Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673933

RESUMEN

The aim of this study was to provide a comprehensive understanding of similarities and differences in mRNAs, lncRNAs, and circRNAs within cartilage for Kashin-Beck disease (KBD) compared to osteoarthritis (OA). We conducted a comparison of the expression profiles of mRNAs, lncRNAs, and circRNAs via whole-transcriptome sequencing in eight KBD and ten OA individuals. To facilitate functional annotation-enriched analysis for differentially expressed (DE) genes, DE lncRNAs, and DE circRNAs, we employed bioinformatic analysis utilizing Gene Ontology (GO) and KEGG. Additionally, using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), we validated the expression levels of four cartilage-related genes in chondrocytes. We identified a total of 43 DE mRNAs, 1451 DE lncRNAs, and 305 DE circRNAs in KBD cartilage tissue compared to OA (q value < 0.05; |log2FC| > 1). We also performed competing endogenous RNA network analysis, which identified a total of 65 lncRNA-mRNA interactions and 4714 miRNA-circRNA interactions. In particular, we observed that circRNA12218 had binding sites for three miRNAs targeting ACAN, while circRNA12487 had binding sites for seven miRNAs targeting COL2A1. Our results add a novel set of genes and non-coding RNAs that could potentially serve as candidate diagnostic biomarkers or therapeutic targets for KBD patients.


Asunto(s)
Enfermedad de Kashin-Beck , Osteoartritis , ARN Circular , ARN Largo no Codificante , ARN Mensajero , Transcriptoma , Humanos , Enfermedad de Kashin-Beck/genética , ARN Largo no Codificante/genética , Masculino , Femenino , Persona de Mediana Edad , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética , Osteoartritis/genética , Perfilación de la Expresión Génica/métodos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Anciano , Articulación de la Rodilla/patología , Articulación de la Rodilla/metabolismo , MicroARNs/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Biología Computacional/métodos , Condrocitos/metabolismo , Agrecanos/genética , Agrecanos/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Adulto
2.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003226

RESUMEN

OBJECTIVE: Kashin-Beck disease (KBD) is a kind of endemic and chronic osteochondropathy in China. This study aims to explore the functional relevance and potential mechanism of Wnt-inducible signaling pathway protein 1 (WISP1) in the pathogenesis of KBD. DESIGN: KBD and control cartilage specimens were collected for tissue section observation and primary chondrocyte culture. Firstly, the morphological and histopathological observations were made under a light and electron microscope. Then, the expression levels of WISP1 as well as molecular markers related to the autophagy pathway and extracellular matrix (ECM) synthesis were detected in KBD and control chondrocytes by qRT-PCR, Western blot, and immunohistochemistry. Furthermore, the lentiviral transfection technique was applied to make a WISP1 knockdown cell model based on KBD chondrocytes. In vitro intervention experiments were conducted on the C28/I2 human chondrocyte cell line using human recombinant WISP1 (rWISP1). RESULTS: The results showed that the autolysosome appeared in the KBD chondrocytes. The expression of WISP1 was significantly higher in KBD chondrocytes. Additionally, T-2 toxin, a risk factor for KBD onset, could up-regulate the expression of WISP1 in C28/I2. The autophagy markers ATG4C and LC3II were upregulated after the low-concentration treatment of T-2 toxin and downregulated after the high-concentration treatment. After knocking down WISP1 expression in KBD chondrocytes, MAP1LC3B decreased while ATG4C and COL2A1 increased. Moreover, the rWISP1 protein treatment in C28/I2 chondrocytes could upregulate the expression of ATG4C and LC3II at the beginning and downregulate them then. CONCLUSIONS: Our study suggested that WISP1 might play a role in the pathogenesis of KBD through autophagy.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Toxina T-2 , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , Toxina T-2/metabolismo , Línea Celular , Vía de Señalización Wnt , Autofagia , Condrocitos/metabolismo , Cartílago Articular/metabolismo
3.
Toxins (Basel) ; 15(8)2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37624253

RESUMEN

T-2 toxin and selenium deficiency are considered important etiologies of Kashin-Beck disease (KBD), although the exact mechanism is still unclear. To identify differentially expressed microRNAs (DE-miRNAs) in the articular cartilage of rats exposed to T-2 toxin and selenomethionine (SeMet) supplementation, thirty-six 4-week-old Sprague Dawley rats were divided into a control group (gavaged with 4% anhydrous ethanol), a T-2 group (gavaged with 100 ng/g·bw/day T-2 toxin), and a T-2 + SeMet group (gavaged with 100 ng/g·bw/day T-2 toxin and 0.5 mg/kg·bw/day SeMet), respectively. Toluidine blue staining was performed to detect the pathological changes of articular cartilage. Three rats per group were randomly selected for high-throughput sequencing of articular cartilage. Target genes of DE-miRNAs were predicted using miRanda and RNAhybrid databases, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway were enriched. The network map of miRNA-target genes was constructed using Cytoscape software. The expression profiles of miRNAs associated with KBD were obtained from the Gene Expression Omnibus database. Additionally, the DE-miRNAs were selected for real-time quantitative PCR (RT-qPCR) verification. Toluidine blue staining demonstrated that T-2 toxin damaged articular cartilage and SeMet effectively alleviated articular cartilage lesions. A total of 50 DE-miRNAs (28 upregulated and 22 downregulated) in the T-2 group vs. the control group, 18 DE-miRNAs (6 upregulated and 12 downregulated) in the T-2 + SeMet group vs. the control group, and 25 DE-miRNAs (5 upregulated and 20 downregulated) in the T-2 + SeMet group vs. the T-2 group were identified. Enrichment analysis showed the target genes of DE-miRNAs were associated with apoptosis, and in the MAPK and TGF-ß signaling pathways in the T-2 group vs. the control group. However, the pathway of apoptosis was not significant in the T-2 + SeMet group vs. the control group. These results indicated that T-2 toxin induced apoptosis, whereas SeMet supplementation antagonized apoptosis. Apoptosis and autophagy occurred simultaneously in the T-2 + SeMet group vs. T-2 group, and autophagy may inhibit apoptosis to protect cartilage. Compared with the GSE186593 dataset, the evidence of miR-133a-3p involved in apoptosis was more abundant. The results of RT-qPCR validation were consistent with RNA sequencing results. Our findings suggested that apoptosis was involved in articular cartilage lesions induced by T-2 toxin, whereas SeMet supplementation antagonized apoptosis, and that miR-133a-3p most probably played a central role in the apoptosis process.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , MicroARNs , Toxina T-2 , Ratas , Animales , Toxina T-2/toxicidad , Selenometionina/farmacología , Cloruro de Tolonio , Ratas Sprague-Dawley , Enfermedad de Kashin-Beck/genética , MicroARNs/genética
4.
Osteoarthritis Cartilage ; 30(12): 1606-1615, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096467

RESUMEN

OBJECTIVE: To explore the association between oxidative stress (OS) and Kashin-Beck disease (KBD). METHODS: Terms associated with "KBD" and "OS" were searched in the six different databases up to October 2021. Stata 14.0 was used to pool the means and standard deviations using random-effect or fixed-effect model. The differentially expressed genes in the articular chondrocytes of KBD were identified, the OS related genes were identified by blasting with the GeneCards. The KEGG pathway and gene ontology enrichment analysis was conducted using STRING. RESULTS: The pooled SMD and 95% CI showed hair selenium (-4.59; -6.99, -2.19), blood selenium (-1.65; -2.86, -0.44) and glutathione peroxidases (-4.15; -6.97, -1.33) levels were decreased in KBD, whereas the malondialdehyde (1.12; 0.60, 1.64), nitric oxide (2.29; 1.31, 3.27), nitric oxide synthase (1.07; 0.81, 1.33) and inducible nitric oxide synthase (1.69; 0.62, 2.77) were increased compared with external controls. Meanwhile, hair selenium (-2.71; -5.32, -0.10) and glutathione peroxidases (-1.00; -1.78, -0.22) in KBD were decreased, whereas the malondialdehyde (1.42; 1.04, 1.80), nitric oxide (3.08; 1.93, 4.22) and inducible nitric oxide synthase (0.81; 0.00, 1.61) were elevated compared with internal controls. Enrichment analysis revealed apoptosis was significantly correlated with KBD. The significant biological processes revealed OS induced the release of cytochrome c from mitochondria. The cellular component of OS located in the mitochondrial outer membrane. CONCLUSIONS: The OS levels in KBD were significantly increased because of selenium deficiency, OS mainly occurred in mitochondrial outer membrane, released of cytochrome c from mitochondria, and induced apoptotic signaling pathway.


Asunto(s)
Enfermedad de Kashin-Beck , Selenio , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Selenio/metabolismo , Biología Computacional , Óxido Nítrico/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacología , Estrés Oxidativo , Malondialdehído/farmacología , Glutatión/metabolismo , Glutatión/farmacología , Peroxidasas/metabolismo , Peroxidasas/farmacología
5.
Cells ; 11(16)2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-36010590

RESUMEN

Glycoproteins are involved in the development of many diseases, while the type and content of N-glycoproteins in the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) are still unclear. This research aims to identify N-glycoproteins in knee cartilage patients with OA and KBD compared with normal control (N) adults. The cartilage samples were collected from gender- and age-matched OA (n = 9), KBD (n = 9) patients, and N (n = 9) adults. Glycoproteomics and label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) obtained N-glycoproteins of KBD and OA. A total of 594 N-glycoproteins and 1146 N-glycosylation peptides were identified. The identified data were further compared and analyzed with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interactions (PPI). Pairwise comparison of the glycoproteins detected in the three groups showed that integrin beta-1 (ITGB1), collagen alpha-1 (II) chain (COL2A1), collagen alpha-1 (VII) chain (COL7A1), carbohydrate sulfotransferase 3 (CHST-3), carbohydrate sulfotransferase 4 (CHST-4), thrombospondin 2 (THBS2), bone morphogenetic protein 8A (BMP8A), tenascin-C (TNC), lysosome-associated membrane protein (LAMP2), and beta-glucuronidase (GUSB) were significantly differentially expressed. GO results suggested N-glycoproteins mainly belonged to protein metabolic process, single-multicellular and multicellular organism process, cell adhesion, biological adhesion, and multicellular organism development. KEGG and PPI results revealed that key N-glycoproteins were closely related to pathways for OA and KBD, such as phagosome, ECM-receptor interaction, lysosome, focal adhesion, protein digestion, and absorption. These results reflected glycoprotein expression for OA and KBD in the process of ECM degradation, material transport, cell-cell or cell-ECM interaction, and information transduction. These key significantly differentially expressed N-glycoproteins and pathways lead to the degeneration and degradation of the cartilage of OA and KBD mainly by disrupting the synthesis and catabolism of basic components of ECM and chondrocytes and interfering with the transfer of material or information. The key N-glycoproteins or pathways in this research are potential targets for pathological mechanisms and therapies of OA and KBD.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Osteoartritis , Adulto , Cartílago Articular/metabolismo , Cromatografía Liquida , Colágeno Tipo VII/metabolismo , Glicoproteínas/metabolismo , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , Rodilla , Osteoartritis/metabolismo , Espectrometría de Masas en Tándem
6.
Arthritis Res Ther ; 24(1): 129, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35637503

RESUMEN

BACKGROUND: Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. METHODS: Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. RESULTS: The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. CONCLUSION: Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Kashin-Beck , Osteoartritis de la Rodilla , China/epidemiología , Heces , Microbioma Gastrointestinal/genética , Humanos , Enfermedad de Kashin-Beck/genética , Osteoartritis de la Rodilla/genética
7.
Chin Med Sci J ; 37(1): 52-59, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35256049

RESUMEN

Objective This study was designed to determine the methylation profile of four CpGs and the genotypes of two CpG-SNPs located in promoter region of DIO2 in patients with Kashin-Beck disease (KBD). We also analyzed the interaction between the CpGs methylations and CpG-SNPs. Methods Whole blood specimens were collected from 16 KBD patients and 16 healthy subjects. Four CpGs and two CpG-SNPs in the promoter regions of DIO2 were detected using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The CpGs methylation levels were compared between samples from KBD patients and healthy subjects. The methylation levels were also analyzed in KBD patients with different CpG-SNP genotypes. Results The mRNA expression of DIO2 in whole blood of KBD patients was significnatly lower than in healthy controls (P <0.05). The methylation levels of DIO2-1_CpG_3 in KBD patients were significantly higher than those in healthy controls (P <0.05). The methylation levels of four CpGs were not significantly different between KBD patients and healthy controls. The methylation level of DIO2-1_CpG_3 in the promoter region of DIO2 in KBD patients with GA/AA genotype was significantly higher than that of KBD patients with GG genotype (P <0.05). Conclusion The methylation level of DIO2 increases in KBD patients. Similar trends exist in KBD carriers of variant genotypes of CpG-SNPs DIO2 rs955849187.


Asunto(s)
Yoduro Peroxidasa/genética , Enfermedad de Kashin-Beck , Estudios de Casos y Controles , Humanos , Enfermedad de Kashin-Beck/genética , Metilación , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Yodotironina Deyodinasa Tipo II
8.
BMC Musculoskelet Disord ; 23(1): 3, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980041

RESUMEN

BACKGROUND: The etiology of Kashin-Beck disease (KBD), an endemic osteochondropathy, is largely unknown. Matrix metalloproteinase-3 (MMP-3) plays a central role in the initiation and progression of cartilage destruction, however, no study has reported on the relationship between KBD and MMP-3. The objective of this study was to explore the polymorphism of MMP-3 gene and expression of MMP-3 / TIMP-1(Tissue inhibitors of matrixmetalloproteinases-1) in the pathogenesis of KBD. METHODS: Single nucleotide polymorphism (SNP) genotyping was conducted in 274 KBD cases and 248 healthy controls for eight SNPs in MMP-3 using the Sequenom MassARRAY system. Additionally, the expression of MMP-3、TIMP-1 in different layers of the articular cartilage was analyzed by immunohistochemistry for 22 KBD patients, 15 osteoarthritis (OA) patients and 21 controls. RESULTS: The results showed that six SNPs (rs520540、rs591058、rs679620、rs602128、rs639752 and rs678815) in MMP-3 were associated with the increased risk of KBD, however, after Bonferroni correction, only the SNP rs679620 in the recessive model remained significant difference (OR = 2.31, 95%CI = 1.29-4.14, P = 0.0039), homozygous for "T" allele have a risk for KBD than "C" allele carriers. Moreover, the percentages of cells expressing MMP-3 in articular cartilage were significantly higher in the KBD and OA groups than in the controls (t = 5.37 and 4.19, P<0.01). While the KBD and OA groups had lower levels of TIMP-1 positive staining compared with the controls (t = 5.23and 5.06, P<0.01). And there was no significant different between KBD and OA for the levels of MMP-3 and TIMP-1 positive staining (t = 0.05and 0.28, P>0.05). CONCLUSIONS: MMP-3 is associated with the susceptibility of KBD, and the imbalance expression of MMPs / TIMPs leading to cartilage degradation may play an important role in cartilage degradation and osteoarthritis formation in OA and KBD.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Condrocitos , Humanos , Enfermedad de Kashin-Beck/diagnóstico , Enfermedad de Kashin-Beck/epidemiología , Enfermedad de Kashin-Beck/genética , Metaloproteinasa 3 de la Matriz/genética , Inhibidor Tisular de Metaloproteinasa-1/genética
9.
BMC Mol Cell Biol ; 23(1): 4, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35038982

RESUMEN

BACKGROUND: T-2 toxin is thought to induce the growth plate and articular cartilage damage of Kashin-Beck disease (KBD), an endemic osteochondropathy in China. This study aims to explore the potential underlying mechanism of such toxic effects by integrating DNA methylation and gene expression profiles. METHODS: In this study, C28/I2 chondrocytes were treated with T-2 toxin (5 ng/mL) for 24 h and 72 h. Global DNA methylation level of chondrocyte was tested by Enzyme-Linked Immuno Sorbent Assay. Genome-wide DNA methylation and expression profiles were detected using Illumina Infinium HumanMethylation850 BeadChip and RNA-seq technique, respectively. Differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were identified mainly for two stages including 24 h group versus Control group and 72 h group versus 24 h group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed by Metascape. DMGs and DEGs were further validated by Sequenom MassARRAY system and quantitative real-time polymerase chain reaction. RESULTS: The global DNA methylation levels of chondrocytes exposed to T-2 toxin were significantly increased (P < 0.05). For 24 h group versus Control group (24 VS C), 189 DEGs and 590 DMGs were identified, and 4 of them were overlapping. For 72 h group versus 24 h group (72 VS 24), 1671 DEGs and 637 DMGs were identified, and 45 of them were overlapping. The enrichment analysis results of DMGs and DEGs both showed that MAPK was the one of the mainly involved signaling pathways in the regulation of chondrocytes after T-2 toxin exposure (DEGs: P24VSc = 1.62 × 10- 7; P72VS24 = 1.20 × 10- 7; DMGs: P24VSc = 0.0056; P72VS24 = 3.80 × 10- 5). CONCLUSIONS: The findings depicted a landscape of genomic methylation and transcriptome changes of chondrocytes after T-2 toxin exposure and suggested that dysfunction of MAPK pathway may play important roles in the chondrocytes damage induced by T-2 toxin, which could provide new clues for understanding the potential biological mechanism of KBD cartilage damage induced by T-2 toxin.


Asunto(s)
Enfermedad de Kashin-Beck , Toxina T-2 , Condrocitos , Metilación de ADN , Humanos , Enfermedad de Kashin-Beck/genética , Toxina T-2/toxicidad , Transcriptoma
10.
J Bone Miner Metab ; 40(2): 317-326, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35059888

RESUMEN

INTRODUCTION: The aims of the study were to investigate the relationship between aldehyde dehydrogenase 1 family member A2 (ALDH1A2) and Kashin-Beck disease (KBD), explore the effects of the rs3204689 polymorphism and methylation status on the expression levels of ALDH1A2, and further clarify the pathogenesis of KBD. MATERIALS AND METHODS: The genotype of ALDH1A2 rs3204689 was detected by PCR-RFLP in 103 KBD patients and 109 healthy controls in the whole blood. The mRNA level of ALDH1A2 was measured by qRT-PCR, and the protein expression was detected using IHC staining and Western blotting. The MSP-PCR was used to identify the ALDH1A2 methylation level. RESULTS: There were significant differences in G/G, G/C, and C/C frequencies of ALDH1A2 rs3204689 between the KBD and control groups (χ2 = 7.113, P = 0.029); the minor allele G of ALDH1A2 was associated with the risk of KBD (χ2 = 5.984, P = 0.014). The mRNA and protein levels of ALDH1A2 were increased in the whole blood and cartilage of KBD patients compared with the controls (P = 0.049, P < 0.0001, P = 0.019). Meanwhile, a statistically significant difference was observed between G/G, G/C and C/C genotype on mRNA expression (P = 0.039). The methylation level of the ALDH1A2 gene promoter region showed no significant difference between the KBD and control groups (χ2 = 0.317, P = 0.573). CONCLUSION: Our case-control study indicates that the common variant rs3204689 near ALDH1A2 is associated with KBD in Chinese population. The risk allele G of rs3204689 is statistically linked to the high expression of ALDH1A2, which is up-regulated in the cartilage and whole blood of KBD patients. Our findings suggest a potential role of ALDH1A2 in the pathogenesis of KBD.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1 , Enfermedad de Kashin-Beck , Retinal-Deshidrogenasa , Familia de Aldehído Deshidrogenasa 1/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Sitios de Carácter Cuantitativo , Retinal-Deshidrogenasa/genética
11.
Biol Trace Elem Res ; 200(2): 543-550, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33844169

RESUMEN

To evaluate the association between selenoprotein gene polymorphisms and Kashin-Beck disease (KBD) susceptibility through a systematic review and updated meta-analysis. PubMed, Google Scholar, Cochrane library, and Chinese National Knowledge Infrastructure (CNKI) were electronically searched using the terms "selenoprotein" and "Kashin-Beck disease" or "KBD" with a search time from the establishment of the database to January 2021. The Newcastle-Ottawa Scale (NOS) was used for methodological quality evaluation of the included studies. Stata 14.0 software was used to pooled odds ratio (OR) and 95% confidence interval. There were a total of eight included case-control studies covering 2025 KBD patients and 1962 controls. Meta-analysis results show that the pooled odds ratios (OR) and 95% confidence intervals (CI) for DIO2 (rs225014) were 0.69 (0.52, 0.91), 0.69 (0.50, 0.96), and 0.72 (0.52, 0.99) in the allele, heterozygote, and dominant models, respectively. The OR and 95%CI for SEPS1 (-105G>A) were 2.47 (1.85, 3.29), 9.36 (4.58, 19.12), 2.17 (1.53, 3.08), and 8.60 (4.25, 17.38) in the allele, homozygote, dominant, and recessive models, respectively. In addition, the OR and 95%CI for Sep15 (rs5859) were 2.05 (1.06, 3.96) in the allele model. These results illustrate that there was a significant association between DIO2 (rs225014), SEPS1 (-105G>A), Sep15 (rs5859), and KBD. For GPX1 (rs1050450, rs1800668, rs3811699), DIO2 (rs225014, rs1352815, rs1388382), TrxR2 (rs1139793, rs5746841), GPX4 (rs713041, rs4807542), and SEPP1 (rs7579, 25191g/a), there was no significant statistical difference between the KBD and control groups (P>0.05). We conclude that the DIO2 (rs225014), SEPS1 (-105G>A), and Sep15 (rs5859) gene polymorphism are associated with susceptibility to KBD.


Asunto(s)
Enfermedad de Kashin-Beck , Pueblo Asiatico , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de Kashin-Beck/genética , Polimorfismo de Nucleótido Simple/genética , Selenoproteína P , Selenoproteínas/genética
12.
FEBS J ; 289(1): 279-293, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34324261

RESUMEN

Kashin-Beck disease (KBD) is an endemic osteochondropathy. Due to a lack of suitable animal or cellular disease models, the research progress on KBD has been limited. Our goal was to establish the first disease-specific human induced pluripotent stem cell (hiPSC) cellular disease model of KBD, and to explore its etiology and pathogenesis exploiting transcriptome sequencing. HiPSCs were reprogrammed from dermal fibroblasts of two KBD and one healthy control donor via integration-free vectors. Subsequently, hiPSCs were differentiated into chondrocytes through three-week culture. Gene expression profiles in KBD, normal primary chondrocytes, and hiPSC-derived chondrocytes were defined by RNA sequencing. A Venn diagram was constructed to show the number of shared differentially expressed genes (DEGs) between KBD and normal. Gene oncology and Kyoto Encyclopedia of Genes and Genomes annotations were performed, and six DEGs were further validated in other individuals by RT-qPCR. KBD cellular disease models were successfully established by generation of hiPSC lines. Seventeen consistent and significant DEGs present in all compared groups (KBD and normal) were identified. RT-qPCR validation gave consistent results with the sequencing data. Glycosaminoglycan biosynthesis-heparan sulfate/heparin; PPAR signaling pathway; and cell adhesion molecules (CAMs) were identified to be significantly altered in KBD. Differentiated chondrocytes derived from KBD-origin hiPSCs provide the first cellular disease model for etiological studies of KBD. This study also provides new sights into the pathogenesis and etiology of KBD and is likely to inform the development of targeted therapeutics for its treatment.


Asunto(s)
Proteoglicanos de Heparán Sulfato/genética , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Kashin-Beck/genética , Transcriptoma/genética , Condrocitos/citología , Condrocitos/metabolismo , Regulación de la Expresión Génica/genética , Proteoglicanos de Heparán Sulfato/biosíntesis , Humanos , Células Madre Pluripotentes Inducidas/citología , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , Receptores Activados del Proliferador del Peroxisoma/genética , Cultivo Primario de Células , Biosíntesis de Proteínas/genética , Transducción de Señal/genética
13.
Biol Trace Elem Res ; 200(4): 1508-1517, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34176076

RESUMEN

Kashin-Beck disease (KBD) is a chronic, degenerative osteoarthropathy related to selenium (Se) deficiency. Se participates in the synthesis of selenoprotein in the form of selenocysteine. In total, 25 selenoproteins, encoded by 25 genes, are currently found in humans; however, the effects of selenoprotein genes on chondrocyte apoptosis, particularly in apoptosis-related genes, remain poorly elucidated. Therefore, in the current study, the expression of selenoprotein genes and apoptosis-related genes were determined by RT-qPCR in patients and chondrocytes and the correlations between them were analyzed using Pearson and Spearman's rank correlation, and the chondrocyte apoptosis rate was detected by Annexin V-FITC/PI. The results showed that the mRNA levels of 17 selenoprotein genes were downregulated, whereas two genes were upregulated in patients with KBD. The BAX/BCL2 ratio and the mRNA levels of BAX and P53 were increased, but the mRNA levels of BCL2 and NF-κB p65 were decreased in patients with KBD. The mRNA levels of GPX2, GPX3, DIO1, TXNRD1, TXNRD3, and SPS2 were most closely associated with apoptosis-related genes in patients with KBD. Moreover, in the Se deficiency group, the mRNA levels of GPX3, DIO1, and TXNRD1 were downregulated and GPX activity was decreased, but the late apoptosis rate, the mRNA levels of BAX and P53, and the BAX/BCL2 ratio were increased; the opposite trend was observed in the Se supplement group. Collectively, these results indicate that selenoprotein transcription profile is dysregulated in patients with KBD. Furthermore, the expression of GPX3, DIO1, and TXNRD1 genes might be involved in the development of chondrocyte apoptosis by affecting antioxidant capacity.


Asunto(s)
Enfermedad de Kashin-Beck , Selenio , Apoptosis/genética , Condrocitos/metabolismo , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Selenio/farmacología , Selenoproteínas/genética , Selenoproteínas/metabolismo
14.
Rheumatology (Oxford) ; 61(8): 3471-3480, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34888649

RESUMEN

OBJECTIVE: Kashin-Beck disease (KBD) is an endemic osteoarthropathy, in which excessive apoptosis of chondrocytes occurs. O6-methylguanine-DNA methyltransferase (MGMT), a DNA damage repair gene, plays an important role in apoptosis, but the mechanism is unclear in KBD cartilage injury. This study was to investigate the expression and promoter methylation of MGMT in KBD patients and its role in DNA damage and apoptosis of chondrocytes. METHODS: MGMT mRNA and protein level were detected by quantitative real-time PCR and immunohistochemistry. Demethylation of MGMT was carried out using 5-Aza-2'-deoxycytidine, and the methylation level of MGMT promoter was measured by quantitative methylation specific PCR. Next, small hairpin RNA was used to knockdown the expression of MGMT. Cell viability, apoptosis and DNA damage were determined by MTT assay, flow cytometry, Hoechst 33342 staining and alkaline comet assay following T-2 toxin and selenium treatment. RESULTS: MGMT protein expression and mRNA levels were decreased (P = 0.02, P = 0.007) and promoter methylation was increased (P = 0.008) in KBD patients. Meanwhile, MGMT level was upregulated by 5-Aza-2'-deoxycytidine in chondrocytes (P = 0.0002). DNA damage and apoptosis rates were increased in MGMT-silenced chondrocytes (all P < 0.0001). Furthermore, DNA damage and apoptosis were increased in chondrocytes treated with T-2 toxin (all P < 0.0001), but were decreased after selenium treatment (P < 0.0001, P = 0.01). Decreased mRNA level and increased methylation of MGMT were found in the T-2 toxin group (P = 0.005, P = 0.002), while selenium reversed it (P = 0.02, P = 0.004). CONCLUSIONS: MGMT might play a crucial part in the pathogenesis of KBD cartilage injury, which could provide a therapeutic target for KBD.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Selenio , Toxina T-2 , Cartílago Articular/metabolismo , Condrocitos/metabolismo , ADN , Metilación de ADN , Decitabina/farmacología , Regulación hacia Abajo , Guanina/análogos & derivados , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , ARN Mensajero/metabolismo , Toxina T-2/metabolismo
15.
Mol Omics ; 18(2): 154-166, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34913457

RESUMEN

Kashin-Beck disease (KBD) is a chronic, endemic and deforming osteochondropathy, whose basic pathological alterations include apoptosis and necrosis of chondrocytes in articular cartilage and growth plates and imbalanced extracellular matrix metabolism. Numerous studies have reported that long noncoding RNAs (lncRNAs) and microRNA (miRNAs) are aberrantly expressed in KBD. Our study was comprised of 5 KBD patients and 5 healthy individuals and we compared the expression profiles of mRNAs, lncRNAs and miRNAs through RNA-sequencing (RNA-seq). Bioinformatic analysis of GO and KEGG was employed to conduct functional annotation and pathway enriched analysis. In total, 3194 mRNAs, 4103 lncRNAs and 1550 miRNAs were detected to be differentially expressed by RNA-seq (P < 0.05; |log2FC| ≥1). The lysosome pathway, Wnt signaling pathway, TNF signaling pathway, endocytosis and mTOR signaling pathway were identified to be involved in the KBD development according to the result of the KEGG analysis. In addition, a ceRNA network based on lncRNA-miRNA-mRNA was constructed to probe the intricate regulatory mechanism and interaction between transcripts, which was visualized using the Cytoscape software. The ce-lncRNAs of four aberrantly expressed genes, FOSB, EGR3, BCAM and SOX6, were determined through the network. Among the identified DElncRNAs, we selected 8 differentially expressed lncRNAs to confirm the reliability of RNA-seq data by qRT-PCR in 11 KBD patients and 11 healthy individuals. We aimed to provide a comprehensive understanding ofmRNA, lncRNA and miRNA alterations between KBD patients and healthy individuals, and meanwhile reveal several potential causative molecular and signaling pathways involved in KBD.


Asunto(s)
Enfermedad de Kashin-Beck , MicroARNs , ARN Largo no Codificante , Redes Reguladoras de Genes , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados
16.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-928247

RESUMEN

Objective This study was designed to determine the methylation profile of four CpGs and the genotypes of two CpG-SNPs located in promoter region of DIO2 in patients with Kashin-Beck disease (KBD). We also analyzed the interaction between the CpGs methylations and CpG-SNPs. Methods Whole blood specimens were collected from 16 KBD patients and 16 healthy subjects. Four CpGs and two CpG-SNPs in the promoter regions of DIO2 were detected using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The CpGs methylation levels were compared between samples from KBD patients and healthy subjects. The methylation levels were also analyzed in KBD patients with different CpG-SNP genotypes. Results The mRNA expression of DIO2 in whole blood of KBD patients was significnatly lower than in healthy controls (P <0.05). The methylation levels of DIO2-1_CpG_3 in KBD patients were significantly higher than those in healthy controls (P <0.05). The methylation levels of four CpGs were not significantly different between KBD patients and healthy controls. The methylation level of DIO2-1_CpG_3 in the promoter region of DIO2 in KBD patients with GA/AA genotype was significantly higher than that of KBD patients with GG genotype (P <0.05). Conclusion The methylation level of DIO2 increases in KBD patients. Similar trends exist in KBD carriers of variant genotypes of CpG-SNPs DIO2 rs955849187.


Asunto(s)
Humanos , Estudios de Casos y Controles , Yoduro Peroxidasa/genética , Enfermedad de Kashin-Beck/genética , Metilación , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
17.
BMC Musculoskelet Disord ; 22(1): 1051, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930205

RESUMEN

BACKGROUND: Kashin-Beck disease (KBD) is a chronic, deforming, endemic osteochondropathy that begins in patients as young as 2-3 years of age. The pathogenesis of KBD remains unclear, although selenium (Se) deficiency and T-2 toxin food contamination are both linked to the disease. In the present study, we evaluated transforming growth factor-ß receptor (TGF-ßR I and II) levels in clinical samples of KBD and in pre-clinical disease models. METHODS: Human specimens were obtained from the hand phalanges of eight donors with KBD and eight control donors. Animal models of the disease were established using Sprague-Dawley rats, which were fed an Se-deficient diet for 4 weeks and later administered the T-2 toxin. Cartilage cellularity and morphology were examined by hematoxylin and eosin staining. Expression and localization of TGF-ßRI and II were evaluated using immunohistochemical staining and western blotting. RESULTS: In the KBD samples, chondral necrosis was detected based on cartilage cell disappearance and alkalinity loss in the matrix ground substance. In the necrotic areas, TGF-ßRI and II staining were strong. Positive percentages of TGF-ßRI and II staining were higher in the cartilage samples of KBD donors than in those of control donors. TGF-ßRI and II staining was also increased in cartilage samples from rats administered T-2 toxin or fed on Se-deficient plus T-2 toxin diets. CONCLUSION: TGF-ßRI and II may be involved in the pathophysiology of KBD. This study provides new insights into the pathways that contribute to KBD development.


Asunto(s)
Enfermedad de Kashin-Beck/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Animales , China/epidemiología , Humanos , Ratas , Ratas Sprague-Dawley
18.
Cartilage ; 13(1_suppl): 809S-817S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34130517

RESUMEN

PURPOSE: To explore the relationship between insulin-like growth factor (IGF)-1R expression and the pathological progression of Kashin-Beck disease (KBD). DESIGN: KBD cartilage samples were collected from 5 patients. Additionally, T-2 toxin was administered to rats fed a selenium (Se)-deficient diet, and their knee joints were collected. Human C28/I2 chondrocytes and mouse hypertrophic ATDC5 chondrocytes were cultured in vitro and treated with T-2 toxin and Se supplementation. Subsequently, the cultured human and mouse chondrocytes were treated with the IGF-1R inhibitor, picropodophyllin. Chondrocyte death and caspase-3 activity were analyzed using flow cytometry and a specific kit, respectively. Protein and mRNA expression levels of IGF-1R and matrix molecules were measured using immunohistochemistry, western blotting, and quantitative real-time reverse transcription-polymerase chain reaction analyses. RESULTS: The cartilages from patients with KBD and T-2 toxin-treated rats on a Se-deficient diet showed significantly decreased expression of IGF-1R compared to cartilages from controls. T-2 toxin decreased IGF-1R mRNA and protein levels in both C28/I2 and hypertrophic ATDC5 chondrocytes in a dose-dependent manner; however, Se supplementation reduced the decrease of IGF-1R induced by T-2 toxin. Furthermore, inhibition of IGF-1R resulted in chondrocyte death of C28/I2 and hypertrophic ATDC5 chondrocytes, as well as decreased type II collagen expression and increased MMP-13 expression at the mRNA and protein levels. CONCLUSION: Downregulation of IGF-1R was associated with KBD cartilage destruction. Therefore, inhibition of IGF-1R may mediate chondrocyte death and extracellular matrix degeneration related to the pathological progression of KBD.


Asunto(s)
Cartílago Articular , Condrocitos , Factor I del Crecimiento Similar a la Insulina/genética , Enfermedad de Kashin-Beck/patología , Animales , Regulación hacia Abajo , Matriz Extracelular , Humanos , Enfermedad de Kashin-Beck/genética , Ratones , ARN Mensajero , Ratas , Selenio/farmacología
19.
Bone ; 150: 115997, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33964467

RESUMEN

BACKGROUND: Kashin-Beck disease (KBD) is an endemic chronic osteochondropathy. The clinical manifestations and radiographic features of adult KBD were similar to those of osteoarthritis (OA). METHODS: We first performed a genetic association scan of 32 OA susceptibility genes with KBD in 898 Han Chinese subjects. The MassARRAY genotyping system (Agena) was used for SNP genotyping. PLINK 1.9 was used for quality control and association testing. Using articular cartilage specimens from 7 adult KBD patients and 4 control subjects, lentivirus-mediated RNA interference (RNAi), qRT-PCR, Western blot and immunohistochemistry were employed to explore the functional relevance of TP63 to KBD chondrocyte. RESULTS: SNP genotyping and association analysis identified TP63 (rs12107036, P = 0.005, OR = 0.71) and OARD1 (rs11280, P = 0.004, OR = 1.51) were significantly associated with KBD. It was also found that TP63 was significantly up-regulated in KBD articular cartilage in both mRNA and protein level compared with the controls (P < 0.05). TP63 suppression by lentivirus-mediated RNAi notably decreased the abundance of Caspase3 and SOX9 in chondrocytes. Most importantly, compared with the scrambled sequence (shControl) group, the protein level of ACAN was increased in the shTP63 group. The mRNA expression of chondrocyte marker genes (COL2A1 and ACAN) was not significantly changed after TP63 knockdown relative to shControl group. CONCLUSION: Our study identifies TP63 as a novel susceptibility gene for KBD, and demonstrates that the inhibition of TP63 suppresses chondrocyte apoptosis and partly facilitates chondrogenesis. The combination of SNP genotyping and molecular biology techniques provides a useful tool for understanding the biological mechanism and differential diagnosis studies of KBD and OA.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Osteoartritis , Adulto , Apoptosis , Cartílago Articular/diagnóstico por imagen , Condrocitos , Humanos , Enfermedad de Kashin-Beck/genética , Osteoartritis/genética , Factores de Transcripción , Proteínas Supresoras de Tumor
20.
Cartilage ; 13(1_suppl): 797S-808S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33455417

RESUMEN

OBJECTIVE: We aimed to analyze deoxycytidine-deoxyguanosine dinucleotide (CpGs) methylation profiles in DIO2, GPX3, and TXNRD1 promoter regions in osteoarthritis (OA) and Kashin-Beck disease (KBD) patients. METHODS: Blood samples were collected from 16 primary OA patients and corresponding 16 healthy individuals and analyzed for methylations in the CpGs of DIO2, GPX3, and TXNRD1 promoter regions using MALDI-TOF-MS. The methylation profiles of these regions were then compared between OA and KBD patients. RESULTS: DIO2-1_CpG_2 and DIO2-1_CpG_3 methylations were significantly lower in OA than KBD patients (P < 0.05). A similar trend was observed for GPX3-1_CpG_4, GPX3-1_CpG_7, GPX3-1_CpG_8.9.10, GPX3-1_CpG_13.14.15 and GPX3-1_CpG_16 (P < 0.05) as well as TXNRD1-1_CpG_1 and TXNRD1-1_CpG_2 methylation between OA and KBD patients (P < 0.05). However, there was no difference in methylation levels of other CpGs between the 2 groups (P > 0.05). CONCLUSION: OA and KBD patients display distinct methylation profiles in the CpG sites of DIO2, GPX3, and TXNRD1 promoter regions. These findings provide a strong background and new perspective for future studies on mechanisms underlying epigenetic regulation of selenoprotein genes associated with OA and KBD diseases.


Asunto(s)
Glutatión Peroxidasa , Yoduro Peroxidasa , Enfermedad de Kashin-Beck/genética , Osteoartritis/genética , Tiorredoxina Reductasa 1 , Anciano , Estudios de Casos y Controles , Metilación de ADN , Epigénesis Genética , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas , Selenoproteínas , Yodotironina Deyodinasa Tipo II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...