia Celular/fisiología , Fibroblastos/metabolismo , Asma/patología , Enfermedades Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...