Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.811
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150010, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704892

RESUMEN

Calcium (Ca2+) in mitochondria plays crucial roles in neurons including modulating metabolic processes. Moreover, excessive Ca2+ in mitochondria can lead to cell death. Thus, altered mitochondrial Ca2+ regulation has been implicated in several neurodegenerative diseases including Huntington's disease (HD). HD is a progressive hereditary neurodegenerative disorder that results from abnormally expanded cytosine-adenine-guanine trinucleotide repeats in the huntingtin gene. One neuropathological hallmark of HD is neuronal loss in the striatum and cortex. However, mechanisms underlying selective loss of striatal and cortical neurons in HD remain elusive. Here, we measured the basal Ca2+ levels and Ca2+ uptake in single presynaptic mitochondria during 100 external electrical stimuli using highly sensitive mitochondria-targeted Ca2+ indicators in cultured cortical and striatal neurons of a knock-in mouse model of HD (zQ175 mice). We observed elevated presynaptic mitochondrial Ca2+ uptake during 100 electrical stimuli in HD cortical neurons compared with wild-type (WT) cortical neurons. We also found the highly elevated presynaptic mitochondrial basal Ca2+ level and Ca2+ uptake during 100 stimuli in HD striatal neurons. The elevated presynaptic mitochondrial basal Ca2+ level in HD striatal neurons and Ca2+ uptake during stimulation in HD striatal and cortical neurons can disrupt neurotransmission and induce mitochondrial Ca2+ overload, eventually leading to neuronal death in the striatum and cortex of HD.


Asunto(s)
Calcio , Corteza Cerebral , Cuerpo Estriado , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Enfermedad de Huntington , Mitocondrias , Terminales Presinápticos , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Calcio/metabolismo , Mitocondrias/metabolismo , Ratones , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Terminales Presinápticos/metabolismo , Células Cultivadas , Neuronas/metabolismo , Neuronas/patología , Ratones Transgénicos
2.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759629

RESUMEN

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Asunto(s)
Amiloide , Autofagosomas , Autofagia , Proteína Huntingtina , Enfermedad de Huntington , Péptidos , Agregado de Proteínas , Proteína Sequestosoma-1 , Péptidos/metabolismo , Péptidos/química , Péptidos/genética , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/química , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Microscopía por Crioelectrón , Animales , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/genética
3.
Sci Adv ; 10(20): eadl2036, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758800

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by preferential neuronal loss in the striatum. The mechanism underlying striatal selective neurodegeneration remains unclear, making it difficult to develop effective treatments for HD. In the brains of nonhuman primates, we examined the expression of Huntingtin (HTT), the gene responsible for HD. We found that HTT protein is highly expressed in striatal neurons due to its slow degradation in the striatum. We also identified tripartite motif-containing 37 (TRIM37) as a primate-specific protein that interacts with HTT and is selectively reduced in the primate striatum. TRIM37 promotes the ubiquitination and degradation of mutant HTT (mHTT) in vitro and modulates mHTT aggregation in mouse and monkey brains. Our findings suggest that nonhuman primates are crucial for understanding the mechanisms of human diseases such as HD and support TRIM37 as a potential therapeutic target for treating HD.


Asunto(s)
Cuerpo Estriado , Proteína Huntingtina , Enfermedad de Huntington , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Animales , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Ratones , Humanos , Modelos Animales de Enfermedad , Neuronas/metabolismo , Neuronas/patología , Proteolisis , Primates
4.
Cell Death Dis ; 15(5): 337, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744826

RESUMEN

Huntington's disease (HD) is a monogenic neurodegenerative disease, caused by the CAG trinucleotide repeat expansion in exon 1 of the Huntingtin (HTT) gene. The HTT gene encodes a large protein known to interact with many proteins. Huntingtin-associated protein 40 (HAP40) is one that shows high binding affinity with HTT and functions to maintain HTT conformation in vitro. However, the potential role of HAP40 in HD pathogenesis remains unknown. In this study, we found that the expression level of HAP40 is in parallel with HTT but inversely correlates with mutant HTT aggregates in mouse brains. Depletion of endogenous HAP40 in the striatum of HD140Q knock-in (KI) mice leads to enhanced mutant HTT aggregation and neuronal loss. Consistently, overexpression of HAP40 in the striatum of HD140Q KI mice reduced mutant HTT aggregation and ameliorated the behavioral deficits. Mechanistically, HAP40 preferentially binds to mutant HTT and promotes Lysine 48-linked ubiquitination of mutant HTT. Our results revealed that HAP40 is an important regulator of HTT protein homeostasis in vivo and hinted at HAP40 as a therapeutic target in HD treatment.


Asunto(s)
Proteína Huntingtina , Enfermedad de Huntington , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Ratones , Humanos , Modelos Animales de Enfermedad , Ubiquitinación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Mutación , Agregado de Proteínas , Ratones Transgénicos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Neuronas/metabolismo , Neuronas/patología
5.
Transl Neurodegener ; 13(1): 17, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561866

RESUMEN

Huntington's disease (HD) is a devastating neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein, resulting from a CAG repeat expansion in the huntingtin gene HTT. HD is characterized by a variety of debilitating symptoms including involuntary movements, cognitive impairment, and psychiatric disturbances. Despite considerable efforts, effective disease-modifying treatments for HD remain elusive, necessitating exploration of novel therapeutic approaches, including lifestyle modifications that could delay symptom onset and disease progression. Recent studies suggest that time-restricted eating (TRE), a form of intermittent fasting involving daily caloric intake within a limited time window, may hold promise in the treatment of neurodegenerative diseases, including HD. TRE has been shown to improve mitochondrial function, upregulate autophagy, reduce oxidative stress, regulate the sleep-wake cycle, and enhance cognitive function. In this review, we explore the potential therapeutic role of TRE in HD, focusing on its underlying physiological mechanisms. We discuss how TRE might enhance the clearance of mHTT, recover striatal brain-derived neurotrophic factor levels, improve mitochondrial function and stress-response pathways, and synchronize circadian rhythm activity. Understanding these mechanisms is critical for the development of targeted lifestyle interventions to mitigate HD pathology and improve patient outcomes. While the potential benefits of TRE in HD animal models are encouraging, future comprehensive clinical trials will be necessary to evaluate its safety, feasibility, and efficacy in persons with HD.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Animales , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedad de Huntington/metabolismo , Ayuno , Estrés Oxidativo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38617831

RESUMEN

Background: Huntington's disease like 2 (HDL2) has been reported exclusively in patients with African ancestry, mostly originating from South Africa. Case report: We report three patients in Mali including a proband and his two children who have been examined by neurologists and psychiatrists after giving consent. They were aged between 28 and 56 years old. Psychiatric symptoms were predominant in the two younger patients while the father presented mainly with motor symptoms. Genetic testing identified a heterozygous 40 CTG repeat expansion in the Junctophilin-3 (JPH3) gene in all three patients. Discussion: This study supports the hypothesis that HDL2 may be widely spread across Africa. Highlights: We report here the first case of HDL2 in West Africa, suggesting that HDL2 is widely spread across African continent, and increasing access to genetic testing could uncover other cases.


Asunto(s)
Enfermedad de Huntington , Niño , Humanos , Adulto , Persona de Mediana Edad , Malí , Enfermedad de Huntington/genética , Familia , Pruebas Genéticas , Heterocigoto
8.
Nat Commun ; 15(1): 3182, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609352

RESUMEN

Huntington's disease (HD) is a dominant neurological disorder caused by an expanded HTT exon 1 CAG repeat that lengthens huntingtin's polyglutamine tract. Lowering mutant huntingtin has been proposed for treating HD, but genetic modifiers implicate somatic CAG repeat expansion as the driver of onset. We find that branaplam and risdiplam, small molecule splice modulators that lower huntingtin by promoting HTT pseudoexon inclusion, also decrease expansion of an unstable HTT exon 1 CAG repeat in an engineered cell model. Targeted CRISPR-Cas9 editing shows this effect is not due to huntingtin lowering, pointing instead to pseudoexon inclusion in PMS1. Homozygous but not heterozygous inactivation of PMS1 also reduces CAG repeat expansion, supporting PMS1 as a genetic modifier of HD and a potential target for therapeutic intervention. Although splice modulation provides one strategy, genome-wide transcriptomics also emphasize consideration of cell-type specific effects and polymorphic variation at both target and off-target sites.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/genética , Exones/genética , Perfilación de la Expresión Génica , Heterocigoto , Homocigoto , Proteínas MutL , Proteínas de Neoplasias
9.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38589228

RESUMEN

Protein misfolding, aggregation, and spread through the brain are primary drivers of neurodegenerative disease pathogenesis. Phagocytic glia are responsible for regulating the load of pathological proteins in the brain, but emerging evidence suggests that glia may also act as vectors for aggregate spread. Accumulation of protein aggregates could compromise the ability of glia to eliminate toxic materials from the brain by disrupting efficient degradation in the phagolysosomal system. A better understanding of phagocytic glial cell deficiencies in the disease state could help to identify novel therapeutic targets for multiple neurological disorders. Here, we report that mutant huntingtin (mHTT) aggregates impair glial responsiveness to injury and capacity to degrade neuronal debris in male and female adult Drosophila expressing the gene that causes Huntington's disease (HD). mHTT aggregate formation in neurons impairs engulfment and clearance of injured axons and causes accumulation of phagolysosomes in glia. Neuronal mHTT expression induces upregulation of key innate immunity and phagocytic genes, some of which were found to regulate mHTT aggregate burden in the brain. A forward genetic screen revealed Rab10 as a novel component of Draper-dependent phagocytosis that regulates mHTT aggregate transmission from neurons to glia. These data suggest that glial phagocytic defects enable engulfed mHTT aggregates to evade lysosomal degradation and acquire prion-like characteristics. Together, our findings uncover new mechanisms that enhance our understanding of the beneficial and harmful effects of phagocytic glia in HD and other neurodegenerative diseases.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila , Drosophila , Proteína Huntingtina , Enfermedad de Huntington , Neuroglía , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Neuroglía/metabolismo , Neuroglía/patología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Femenino , Masculino , Fagocitosis/fisiología , Lisosomas/metabolismo , Fagosomas/metabolismo , Animales Modificados Genéticamente , Priones/metabolismo , Priones/genética , Neuronas/metabolismo
10.
Clin Neurophysiol ; 162: 121-128, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603947

RESUMEN

AIM: The aim of this study was to investigate the characteristics of the electrophysiological brain response elicited in a passive acoustic oddball paradigm, i.e. mismatch negativity (MMN), in patients with Huntington's disease (HD) in the premanifest (pHD) and manifest (mHD) phases. In this regard, we correlated the results of event-related potentials (ERP) with disease characteristics. METHODS: This was an observational cross-sectional MMN study. In addition to the MMN recording of the passive oddball task, all subjects with first-degree inheritance for HD underwent genetic testing for mutant HTT, the Huntington's Disease Rating Scale, the Total Functional Capacity Scale, the Problem Behaviors Assessment short form, and the Mini-Mental State Examination. RESULTS: We found that global field power (GFP) was reduced in the MMN time window in mHD patients compared to pHD and normal controls (NC). In the pHD group, MMN amplitude was only slightly and not significantly increased compared to mHD, while pHD patients showed increased theta coherence between trials compared to mHD. In the entire sample of HD gene carriers, the main MMN traits were not correlated with motor performance, cognitive impairment and functional disability. CONCLUSION: These results suggest an initial and subtle deterioration of pre-attentive mechanisms in the presymptomatic phase of HD, with an increasing phase shift in the MMN time frame. This result could indicate initial functional changes with a possible compensatory effect. SIGNIFICANCE: An initial and slight decrease in MMN associated with increased phase coherence in the corresponding EEG frequencies could indicate an early functional involvement of pre-attentive resources that could precede the clinical expression of HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/fisiopatología , Enfermedad de Huntington/genética , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios Transversales , Electroencefalografía/métodos , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Síntomas Prodrómicos
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166928, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38660915

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder with clinical presentations of moderate to severe cognitive, motor, and psychiatric disturbances. HD is caused by the trinucleotide repeat expansion of CAG of the huntingtin (HTT) gene. The mutant HTT protein containing pathological polyglutamine (polyQ) extension is prone to misfolding and aggregation in the brain. It has previously been observed that copper and iron concentrations are increased in the striata of post-mortem human HD brains. Although it has been shown that the accumulation of mutant HTT protein can interact with copper, the underlying HD progressive phenotypes due to copper overload remains elusive. Here, in a Drosophila model of HD, we showed that copper induces dose-dependent aggregational toxicity and enhancement of Htt-induced neurodegeneration. Specifically, we found that copper increases mutant Htt aggregation, enhances the accumulation of Thioflavin S positive ß-amyloid structures within Htt aggregates, and consequently alters autophagy in the brain. Administration of copper chelator D-penicillamine (DPA) through feeding significantly decreases ß-amyloid aggregates in the HD pathological model. These findings reveal a direct role of copper in potentiating mutant Htt protein-induced aggregational toxicity, and further indicate the potential impact of environmental copper exposure in the disease onset and progression of HD.


Asunto(s)
Cobre , Proteína Huntingtina , Enfermedad de Huntington , Animales , Humanos , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Cobre/metabolismo , Cobre/toxicidad , Modelos Animales de Enfermedad , Drosophila melanogaster/efectos de los fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Mutación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología
12.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607933

RESUMEN

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Regiones no Traducidas 3'/genética , Endodesoxirribonucleasas , Exodesoxirribonucleasas/genética , Estudio de Asociación del Genoma Completo , Enfermedad de Huntington/genética , MicroARNs/genética , Enzimas Multifuncionales
13.
Neurobiol Dis ; 195: 106488, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565397

RESUMEN

Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington , Polirribosomas , Ribosomas , Animales , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/genética , Ratones , Polirribosomas/metabolismo , Ribosomas/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Ratones Transgénicos , Progresión de la Enfermedad , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética
14.
J Neurol Sci ; 459: 122979, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569376

RESUMEN

INTRODUCTION: Huntington's disease (HD) is a hereditary neurodegenerative disease, currently lacking disease-modifying treatments. Biomarkers are needed for objective assessment of disease progression. Evidence supports both complex protein aggregation and astrocyte activation in HD. This study assesses the 42 amino acid long amyloid beta (Aß42) and glial fibrillary acidic protein (GFAP) as potential biomarkers in the cerebrospinal fluid (CSF) of HD mutation carriers. METHODS: CSF from participants was obtained from three sites in Sweden. Clinical symptoms were graded with the composite Unified Huntington's disease rating scale (cUHDRS). Protein concentrations were measured using ELISA. Pearson correlations were calculated to assess disease progression association. Results were adjusted for age and collection site. RESULTS: The study enrolled 28 manifest HD patients (ManHD), 13 premanifest HD gene-expansion carriers (PreHD) and 20 controls. Aß42 levels did not differ between groups and there was no correlation with measures of disease progression. GFAP concentration was higher in ManHD (424 ng/l, SD 253) compared with both PreHD (266 ng/l, SD 92.4) and controls (208 ng/l, SD 83.7). GFAP correlated with both cUHDRS (r = -0.77, p < 0.001), and 5-year risk of disease onset (r = 0.70, p = 0.008). CONCLUSION: We provide evidence that indicates CSF Aß42 has limited potential as a biomarker for HD. GFAP is a potential biomarker of progression in HD. Validation in larger cohorts measuring GFAP in blood and CSF would be of interest.


Asunto(s)
Proteína Ácida Fibrilar de la Glía , Enfermedad de Huntington , Humanos , Péptidos beta-Amiloides , Biomarcadores , Progresión de la Enfermedad , Enfermedad de Huntington/genética
15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612657

RESUMEN

Huntington's disease (HD) arises from the abnormal expansion of CAG repeats in the huntingtin gene (HTT), resulting in the production of the mutant huntingtin protein (mHTT) with a polyglutamine stretch in its N-terminus. The pathogenic mechanisms underlying HD are complex and not yet fully elucidated. However, mHTT forms aggregates and accumulates abnormally in neuronal nuclei and processes, leading to disruptions in multiple cellular functions. Although there is currently no effective curative treatment for HD, significant progress has been made in developing various therapeutic strategies to treat HD. In addition to drugs targeting the neuronal toxicity of mHTT, gene therapy approaches that aim to reduce the expression of the mutant HTT gene hold great promise for effective HD therapy. This review provides an overview of current HD treatments, discusses different therapeutic strategies, and aims to facilitate future therapeutic advancements in the field.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Terapia Genética , Proteínas Mutantes
16.
J Biomed Sci ; 31(1): 37, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627751

RESUMEN

BACKGROUND: Huntington's disease (HD) is marked by a CAG-repeat expansion in the huntingtin gene that causes neuronal dysfunction and loss, affecting mainly the striatum and the cortex. Alterations in the neurovascular coupling system have been shown to lead to dysregulated energy supply to brain regions in several neurological diseases, including HD, which could potentially trigger the process of neurodegeneration. In particular, it has been observed in cross-sectional human HD studies that vascular alterations are associated to impaired cerebral blood flow (CBF). To assess whether whole-brain changes in CBF are present and follow a pattern of progression, we investigated both resting-state brain perfusion and vascular reactivity longitudinally in the zQ175DN mouse model of HD. METHODS: Using pseudo-continuous arterial spin labelling (pCASL) MRI in the zQ175DN model of HD and age-matched wild-type (WT) mice, we assessed whole-brain, resting-state perfusion at 3, 6 and 9 and 13 months of age, and assessed hypercapnia-induced cerebrovascular reactivity (CVR), at 4.5, 6, 9 and 15 months of age. RESULTS: We found increased perfusion in cortical regions of zQ175DN HET mice at 3 months of age, and a reduction of this anomaly at 6 and 9 months, ages at which behavioural deficits have been reported. On the other hand, under hypercapnia, CBF was reduced in zQ175DN HET mice as compared to the WT: for multiple brain regions at 6 months of age, for only somatosensory and retrosplenial cortices at 9 months of age, and brain-wide by 15 months. CVR impairments in cortical regions, the thalamus and globus pallidus were observed in zQ175DN HET mice at 9 months, with whole brain reactivity diminished at 15 months of age. Interestingly, blood vessel density was increased in the motor cortex at 3 months, while average vessel length was reduced in the lateral portion of the caudate putamen at 6 months of age. CONCLUSION: Our findings reveal early cortical resting-state hyperperfusion and impaired CVR at ages that present motor anomalies in this HD model, suggesting that further characterization of brain perfusion alterations in animal models is warranted as a potential therapeutic target in HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Ratones , Animales , Lactante , Enfermedad de Huntington/genética , Estudios Transversales , Hipercapnia , Encéfalo , Modelos Animales de Enfermedad , Perfusión
18.
Biochem Soc Trans ; 52(2): 719-731, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563485

RESUMEN

The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Péptidos , Humanos , Amiloide/química , Amiloide/metabolismo , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Péptidos/química , Péptidos/metabolismo , Agregado de Proteínas , Pliegue de Proteína
19.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498709

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Nucleotidiltransferasas/genética , ADN , Apoptosis/genética , Homólogo 1 de la Proteína MutL/genética
20.
Zool Res ; 45(2): 275-283, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38485497

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disorder for which there is currently no effective treatment available. Consequently, the development of appropriate disease models is critical to thoroughly investigate disease progression. The genetic basis of HD involves the abnormal expansion of CAG repeats in the huntingtin ( HTT) gene, leading to the expansion of a polyglutamine repeat in the HTT protein. Mutant HTT carrying the expanded polyglutamine repeat undergoes misfolding and forms aggregates in the brain, which precipitate selective neuronal loss in specific brain regions. Animal models play an important role in elucidating the pathogenesis of neurodegenerative disorders such as HD and in identifying potential therapeutic targets. Due to the marked species differences between rodents and larger animals, substantial efforts have been directed toward establishing large animal models for HD research. These models are pivotal for advancing the discovery of novel therapeutic targets, enhancing effective drug delivery methods, and improving treatment outcomes. We have explored the advantages of utilizing large animal models, particularly pigs, in previous reviews. Since then, however, significant progress has been made in developing more sophisticated animal models that faithfully replicate the typical pathology of HD. In the current review, we provide a comprehensive overview of large animal models of HD, incorporating recent findings regarding the establishment of HD knock-in (KI) pigs and their genetic therapy. We also explore the utilization of large animal models in HD research, with a focus on sheep, non-human primates (NHPs), and pigs. Our objective is to provide valuable insights into the application of these large animal models for the investigation and treatment of neurodegenerative disorders.


Asunto(s)
Enfermedad de Huntington , Enfermedades de las Ovejas , Enfermedades de los Porcinos , Animales , Ovinos , Porcinos , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/veterinaria , Modelos Animales de Enfermedad , Primates/genética , Encéfalo/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedades de las Ovejas/metabolismo , Enfermedades de las Ovejas/patología , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...