Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
J Cell Mol Med ; 28(9): e18293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722298

RESUMEN

Charcot-Marie-Tooth type 2A (CMT2A) is an inherited sensorimotor neuropathy associated with mutations within the Mitofusin 2 (MFN2) gene. These mutations impair normal mitochondrial functioning via different mechanisms, disturbing the equilibrium between mitochondrial fusion and fission, of mitophagy and mitochondrial axonal transport. Although CMT2A disease causes a significant disability, no resolutive treatment for CMT2A patients to date. In this context, reliable experimental models are essential to precisely dissect the molecular mechanisms of disease and to devise effective therapeutic strategies. The most commonly used models are either in vitro or in vivo, and among the latter murine models are by far the most versatile and popular. Here, we critically revised the most relevant literature focused on the experimental models, providing an update on the mammalian models of CMT2A developed to date. We highlighted the different phenotypic, histopathological and molecular characteristics, and their use in translational studies for bringing potential therapies from the bench to the bedside. In addition, we discussed limitations of these models and perspectives for future improvement.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Animales , Humanos , Mutación , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dinámicas Mitocondriales/genética
2.
Neurobiol Dis ; 193: 106467, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452947

RESUMEN

Mutations in the gene encoding MFN2 have been identified as associated with Charcot-Marie-Tooth disease type 2A (CMT2A), a neurological disorder characterized by a broad clinical phenotype involving the entire nervous system. MFN2, a dynamin-like GTPase protein located on the outer mitochondrial membrane, is well-known for its involvement in mitochondrial fusion. Numerous studies have demonstrated its participation in a network crucial for various other mitochondrial functions, including mitophagy, axonal transport, and its controversial role in endoplasmic reticulum (ER)-mitochondria contacts. Considerable progress has been made in the last three decades in elucidating the disease pathogenesis, aided by the generation of animal and cellular models that have been instrumental in studying disease physiology. A review of the literature reveals that, up to now, no definitive pharmacological treatment for any CMT2A variant has been established; nonetheless, recent years have witnessed substantial progress. Many treatment approaches, especially concerning molecular therapy, such as histone deacetylase inhibitors, peptide therapy to increase mitochondrial fusion, the new therapeutic strategies based on MF1/MF2 balance, and SARM1 inhibitors, are currently in preclinical testing. The literature on gene silencing and gene replacement therapies is still limited, except for a recent study by Rizzo et al.(Rizzo et al., 2023), which recently first achieved encouraging results in in vitro and in vivo models of the disease. The near-future goal for these promising therapies is to progress to the stage of clinical translation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mitocondrias/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Fenotipo , Proteínas Mitocondriales/metabolismo , Mutación
3.
Neurology ; 102(3): e207963, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38237108

RESUMEN

BACKGROUND AND OBJECTIVES: Charcot-Marie-Tooth disease type 1A (CMT1A), caused by a duplication of PMP22, is the most common hereditary peripheral neuropathy. For participants with CMT1A, few clinical trials have been performed; however, multiple therapies have reached an advanced stage of preclinical development. In preparation for imminent clinical trials in participants with CMT1A, we have produced a Clinical Outcome Assessment (COA), known as the CMT-Functional Outcome Measure (CMT-FOM), in accordance with the FDA Roadmap to Patient-Focused Outcome Measurement to capture the key clinical end point of function. METHODS: Participants were recruited through CMT clinics in the United States (n = 130), the United Kingdom (n = 52), and Italy (n = 32). To derive the most accurate signal with the fewest items to identify a therapeutic response, a series of validation studies were conducted including item and factor analysis, Rasch model analysis and testing of interrater reliability, discriminative ability, and convergent validity. RESULTS: A total of 214 participants aged 18-75 years with CMT1A (58% female) were included in this study. Item, factor, and Rasch analysis supported the viability of the 12-item CMT-FOM as a unidimensional interval scale of function in adults with CMT1A. The CMT-FOM covers strength, upper and lower limb function, balance, and mobility. The 0-100 point scoring system showed good overall model fit, no evidence of misfitting items, and no person misfit, and it was well targeted for adults with CMT1A exhibiting high inter-rater reliability across a range of clinical settings and evaluators. The CMT-FOM was significantly correlated with the CMT Examination Score (r = 0.643; p < 0.001) and the Overall Neuropathy Limitation Scale (r = 0.516; p < 0.001). Significantly higher CMT-FOM total scores were observed in participants self-reporting daily trips and falls, unsteady ankles, hand tremor, and hand weakness (p < 0.05). DISCUSSION: The CMT-FOM is a psychometrically robust multi-item, unidimensional, disease-specific COA covering strength, upper and lower limb function, balance, and mobility to capture how participants with CMT1A function to identify therapeutic efficacy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Adulto , Humanos , Femenino , Estados Unidos , Masculino , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/terapia , Reproducibilidad de los Resultados , Evaluación de Resultado en la Atención de Salud , Análisis Factorial , Italia
4.
J Neurol Neurosurg Psychiatry ; 95(5): 434-441, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918904

RESUMEN

BACKGROUND: Shoe inserts, orthopaedic shoes, ankle-foot orthoses (AFOs) are important devices in Charcot-Marie-Tooth disease (CMT) management, but data about use, benefits and tolerance are scanty. METHODS: We administered to Italian CMT Registry patients an online ad hoc questionnaire investigating use, complications and perceived benefit/tolerability/emotional distress of shoe inserts, orthopaedic shoes, AFOs and other orthoses/aids. Patients were also asked to fill in the Quebec User Evaluation of Satisfaction with assistive Technology questionnaire, rating satisfaction with currently used AFO and related services. RESULTS: We analysed answers from 266 CMT patients. Seventy per cent of subjects were prescribed lower limb orthoses, but 19% did not used them. Overall, 39% of subjects wore shoe inserts, 18% orthopaedic shoes and 23% AFOs. Frequency of abandonment was high: 24% for shoe inserts, 28% for orthopaedic shoes and 31% for AFOs. Complications were reported by 59% of patients and were more frequently related to AFOs (69%). AFO users experienced greater emotional distress and reduced tolerability as compared with shoe inserts (p<0.001) and orthopaedic shoes (p=0.003 and p=0.045, respectively). Disease severity, degree of foot weakness, customisation and timing for customisation were determinant factors in AFOs' tolerability. Quality of professional and follow-up services were perceived issues. CONCLUSIONS: The majority of CMT patients is prescribed shoe inserts, orthopaedic shoes and/or AFOs. Although perceived benefits and tolerability are rather good, there is a high rate of complications, potentially inappropriate prescriptions and considerable emotional distress, which reduce the use of AFOs. A rational, patient-oriented and multidisciplinary approach to orthoses prescription must be encouraged.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/terapia , Aparatos Ortopédicos , Extremidad Inferior , Zapatos , Gravedad del Paciente
5.
Muscle Nerve ; 69(3): 354-361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38156498

RESUMEN

INTRODUCTION/AIMS: People with Charcot-Marie-Tooth Disease (CMT) frequently report problems with balance, which lead to an increased risk of falls. Evidence is emerging of training interventions to improve balance for people with CMT, but to date all have relied on clinic-based treatment and equipment. This proof-of-concept study explored whether a multi-modal program of proprioceptive rehabilitation and strength training can be delivered at home, to improve balance performance in people with CMT Type 1A. METHODS: Fourteen participants with CMT Type 1A were recruited into this randomized, two-arm study. Baseline assessments included measures of disease severity, posturography, physical function, and patient-reported outcome measurements. All participants received one falls education session. Participants were randomized to either 12 weeks of balance training or 12 weeks of usual activities. The intervention comprised a home-based, multi-sensory balance training and proximal strengthening program, supported by three home visits from a physiotherapist. RESULTS: Thirteen participants completed the study. The intervention was successfully implemented and well tolerated, with high participation levels. Functional measures of balance and walking showed strong effect sizes in favor of the training group. Posturography testing demonstrated moderate improvements in postural stability favoring the intervention group. Inconsistent changes were seen in lower limb strength measures. DISCUSSION: The intervention was feasible to implement and safe, with some evidence of improvement in balance performance. This supports future studies to expand this intervention to larger trials of pragmatic, home-delivered programs through current community rehabilitation services and supported self-management pathways.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Entrenamiento de Fuerza , Humanos , Enfermedad de Charcot-Marie-Tooth/terapia , Terapia por Ejercicio , Prueba de Estudio Conceptual , Modalidades de Fisioterapia , Equilibrio Postural
6.
Cell Mol Life Sci ; 80(12): 373, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007410

RESUMEN

Mitofusin-2 (MFN2) is an outer mitochondrial membrane protein essential for mitochondrial networking in most cells. Autosomal dominant mutations in the MFN2 gene cause Charcot-Marie-Tooth type 2A disease (CMT2A), a severe and disabling sensory-motor neuropathy that impacts the entire nervous system. Here, we propose a novel therapeutic strategy tailored to correcting the root genetic defect of CMT2A. Though mutant and wild-type MFN2 mRNA are inhibited by RNA interference (RNAi), the wild-type protein is restored by overexpressing cDNA encoding functional MFN2 modified to be resistant to RNAi. We tested this strategy in CMT2A patient-specific human induced pluripotent stem cell (iPSC)-differentiated motor neurons (MNs), demonstrating the correct silencing of endogenous MFN2 and replacement with an exogenous copy of the functional wild-type gene. This approach significantly rescues the CMT2A MN phenotype in vitro, stabilizing the altered axonal mitochondrial distribution and correcting abnormal mitophagic processes. The MFN2 molecular correction was also properly confirmed in vivo in the MitoCharc1 CMT2A transgenic mouse model after cerebrospinal fluid (CSF) delivery of the constructs into newborn mice using adeno-associated virus 9 (AAV9). Altogether, our data support the feasibility of a combined RNAi and gene therapy strategy for treating the broad spectrum of human diseases associated with MFN2 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Interferencia de ARN , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mutación , Hidrolasas/genética , Ratones Transgénicos
7.
Neurotherapeutics ; 20(6): 1835-1846, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37843769

RESUMEN

Charcot-Marie-Tooth (CMT) disease, also known as hereditary motor sensory neuropathy, is a group of rare genetically heterogenous diseases characterized by progressive muscle weakness and atrophy, along with sensory deficits. Despite extensive pre-clinical and clinical research, no FDA-approved therapy is available for any CMT type. We previously identified C1ORF194, a novel causative gene for CMT, and found that both C1orf194 knock-in (I121N) and knockout mice developed clinical phenotypes similar to those in patients with CMT. Encouraging results of adeno-associated virus (AAV)-mediated gene therapy for spinal muscular atrophy have stimulated the use of AAVs as vehicles for CMT gene therapy. Here, we present a gene therapy approach to restore C1orf194 expression in a knockout background. We used C1orf194-/- mice treated with AAV serotype 9 (AAV9) vector carrying a codon-optimized WT human C1ORF194 cDNA whose expression was driven by a ubiquitously expressed chicken ß-actin promoter with a CMV enhancer. Our preclinical evaluation demonstrated the efficacy of AAV-mediated gene therapy in improving sensory and motor abilities, thus achieving largely normal gross motor performance and minimal signs of neuropathy, on the basis of neurophysiological and histopathological evaluation in C1orf194-/- mice administered AAV gene therapy. Our findings advance the techniques for delivering therapeutic interventions to individuals with CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Ratones , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Fenotipo , Administración Intravenosa , Mutación
8.
Arq Neuropsiquiatr ; 81(10): 913-921, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611635

RESUMEN

Hereditary motor and sensory neuropathy, also known as Charcot-Marie-Tooth disease (CMT), traditionally refers to a group of genetic disorders in which neuropathy is the main or sole feature. Its prevalence varies according to different populations studied, with an estimate between 1:2,500 to 1:10,000. Since the identification of PMP22 gene duplication on chromosome 17 by Vance et al., in 1989, more than 100 genes have been related to this group of disorders, and we have seen advances in the care of patients, with identification of associated conditions and better supportive treatments, including clinical and surgical interventions. Also, with discoveries in the field of genetics, including RNA interference and gene editing techniques, new treatment perspectives begin to emerge. In the present work, we report the most import landmarks regarding CMT research in Brazil and provide a comprehensive review on topics such as frequency of different genes associated with CMT in our population, prevalence of pain, impact on pregnancy, respiratory features, and development of new therapies.


A neuropatia sensitivo-motora hereditária, também conhecida como doença de Charcot-Marie-Tooth (CMT), tradicionalmente se refere a um grupo de doenças genéticas em que a neuropatia é a principal ou única manifestação. Sua prevalência varia de acordo com as diferentes populações estudadas, com estimativa entre 1:2.500 a 1:10.000. Desde a identificação da duplicação do gene PMP22 no cromossomo 17, por Vance et al., em 1989, mais de 100 genes foram relacionados a esse grupo de doenças e temos visto avanços no atendimento aos pacientes, com identificação de condições associadas e melhores tratamentos de suporte, incluindo intervenções clínicas e cirúrgicas. Além disso, com as descobertas no campo da genética, incluindo técnicas de interferência de RNA e de edição genética, novas perspectivas de tratamento começaram a surgir. No presente trabalho, relatamos os marcos mais importantes sobre a pesquisa de CMT no Brasil e fornecemos uma revisão abrangente sobre tópicos como frequência de diferentes genes associados à CMT em nossa população, prevalência de dor, impacto na gravidez, alterações respiratórias e desenvolvimento de novas terapias.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Neuropatía Hereditaria Motora y Sensorial , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Brasil
9.
Mol Ther ; 31(11): 3290-3307, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37641403

RESUMEN

Type 4C Charcot-Marie-Tooth (CMT4C) demyelinating neuropathy is caused by autosomal recessive SH3TC2 gene mutations. SH3TC2 is highly expressed in myelinating Schwann cells. CMT4C is a childhood-onset progressive disease without effective treatment. Here, we generated a gene therapy for CMT4C mediated by an adeno-associated viral 9 vector (AAV9) to deliver the human SH3TC2 gene in the Sh3tc2-/- mouse model of CMT4C. We used a minimal fragment of the myelin protein zero (Mpz) promoter (miniMpz), which was cloned and validated to achieve Schwann cell-targeted expression of SH3TC2. Following the demonstration of AAV9-miniMpz.SH3TC2myc vector efficacy to re-establish SH3TC2 expression in the peripheral nervous system, we performed an early as well as a delayed treatment trial in Sh3tc2-/- mice. We demonstrate both after early as well as following late treatment improvements in multiple motor performance tests and nerve conduction velocities. Moreover, treatment led to normalization of the organization of the nodes of Ranvier, which is typically deficient in CMT4C patients and Sh3tc2-/- mice, along with reduced ratios of demyelinated fibers, increased myelin thickness and reduced g-ratios at both time points of intervention. Taken together, our results provide a proof of concept for an effective and potentially translatable gene replacement therapy for CMT4C treatment.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Terapia Genética , Péptidos y Proteínas de Señalización Intracelular , Animales , Humanos , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Células de Schwann/metabolismo
10.
Handb Clin Neurol ; 195: 315-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37562877

RESUMEN

Neuromuscular disorders encompass a diverse group of acquired and genetic diseases characterized by loss of motor functionality. Although cure is the goal, many therapeutic strategies have been envisioned and are being studied in randomized clinical trials and entered clinical practice. As in all scientific endeavors, the successful clinical translation depends on the quality and translatability of preclinical findings and on the predictive value and feasibility of the clinical models. This chapter focuses on five exemplary diseases: childhood spinal muscular atrophy (SMA), Charcot-Marie-Tooth (CMT) disorders, chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), acquired autoimmune myasthenia gravis (MG), and Duchenne muscular dystrophy (DMD), to illustrate the progress made on the path to evidenced-based therapy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Atrofia Muscular Espinal , Distrofia Muscular de Duchenne , Miastenia Gravis , Enfermedades Neuromusculares , Humanos , Niño , Enfermedades Neuromusculares/terapia , Enfermedad de Charcot-Marie-Tooth/terapia , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética
11.
Genes (Basel) ; 14(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37510296

RESUMEN

Charcot-Marie-Tooth disease (CMT) and associated neuropathies are the most predominant genetically transmitted neuromuscular conditions; however, effective pharmacological treatments have not established. The extensive genetic heterogeneity of CMT, which impacts the peripheral nerves and causes lifelong disability, presents a significant barrier to the development of comprehensive treatments. An estimated 100 loci within the human genome are linked to various forms of CMT and its related inherited neuropathies. This review delves into prospective therapeutic strategies used for the most frequently encountered CMT variants, namely CMT1A, CMT1B, CMTX1, and CMT2A. Compounds such as PXT3003, which are being clinically and preclinically investigated, and a broad array of therapeutic agents and their corresponding mechanisms are discussed. Furthermore, the progress in established gene therapy techniques, including gene replacement via viral vectors, exon skipping using antisense oligonucleotides, splicing modification, and gene knockdown, are appraised. Each of these gene therapies has the potential for substantial advancements in future research.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/terapia , Humanos , Mutación , Espacio Intracelular/metabolismo , Calcio/metabolismo , Silenciador del Gen , Terapia Genética , Animales
12.
Neuromuscul Disord ; 33(8): 627-635, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37455204

RESUMEN

There is still no effective drug treatment available for Charcot-Marie-Tooth disease (CMT). Current management relies on rehabilitation therapy, surgery for skeletal deformities, and symptomatic treatment. The challenge is to find disease-modifying therapies. Several approaches, including gene silencing (by means of ASO, siRNA, shRNA, miRNA, CRISPR-Cas9 editing), to counteract the PMP22 gene overexpression in the most frequent CMT1A type are under investigation. PXT3003 is the compound in the most advanced phase for CMT1A, as a second phase-III trial is ongoing. Gene therapy to substitute defective genes (particularly in recessive forms associated with loss-of-function mutations) or insert novel ones (e.g., NT3 gene) are being developed and tested in animal models and in still exceptional cases have reached the clinical trial phase in humans. Novel treatment approaches are also aimed at developing compounds acting on pathways important for different CMT types. Modulation of the neuregulin pathway determining myelin thickness is promising for both hypo-demyelinating and hypermyelinating neuropathies; intervention on Unfolded Protein Response seems effective for rescuing misfolded myelin proteins such as MPZ in CMT1B. HDAC6 inhibitors improved axonal transport and ameliorated phenotypes in different CMT models. Other potential therapeutic strategies include targeting macrophages, lipid metabolism, and Nav1.8 sodium channel in demyelinating CMT and the P2×7 receptor, which regulates calcium influx into Schwann cells, in CMT1A. Further approaches are aimed at correcting metabolic abnormalities, including the accumulation of sorbitol caused by biallelic mutations in the sorbitol dehydrogenase (SORD) gene and of neurotoxic glycosphingolipids in HSN1.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Proteínas de la Mielina/genética , Mutación , Fenotipo , Terapia Genética
13.
J Peripher Nerv Syst ; 28(2): 169-178, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060329

RESUMEN

BACKGROUND AND AIMS: Effective treatments for Charcot-Marie-Tooth (CMT) disease lack. Current treatments, such as ankle and foot surgery/orthoses, analgesics, and physiotherapy, focus on relieving the symptoms. Few randomized controlled trials (RCTs) investigated the effectiveness of exercise in patients with CMT, and a systematic review summarizing the effects of such treatments is outdated. This study aims to systematically review the effects of exercise on muscle strength, function, aerobic capacity, and quality of life in CMT. METHODS: We included RCTs that compared exercise programs against sham exercise, usual care, no exercise, and different exercise programs in individuals diagnosed with CMT. Searches were performed on 10 electronic databases from inception up to July 2021. Authors analyzed titles, abstracts, and full texts and extracted information from the eligible trials. We used the Physiotherapy Evidence Database (PEDro) scale and the GRADE (Grades of Recommendation, Assessment, Development, and Evaluation) approach to evaluate the risk of bias and the certainty of the evidence, respectively. Results were synthesized narratively. RESULTS: Eight citations (six studies; pooled n = 214) met the inclusion criteria. The mean age of participants was 38.49 (±13.02) years, and 83% were diagnosed with CMT1A. The mean PEDro score was 5.25 (range 2-9). Six trials were considered to have a high risk of bias. Moderate-quality evidence suggests that strengthening the ankle dorsiflexors minimizes the progression of weakness at 24 months in children with CMT1A. For other outcomes, quality of the evidence ranged from very low to low. INTERPRETATION: Based on the available, evidence we can only recommend exercise to improve muscle strength in children with CMT. More high quality and robust trials are needed.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Niño , Humanos , Adulto , Persona de Mediana Edad , Enfermedad de Charcot-Marie-Tooth/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Terapia por Ejercicio/métodos , Ejercicio Físico , Fuerza Muscular/fisiología , Calidad de Vida
14.
J Peripher Nerv Syst ; 28(2): 134-149, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36855793

RESUMEN

Charcot-Marie-Tooth (CMT) neuropathies are one of the most common neuromuscular disorders. However, despite the identification of more than 100 causative genes, therapeutic options are still missing. The generation of authentic animal models and the increasing insights into the understanding of disease mechanisms, in addition to extraordinary developments in gene and molecular therapies, are quickly changing this scenario, and several strategies are currently being translated, or are getting close to, clinical trials. Here, we provide an overview of the most recent advances for the therapy of CMT at both the preclinical and clinical levels. For clarity, we have grouped the approaches in three different categories: gene therapy based on viral-mediated delivery, molecular therapies based on alternative delivery systems, and pharmacological therapies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Modelos Animales de Enfermedad
15.
J Peripher Nerv Syst ; 28(2): 150-168, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36965137

RESUMEN

Charcot-Marie-Tooth (CMT) neuropathies are a group of genetically and phenotypically heterogeneous disorders that predominantly affect the peripheral nervous system. Unraveling the genetic and molecular mechanisms, as well as the cellular effects of CMT mutations, has facilitated the development of promising gene therapy approaches. Proposed gene therapy treatments for CMTs include virally or non-virally mediated gene replacement, addition, silencing, modification, and editing of genetic material. For most CMT neuropathies, gene- and disease- and even mutation-specific therapy approaches targeting the neuronal axon or myelinating Schwann cells may be needed, due to the diversity of underlying cellular and molecular-genetic mechanisms. The efficiency of gene therapies to improve the disease phenotype has been tested mostly in vitro and in vivo rodent models that reproduce different molecular and pathological aspects of CMT neuropathies. In the next stage, bigger animal models, in particular non-human primates, provide important insights into the translatability of the proposed administration and dosing, demonstrating scale-up potential and safety. The path toward clinical trials is faced with further challenges but is becoming increasingly feasible owing to the progress and knowledge gained from clinical applications of gene therapies for other neurological disorders, as well as the emergence of sensitive outcome measures and biomarkers in patients with CMT neuropathies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/patología , Mutación , Fenotipo , Células de Schwann
16.
Curr Med Sci ; 43(2): 261-267, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36932303

RESUMEN

OBJECTIVE: Charcot-Marie-Tooth disease (CMT) severely affects patient activity, and may cause disability. However, no clinical treatment is available to reverse the disease course. The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases, such as CMT. METHODS: In the present study, the skin fibroblasts of CMT type 2D (CMT2D) patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids (pCXLE-hSK, pCXLE-hUL and pCXLE-hOCT3/4-shp5-F). Then, CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level. RESULTS: An iPSC line derived from the GARS (G294R) family with fibular atrophy was successfully induced, and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology. These findings lay the foundation for future research on drug screening and cell therapy. CONCLUSION: iPSCs can differentiate into different cell types, and originate from autologous cells. Therefore, they are promising for the development of autologous cell therapies for degenerative diseases. The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases, such as CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Reparación del Gen Blanco , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Reparación del Gen Blanco/métodos
17.
Rev Neurol (Paris) ; 179(1-2): 35-48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36588067

RESUMEN

Charcot-Marie-Tooth (CMT) is a heterogeneous group of inherited neuropathies that affect the peripheral nerves and slowly cause progressive disability. Currently, there is no effective therapy. Patients' management is based on rehabilitation and occupational therapy, fatigue, and pain treatment with regular follow-up according to the severity of the disease. In the last three decades, much progress has been made to identify mutations involved in the different types of CMT, decipher the pathophysiology of the disease, and identify key genes and pathways that could be targeted to propose new therapeutic strategies. Genetic therapy is one of the fields of interest to silence genes such as PMP22 in CMT1A or to express GJB1 in CMT1X. Among the most promising molecules, inhibitors of the NRG-1 axis and modulators of UPR or the HDACs enzyme family could be used in different types of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Mutación , Proteínas/genética , Nervios Periféricos
18.
Adv Sci (Weinh) ; 9(32): e2201358, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35975427

RESUMEN

Although many efforts are undertaken to treat peripheral demyelinating neuropathies based on biochemical interventions, unfortunately, there is no approved treatment yet. Furthermore, previous studies have not shown improvement of the myelin membrane at the biomolecular level. Here, an electroceutical treatment is introduced as a biophysical intervention to treat Charcot-Marie-Tooth (CMT) disease-the most prevalent peripheral demyelinating neuropathy worldwide-using a mouse model. The specific electrical stimulation (ES) condition (50 mV mm-1 , 20 Hz, 1 h) for optimal myelination is found via an in vitro ES screening system, and its promyelinating effect is validated with ex vivo dorsal root ganglion model. Biomolecular investigation via time-of-flight secondary ion mass spectrometry shows that ES ameliorates distribution abnormalities of peripheral myelin protein 22 and cholesterol in the myelin membrane, revealing the restoration of myelin membrane integrity. ES intervention in vivo via flexible implantable electrodes shows not only gradual rehabilitation of mouse behavioral phenotypes (balance and endurance), but also restored myelin thickness, compactness, and membrane integrity. This study demonstrates, for the first time, that an electroceutical approach with the optimal ES condition has the potential to treat CMT disease and restore impaired myelin membrane integrity, shifting the paradigm toward practical interventions for peripheral demyelinating neuropathies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedades Desmielinizantes , Animales , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedades Desmielinizantes/terapia , Enfermedades Desmielinizantes/genética , Vaina de Mielina/metabolismo , Modelos Animales de Enfermedad , Proteínas
20.
Kardiologiia ; 62(5): 67-71, 2022 May 31.
Artículo en Ruso | MEDLINE | ID: mdl-35692176

RESUMEN

Hereditary motor and sensory type 1A neuropathy (known as Charcot-Marie-Tooth disease) is a disease of peripheral nerves characterized by symptoms of progressive polyneuropathy with preferential damage of distal extremity muscles. Damage to the cardiovascular system is extremely rare and heterogenous in this pathology. This disease is not included in the list of indications for interventional antiarrhythmic aid. We could not find in available literature a clinical description of the development of sinus node dysfunction associated with this pathology. The present clinical report presents a case of detection and successful treatment of a damage to the cardiovascular system that manifested itself as sinus node dysfunction/sick sinus syndrome in the tachy-brady variant. A combination treatment approach using radiofrequency catheter ablation, implantation of a permanent pacemaker, and antiarrhythmic therapy associated with drug and non-drug treatment of motor sensory neuropathy resulted in recovery and long-term maintenance of sinus rhythm as well as in beneficial changes in the patient's neurological status.


Asunto(s)
Sistema Cardiovascular , Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/terapia , Humanos , Síndrome del Seno Enfermo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...