Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.859
Filtrar
1.
Crit Rev Immunol ; 44(5): 41-50, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618727

RESUMEN

Gene therapy is a particularly useful treatment for nervous system genetic diseases, including those induced especially by infectious organisms and antigens, and is being utilized to treat Hodgkin's disease (HD). Due to the possible clonal relationship between both disorders, immunotherapy directed against CD20 positive cells may be a more effective treatment in patients with persistent HD and NHL. HL growth can be inhibited both in vitro and in vivo by AdsIL-13Ralpha2. High-dose treatment combined with stem cell transplantation has been effective in treating HIV-negative lymphoma that has progressed to high-risk or relapsed disease. For therapy, LMP2-specific CTL will be used. Furthermore, it is possible to view the cytotoxicity of genetically modified adenoviruses that express proteins such as p27Kip1, p21Waf1, and p16INK4A as a foundational element for (2,5)-derived ALCL genetic treatment for Hodgkin's disease.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/terapia , Inmunoterapia
2.
Iran J Med Sci ; 49(2): 88-100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356485

RESUMEN

Background: Epstein-Barr virus (EBV) is detected in 40% of patients with Hodgkin lymphoma (HL). During latency, EBV induces epigenetic alterations to the host genome and decreases the expression of pro-apoptotic proteins. The present study aimed to evaluate the expression levels of mRNA molecules and the end product of proteins for the JAK/STAT and NF-κB pathways, and their association with clinicopathological and prognostic parameters in patients with EBV-positive and -negative classical Hodgkin lymphoma (CHL). Methods: A prospective cohort study was conducted from 2017 to 2022 at the Faculty of Medicine, Zagazig University Hospital (Zagazig, Egypt). Biopsy samples of 64 patients with CHL were divided into EBV-positive and EBV-negative groups. The expression levels of mRNA molecules (JAK2, STAT1, IRF-1, PD-L1, IFN-γ, NF-κB, Bcl-xL, COX-2) and the end product of proteins (PD-L1, Bcl-xL, COX-2) were determined and compared with clinicopathological and prognostic parameters. Data were analyzed using the Chi square test and Kaplan-Meier estimate. Results: EBV-positive CHL patients were significantly associated with positive expression of mRNAs molecules (P<0.001) and the end product of proteins (P<0.001) for the JAK/STAT and NF-κB pathways, B-symptoms (P=0.022), extra-nodal involvement (P=0.017), and advanced stage of CHL (P=0.018). These patients were more susceptible to cancer progression, higher incidence of relapse (P=0.008), poor disease-free survival rate (P=0.013), poor overall survival rate (P=0.028), and higher mortality rate (P=0.015). Conclusion: Through the activation of JAK/STAT and NF-κB signaling pathways, EBV-positive CHL is associated with poor clinicopathological parameters, higher incidence of disease progression, relapse, and poor overall survival. A preprint of this manuscript is available on research square (doi: 10.21203/rs.3.rs-1857436/v1).


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/complicaciones , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , FN-kappa B/metabolismo , Antígeno B7-H1 , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Ciclooxigenasa 2/metabolismo , Estudios Prospectivos , Transducción de Señal , Pronóstico , ARN Mensajero , Recurrencia
3.
Hum Reprod ; 39(3): 496-503, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38177083

RESUMEN

STUDY QUESTION: Does sperm DNA recover from damage in all men after 2 years from the end of cytotoxic treatments? SUMMARY ANSWER: The current indication of 2 years waiting time for seeking natural pregnancy after cytotoxic treatment may not be adequate for all men, since severe sperm DNA damage is present in a proportion of subjects even after this timeframe. WHAT IS KNOWN ALREADY: Data in the literature on sperm DNA fragmentation (SDF) in lymphoma patients after cytotoxic treatments are scarce. The largest longitudinal study evaluated paired pre- and post-therapy (up to 24 months) semen samples from 34 patients while one study performed a longer follow-up (36 months) in 10 patients. The median/mean SDF values >24 months after therapy did not show significant differences but the studies did not explore the proportion of patients with severe DNA damage and the analysis was done on frozen-thawed samples. STUDY DESIGN, SIZE, DURATION: In this study, 53 Hodgkin lymphoma (HL) and 25 non-Hodgkin lymphoma (NHL) post-pubertal patients were included over a recruitment period of 10 years (2012-2022). Among them, 18 subjects provided paired semen samples for SDF analysis at the three time points. SDF was evaluated in patients before (T0) and after 2 (T2) and 3 years (T3) from the end of, cytotoxic treatments (chemotherapy alone or in combination with radiotherapy). A cohort of 79 healthy, fertile, and normozoospermic men >18 years old served as controls (recruited between 2016 and 2019). PARTICIPANTS/MATERIALS, SETTING, METHODS: SDF was evaluated on fresh semen samples (i.e. spermatozoa potentially involved in natural conception) from patients and controls using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay coupled with flow cytometry. SDF median values were compared between groups: (i) HL and NHL patients versus controls at the three time points; (ii) HL versus NHL patients at baseline; and (iii) patients at T0 versus T2 and T3. Severe DNA damage (SDD) was defined for SDF levels above the 95th percentile of controls (50%) and the proportion of patients with SDD at all time points was established. MAIN RESULTS AND THE ROLE OF CHANCE: At T0, patients displayed higher median SDF than controls, reaching statistical significance in the NHL group: 40.5% [IQR: 31.3-52.6%] versus 28% [IQR: 22-38%], P < 0.05. Comparing SDF pre-treatment to that post-treatment, HL patients exhibited similar median values at the three time points, whereas NHL showed significantly lower values at T3 compared to T0: 29.2% [IQR: 22-38%] versus 40.5% [IQR: 31.3-52.6%], P < 0.05. The proportion with SDD in the entire cohort at T2 was 11.6% and 13.3% among HL and NHL patients, respectively. At T3, only one in 16 NHL patients presented SDD. LIMITATIONS, REASONS FOR CAUTION: TUNEL assay requires at least 5 million spermatozoa to be performed; hence, severe oligozoospermic men were not included in the study. Although our cohort represents the largest one in the literature, the relatively small number of patients does not allow us to establish precisely the frequency of SDD at T2 which in our study reached 11-13% of patients. WIDER IMPLICATIONS OF THE FINDINGS: Our data provide further insights into the long-term effects of cytotoxic treatments on the sperm genome. The persistent severe DNA damage after 2 years post-treatment observed in some patients suggests that there is an interindividual variation in restoring DNA integrity. We propose the use of SDF as a biomarker to monitor the treatment-induced genotoxic effects on sperm DNA in order to better personalize pre-conceptional counseling on whether to use fresh or cryopreserved spermatozoa. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grants from the Istituto Toscano Tumori (ITT), Fondazione Ente Cassa di Risparmio di Firenze, the European Commission-Reproductive Biology Early Research Training (REPROTRAIN). C.K., G.F., V.R., and A.R.-E. belong to COST Action CA20119 (ANDRONET) which is supported by the European Cooperation in Science and Technology (www.cost.eu). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Antineoplásicos , Enfermedad de Hodgkin , Linfoma no Hodgkin , Embarazo , Femenino , Humanos , Masculino , Adolescente , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/genética , Semen , Fragmentación del ADN , Espermatogénesis/genética , Estudios Longitudinales , Espermatozoides , Antineoplásicos/farmacología , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/genética , ADN
4.
Cancer Immunol Res ; 12(3): 296-307, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38240659

RESUMEN

The classical Hodgkin lymphoma (cHL) environment is comprised of a dense and complex immune cell infiltrate interspersed with rare malignant Hodgkin-Reed-Sternberg (HRS) cells. HRS cells are actively surveilled by endogenous T cells, but data linking phenotypic and functional T-cell states with clonality at the single-cell level in cHL is lacking. To address this knowledge gap, we performed paired single-cell RNA and T-cell receptor sequencing on 14 cHL and 5 reactive lymphoid tissue specimens. Conventional CD4+ T cells dominated the cHL landscape. However, recurrent clonal expansion within effector and exhausted CD8+ T-cell and regulatory T-cell clusters was uniquely observed in cHL specimens. Multiplex flow cytometric analysis revealed that most lymphoma-resident T cells produced effector cytokines upon ex vivo restimulation, arguing against a profound dysfunctional T-cell state in cHL. Our results raise new questions about the nature of T cells that mediate the antilymphoma response following programmed cell death protein 1 (PD-1) blockade therapy in cHL.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/genética , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patología , Citometría de Flujo/métodos , Linfocitos T Reguladores/metabolismo , Análisis de la Célula Individual
5.
Sci Rep ; 14(1): 710, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184757

RESUMEN

Classic Hodgkin lymphoma (cHL) is characterized by a rich immune microenvironment as the main tumor component. It involves a broad range of cell populations, which are largely unexplored, even though they are known to be essential for growth and survival of Hodgkin and Reed-Sternberg cells. We profiled the gene expression of 25 FFPE cHL samples using NanoString technology and resolved their microenvironment compositions using cell-deconvolution tools, thereby generating patient-specific signatures. The results confirm individual immune fingerprints and recognize multiple clusters enriched in refractory patients, highlighting the relevance of: (1) the composition of immune cells and their functional status, including myeloid cell populations (M1-like, M2-like, plasmacytoid dendritic cells, myeloid-derived suppressor cells, etc.), CD4-positive T cells (exhausted, regulatory, Th17, etc.), cytotoxic CD8 T and natural killer cells; (2) the balance between inflammatory signatures (such as IL6, TNF, IFN-γ/TGF-ß) and MHC-I/MHC-II molecules; and (3) several cells, pathways and genes related to the stroma and extracellular matrix remodeling. A validation model combining relevant immune and stromal signatures identifies patients with unfavorable outcomes, producing the same results in an independent cHL series. Our results reveal the heterogeneity of immune responses among patients, confirm previous findings, and identify new functional phenotypes of prognostic and predictive utility.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/genética , Matriz Extracelular , Células Mieloides , Células de Reed-Sternberg , Linfocitos T CD4-Positivos , Antígenos de Histocompatibilidad Clase II , Microambiente Tumoral/genética
6.
Nature ; 625(7996): 778-787, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081297

RESUMEN

The scarcity of malignant Hodgkin and Reed-Sternberg cells hampers tissue-based comprehensive genomic profiling of classic Hodgkin lymphoma (cHL). By contrast, liquid biopsies show promise for molecular profiling of cHL due to relatively high circulating tumour DNA (ctDNA) levels1-4. Here we show that the plasma representation of mutations exceeds the bulk tumour representation in most cases, making cHL particularly amenable to noninvasive profiling. Leveraging single-cell transcriptional profiles of cHL tumours, we demonstrate Hodgkin and Reed-Sternberg ctDNA shedding to be shaped by DNASE1L3, whose increased tumour microenvironment-derived expression drives high ctDNA concentrations. Using this insight, we comprehensively profile 366 patients, revealing two distinct cHL genomic subtypes with characteristic clinical and prognostic correlates, as well as distinct transcriptional and immunological profiles. Furthermore, we identify a novel class of truncating IL4R mutations that are dependent on IL-13 signalling and therapeutically targetable with IL-4Rα-blocking antibodies. Finally, using PhasED-seq5, we demonstrate the clinical value of pretreatment and on-treatment ctDNA levels for longitudinally refining cHL risk prediction and for detection of radiographically occult minimal residual disease. Collectively, these results support the utility of noninvasive strategies for genotyping and dynamic monitoring of cHL, as well as capturing molecularly distinct subtypes with diagnostic, prognostic and therapeutic potential.


Asunto(s)
ADN Tumoral Circulante , Genoma Humano , Genómica , Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/sangre , Enfermedad de Hodgkin/clasificación , Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/genética , Mutación , Células de Reed-Sternberg/metabolismo , Microambiente Tumoral , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Análisis de Expresión Génica de una Sola Célula , Genoma Humano/genética
8.
Cells ; 12(23)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067159

RESUMEN

Classical Hodgkin lymphoma (cHL) is a highly curable disease (70-80%), even though long-term toxicities, drug resistance, and predicting clinical responses to therapy are major challenges in cHL treatment. To solve these problems, we characterized two cHL cell lines with acquired resistance to doxorubicin, KM-H2dx and HDLM-2dx (HRSdx), generated from KM-H2 and HDLM-2 cells, respectively. HRSdx cells developed cross-resistance to vinblastine, bendamustin, cisplatin, dacarbazine, gemcitabine, brentuximab vedotin (BV), and γ-radiation. Both HDLM-2 and HDLM-2dx cells had intrinsic resistance to BV but not to the drug MMAE. HDLM-2dx acquired cross-resistance to caelyx. HRSdx cells had in common decreased CD71, CD80, CD54, cyt-ROS, HLA-DR, DDR1, and CD44; increased Bcl-2, CD58, COX2, CD26, CCR5, and invasive capability; increased CCL5, TARC, PGE2, and TGF-ß; and the capability of hijacking monocytes. In HRSdx cells less sensitive to DNA damage and oxidative stress, the efflux drug transporters MDR1 and MRP1 were not up-regulated, and doxorubicin accumulated in the cytoplasm rather than in the nucleus. Both the autophagy inhibitor chloroquine and extracellular vesicle (EV) release inhibitor GW4869 enhanced doxorubicin activity and counteracted doxorubicin resistance. In conclusion, this study identifies common modulated antigens in HRSdx cells, the associated cross-resistance patterns, and new potential therapeutic options to enhance doxorubicin activity and overcome resistance.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/genética , Doxorrubicina , Brentuximab Vedotina/uso terapéutico , Inmunosupresores/uso terapéutico , Resistencia a Múltiples Medicamentos
9.
Best Pract Res Clin Haematol ; 36(4): 101514, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38092473

RESUMEN

The tumor microenvironment (TMicroE) and tumor macroenvironment (TMacroE) are defining features of classical Hodgkin lymphoma (cHL). They are of critical importance to clinicians since they explain the common signs and symptoms, allow us to classify these neoplasms, develop prognostic and predictive biomarkers, bioimaging and novel treatments. The TMicroE is defined by effects of cancer cells to their immediate surrounding and within the tumor. Effects of cancer cells at a distance or outside of the tumor define the TMacroE. Paraneoplastic syndromes are signs and symptoms due to effects of cancer at a distance or the TMacroE, which are not due to direct cancer cell infiltration. The most common paraneoplastic symptoms are B-symptoms, which manifest as fevers, chills, drenching night sweats, and/or weight loss. Less common paraneoplastic syndromes include those that affect the central nervous system, skin, kidney, and hematological autoimmune phenomena including hemophagocytic lymphohistiocytosis (HLH). Paraneoplastic signs such as leukocytosis, lymphopenia, anemia, and hypoalbuminemia are prognostic biomarkers. The neoplastic cells in cHL are the Hodgkin and Reed Sternberg (HRS) cells, which are preapoptotic germinal center B cells with a high mutational burden and almost universal genetic alterations at the 9p24.1 locus primarily through copy gain and amplification with strong activation of signaling via PD-L1, JAK-STAT, NFkB, and c-MYC. In the majority of cases of cHL over 95% of the tumor cells are non-neoplastic. In the TMicroE, HRS cells recruit and mold non-neoplastic cells vigorously via extracellular vesicles, chemokines, cytokines and growth factors such as CCL5, CCL17, IL6, and TGF-ß to promote a feed-forward inflammatory loop, which drives cancer aggressiveness and anti-cancer immune evasion. Novel single cell profiling techniques provide critical information on the role in cHL of monocytes-macrophages, neutrophils, T helper, Tregs, cytotoxic CD8+ T cells, eosinophils, mast cells and fibroblasts. Here, we summarize the effects of EBV on the TMicroE and TMacroE. In addition, how the metabolism of the TMicroE of cHL affects bioimaging and contributes to cancer aggressiveness is reviewed. Finally, we discuss how the TMicroE is being leveraged for risk adapted treatment strategies based on bioimaging results and novel immune therapies. In sum, it is clear that we cannot effectively manage patients with cHL without understanding the TMicroE and TMacroE and its clinical importance is expected to continue to grow rapidly.


Asunto(s)
Enfermedad de Hodgkin , Síndromes Paraneoplásicos , Humanos , Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/terapia , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patología , Síndromes Paraneoplásicos/metabolismo , Síndromes Paraneoplásicos/patología , Biomarcadores/metabolismo , Microambiente Tumoral
10.
Cancer Res Commun ; 3(11): 2312-2330, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37910143

RESUMEN

The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE: Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/genética , Células de Reed-Sternberg/metabolismo , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Nuclear Pequeño/metabolismo
11.
Int J Biol Macromol ; 253(Pt 2): 126744, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37689284

RESUMEN

Plasmacytoma Variant Translocation 1 (PVT1) is a long non-coding RNA located at 8q24.21 immediately downstream of MYC. Both the linear and circular PVT1 transcripts contribute to cancer pathogenesis by binding microRNAs. However, little is known about their roles in B-cell lymphoma. Here we studied their expression patterns, role in growth, and ability to bind miRNAs in B-cell lymphoma. Linear PVT1 transcripts were downregulated in B-cell cell lymphoma lines compared to germinal center B cells, while circPVT1 levels were increased. Two Hodgkin lymphoma cell lines had a homozygous deletion including the 5' region of the PVT1 locus, resulting in a complete lack of circPVT1 and 5' linear PVT1 transcripts. Inhibition of both linear and circular PVT1 decreased growth of Burkitt lymphoma, while the effects on Hodgkin lymphoma and diffuse large B cell lymphoma were less pronounced. Overexpression of circPVT1 promoted growth of B-cell lymphoma lacking or having low endogenous circPVT1 levels. Contrary to other types of cancer, linear and circular PVT1 transcripts did not interact with miRNAs in B-cell lymphoma. Overall, we showed an opposite expression pattern of linear and circular PVT1 in B-cell lymphoma. Their effect on growth was independent of their ability to bind miRNAs.


Asunto(s)
Linfoma de Burkitt , Enfermedad de Hodgkin , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Hodgkin/genética , Homocigoto , Eliminación de Secuencia , Proliferación Celular/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral
12.
Front Immunol ; 14: 1208610, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37559724

RESUMEN

Introduction: Normal CD30+ B cells represent a distinct B-cell differentiation stage with features of strong activation. We lack an in depth understanding of these cells, because they are not present in peripheral blood and are typically very rare in reactive lymphoid organs. CD30+ B cells have been discussed as a potential precursor population for the malignant CD30+ Hodgkin and Reed-Sternberg cells in classical Hodgkin lymphoma. As CD30+ B cells can be more numerous in some cases of reactive lymphadenitis, we aimed to characterize these CD30+ B cells in terms of their differentiation stage and clonal composition, also as a means to clarify whether such CD30+ B-cell populations may represent potential precursor lesions of Hodgkin lymphoma. Methods: We microdissected single CD30+ B cells from tissue sections of eight reactive lymph nodes with substantial numbers of such cells and sequenced their rearranged immunoglobulin (Ig) heavy chain V region (IGHV) genes. Results: The CD30+ B cells were polyclonal B cells in all instances, and they not only encompass post-germinal center (GC) B cells with mutated IGHV genes, but also include a substantial fraction of pre-germinal center B cells with unmutated IGHV genes. In five of the lymph nodes, mostly small clonal expansions were detected among the CD30+ B cells. Most of the expanded clones carried somatically mutated IGHV genes and about half of the mutated clones showed intraclonal diversity. Discussion: We conclude that in human reactive lymph nodes with relatively many CD30+ B cells, these cells are a heterogenous population of polyclonal B cells encompassing activated pre-GC B cells as well as GC and post-GC B cells, with some clonal expansions. Because of their polyclonality and frequent pre-GC differentiation stage, there is no indication that such cell-rich CD30+ B-cell populations represent precursor lesions of Hodgkin lymphoma.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/genética , Genes de Inmunoglobulinas , Ganglios Linfáticos/patología , Cadenas Pesadas de Inmunoglobulina/genética , Diferenciación Celular , Células Clonales
13.
Blood Adv ; 7(19): 5911-5924, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37552109

RESUMEN

Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is underinvestigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (Ig) and T-cell receptor (TCR) rearrangements was performed in paired cHL diagnoses and recurrences among 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal Ig rearrangements were detected by next-generation sequencing (NGS) in 69 of 120 (58%) diagnoses and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24 of 34 patients (71%). Clonally unrelated cHL was observed in 10 of 34 patients (29%) as determined by IG-NGS clonality assessment and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of >2 years, ∼60% of patients with cHL for whom the clonal relationship could be established showed a second primary cHL. Clonal TCR gene rearrangements were identified in 14 of 125 samples (11%), and TCL-associated gene mutations were detected in 7 of 14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged >50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based Ig/TCR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células T , Linfoma , Humanos , Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Estudios Retrospectivos , Recurrencia Local de Neoplasia , Inmunoglobulinas
14.
Curr Res Transl Med ; 71(3): 103403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37490812

RESUMEN

Coexisting malignancies is not only an uncommon event but, it can also represent a medical challenge. Its complexity relies on the difficulty of management and the need for personalized and prioritized therapeutic approaches, on the one hand, and in the potential misdiagnosis of recurrence or even a de novo disease, on the other. Here, we present a case of a 69-year-old patient, who was initially diagnosed with a chronic myelomonocytic leukemia (CMML), followed by monoclonal gammopathy of uncertain significance (MGUS). Few years later, the patient developed Hodgkin's lymphoma (HL), and a new mutation, previously undocumented in the medical literature, was also detected. As a conclusion, we can say that the decision must be taken with caution and must be based on two major factors: 1- The rapid evolution of malignancies: give priority to treating the most rapid/life-threatening disease. 2- Prioritize the treatment of symptomatic disease and/or that which may most improve patients' quality of life.


Asunto(s)
Neoplasias Hematológicas , Enfermedad de Hodgkin , Gammopatía Monoclonal de Relevancia Indeterminada , Humanos , Anciano , Calidad de Vida , Enfermedad de Hodgkin/complicaciones , Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/genética , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Mutación
15.
Semin Hematol ; 60(3): 157-163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37422345

RESUMEN

Hodgkin lymphoma is a B-cell lymphoma often affecting young adults. Outcomes following intensive chemo- and radiotherapy are generally favourable but leave patients at high risk for early and late toxicities frequently reducing quality of life. Relapsed/refractory disease is regularly difficult to treat and ultimately results in death in a relevant subset of patients. Current strategies for risk stratification and response evaluation rely on clinical features and imaging only, and lack discriminatory power to detect patients at risk for disease progression. Here, we explore how circulating tumor DNA sequencing might help to overcome these shortcomings. We provide an overview over recent technical and methodological developments and suggest potential use cases for different clinical situations. Circulating tumor DNA sequencing offers the potential to significantly augment current risk stratification strategies with the ultimate goal of further individualizing treatment strategies for patients with HL.


Asunto(s)
ADN Tumoral Circulante , Enfermedad de Hodgkin , Adulto Joven , Humanos , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/patología , ADN Tumoral Circulante/genética , Calidad de Vida
16.
Semin Diagn Pathol ; 40(6): 379-391, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37451943

RESUMEN

Classic Hodgkin lymphoma (CHL) is a unique form of lymphoid cancer featuring a heterogeneous tumor microenvironment and a relative paucity of malignant Hodgkin and Reed-Sternberg (HRS) cells with characteristic phenotype. Younger individuals (children, adolescents and young adults) are affected as often as the elderly, producing a peculiar bimodal age-incidence profile that has generated immense interest in this disease and its origins. Decades of epidemiological investigations have documented the populations most susceptible and identified multiple risk factors that can be broadly categorized as either biological or environmental in nature. Most risk factors result in overt immunodeficiency or confer more subtle alterations to baseline health, physiology or immune function. Epstein Barr virus, however, is both a risk factor and well-established driver of lymphomagenesis in a significant subset of cases. Epigenetic changes, along with the accumulation of somatic driver mutations and cytogenetic abnormalities are required for the malignant transformation of germinal center-experienced HRS cell precursors. Chromosomal instability and the influence of endogenous mutational processes are critical in this regard, by impacting genes involved in key signaling pathways that promote the survival and proliferation of HRS cells and their escape from immune destruction. Here we review the principal features, known risk factors and lymphomagenic mechanisms relevant to newly diagnosed CHL, with an emphasis on those most applicable to young people.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad de Hodgkin , Niño , Adolescente , Adulto Joven , Humanos , Anciano , Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4 , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patología , Factores de Riesgo , Microambiente Tumoral
17.
BMC Med Genomics ; 16(Suppl 1): 170, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474945

RESUMEN

BACKGROUND: Despite the advancements in multiagent chemotherapy in the past years, up to 10% of Hodgkin's Lymphoma (HL) cases are refractory to treatment and, after remission, patients experience an elevated risk of death from all causes. These complications are dependent on the treatment and therefore an increase in the prognostic accuracy of HL can help improve these outcomes and control treatment-related toxicity. Due to the low incidence of this cancer, there is a lack of works comprehensively assessing the predictability of treatment response, especially by resorting to machine learning (ML) advances and high-throughput technologies. METHODS: We present a methodology for predicting treatment response after two courses of Adriamycin, Bleomycin, Vinblastine and Dacarbazine (ABVD) chemotherapy, through the analysis of gene expression profiles using state-of-the-art ML algorithms. We work with expression levels of tumor samples of Classical Hodgkin's Lymphoma patients, obtained through the NanoString's nCounter platform. The presented approach combines dimensionality reduction procedures and hyperparameter optimization of various elected classifiers to retrieve reference predictability levels of refractory response to ABVD treatment using the regulatory profile of diagnostic tumor samples. In addition, we propose a data transformation procedure to map the original data space into a more discriminative one using biclustering, where features correspond to discriminative putative regulatory modules. RESULTS: Through an ensemble of feature selection procedures, we identify a set of 14 genes highly representative of the result of an fuorodeoxyglucose Positron Emission Tomography (FDG-PET) after two courses of ABVD chemotherapy. The proposed methodology further presents an increased performance against reference levels, with the proposed space transformation yielding improvements in the majority of the tested predictive models (e.g. Decision Trees show an improvement of 20pp in both precision and recall). CONCLUSIONS: Taken together, the results reveal improvements for predicting treatment response in HL disease by resorting to sophisticated statistical and ML principles. This work further consolidates the current hypothesis on the structural difficulty of this prognostic task, showing that there is still a considerable gap to be bridged for these technologies to reach the necessary maturity for clinical practice.


Asunto(s)
Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/complicaciones , Transcriptoma , Bleomicina/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Vinblastina/uso terapéutico , Vinblastina/efectos adversos , Dacarbazina/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
18.
Exp Cell Res ; 430(2): 113718, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37468057

RESUMEN

The prognosis of patients with relapsed and/or refractory classic Hodgkin lymphoma (cHL) continues to be poor. Therefore, there is a continuing need to develop novel therapies and to rationalize the use of target combinations. In recent years there has been growing interest in epigenetic targets for hematological malignancies under the rationale of the presence of common alterations in epigenetic transcriptional regulation. Since Hodgkin and Reed-Sternberg (HRS) cells have frequent inactivating mutations of the CREBBP and EP300 acetyltransferases, bromodomain and extra-terminal (BET) inhibitors can be a rational therapy for cHL. Here we aimed to confirm the efficacy of BET inhibitors (iBETs) using representative cell models and functional experiments, and to further explore biological mechanisms under iBET treatment using whole-transcriptome analyses. Our results reveal cytostatic rather than cytotoxic activity through the induction of G1/S and G2/M cell-cycle arrest, in addition to variable MYC downregulation. Additionally, massive changes in the transcriptome induced by the treatment include downregulation of relevant pathways in cHL disease: NF-kB and E2F, among others. Our findings support the therapeutic use of iBETs in selected cHL patients and reveal previously unknown biological mechanisms and consequences of pan-BET inhibition.


Asunto(s)
Antineoplásicos , Enfermedad de Hodgkin , Humanos , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patología , FN-kappa B/metabolismo , Regulación hacia Abajo/genética , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Antineoplásicos/uso terapéutico
19.
Front Immunol ; 14: 1155468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266436

RESUMEN

Recent discoveries shed light on molecular mechanisms responsible for classical Hodgkin lymphoma (HL) development and progression, along with features of Hodgkin - Reed and Sternberg cells (HRS). Here, we summarize current knowledge on characteristic molecular alterations in HL, as well as existing targeted therapies and potential novel treatments for this disease. We discuss the importance of cluster of differentiation molecule 30 (CD30) and the programmed cell death-1 protein (PD-1) and ligands (PD-L1/2), and other molecules involved in immune modulation in HL. We highlight emerging evidence indicating that the altered function of SWI/SNF-type chromatin remodeling complexes, PRC2, and other epigenetic modifiers, contribute to variations in chromatin status, which are typical for HL. We postulate that despite of the existence of plentiful molecular data, the understanding of HL development remains incomplete. We therefore propose research directions involving analysis of reverse signaling in the PD-1/PD-L1 mechanism, chromatin remodeling, and epigenetics-related alterations, in order to identify HL features at the molecular level. Such attempts may lead to the identification of new molecular targets, and thus will likely substantially contribute to the future development of more effective targeted therapies.


Asunto(s)
Enfermedad de Hodgkin , Células de Reed-Sternberg , Humanos , Células de Reed-Sternberg/metabolismo , Células de Reed-Sternberg/patología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Enfermedad de Hodgkin/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...