Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732047

RESUMEN

Mitochondrial dysfunction plays a major role in physiological aging and in many pathological conditions. Yet, no study has explored the consequence of primary mitochondrial deficiency on the blood-brain barrier (BBB) structure and function. Addressing this question has major implications for pharmacological and genetic strategies aimed at ameliorating the neurological symptoms that are often predominant in patients suffering from these conditions. In this study, we examined the permeability of the BBB in the Ndufs4-/- mouse model of Leigh syndrome (LS). Our results indicated that the structural and functional integrity of the BBB was preserved in this severe model of mitochondrial disease. Our findings suggests that pharmacological or gene therapy strategies targeting the central nervous system in this mouse model and possibly other models of mitochondrial dysfunction require the use of specific tools to bypass the BBB. In addition, they raise the need for testing the integrity of the BBB in complementary in vivo models.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón , Enfermedad de Leigh , Ratones Noqueados , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Animales , Barrera Hematoencefálica/metabolismo , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Mitocondrias/metabolismo , Mitocondrias/genética
2.
Neuropathol Appl Neurobiol ; 50(3): e12977, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38680020

RESUMEN

AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS. METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS. RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition. CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.


Asunto(s)
Modelos Animales de Enfermedad , Progresión de la Enfermedad , Complejo I de Transporte de Electrón , Interferón gamma , Enfermedad de Leigh , Ratones Noqueados , Animales , Enfermedad de Leigh/patología , Enfermedad de Leigh/genética , Interferón gamma/metabolismo , Ratones , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Ratones Endogámicos C57BL , Tronco Encefálico/patología , Tronco Encefálico/metabolismo
3.
Genes (Basel) ; 15(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674434

RESUMEN

Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedad de Leigh , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Femenino , Preescolar , Complejo IV de Transporte de Electrones/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Linaje , Eliminación de Secuencia
4.
Pharmacol Biochem Behav ; 234: 173689, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070656

RESUMEN

The Ndufs4 knockout (KO) mouse is a validated and robust preclinical model of mitochondrial diseases (specifically Leigh syndrome), that displays a narrow window of relative phenotypical normality, despite its inherent mitochondrial complex I dysfunction and severe phenotype. Preclinical observations related to psychiatric comorbidities that arise in patients with mitochondrial diseases and indeed in Leigh syndrome are, however, yet to be investigated in this model. Strengthening this narrative is the fact that major depression and bipolar disorder are known to present with deficits in mitochondrial function. We therefore screened the behavioural profile of male and female Ndufs4 KO mice (relative to heterozygous; HET and wildtype; WT mice) between postnatal days 28 and 35 for locomotor, depressive- and anxiety-like alterations and linked it with selected brain biomarkers, viz. serotonin, kynurenine, and redox status in brain areas relevant to psychiatric pathologies (i.e., prefrontal cortex, hippocampus, and striatum). The Ndufs4 KO mice initially displayed depressive-like behaviour in the tail suspension test on PND31 but not on PND35 in the forced swim test. In the mirror box test, increased risk resilience was observed. Serotonin levels of KO mice, compared to HET controls, were increased on PND36, together with increased tryptophan to serotonin and kynurenine turnover. Kynurenine to kynurenic acid turnover was however decreased, while reduced versus oxidized glutathione ratio (GSH/GSSG) was increased. When considering the comorbid psychiatric traits of patients with mitochondrial disorders, this work elaborates on the neuropsychiatric profile of the Ndufs KO mouse. Secondly, despite locomotor differences, Ndufs4 KO mice present with a behavioural profile not unlike rodent models of bipolar disorder, namely variable mood states and risk-taking behaviour. The model may elucidate the bio-energetic mechanisms underlying mood disorders, especially in the presence of mitochondrial disease. Studies are however required to further validate the model's translational relevance.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Humanos , Masculino , Femenino , Animales , Ratones , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Quinurenina , Serotonina , Ratones Noqueados , Trastornos del Humor/genética , Enfermedades Mitocondriales/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo
5.
Brain Pathol ; 33(6): e13192, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552802

RESUMEN

Subacute necrotizing encephalopathy, or Leigh syndrome (LS), is the most common pediatric presentation of genetic mitochondrial disease. LS is a multi-system disorder with severe neurologic, metabolic, and musculoskeletal symptoms. The presence of progressive, symmetric, and necrotizing lesions in the brainstem are a defining feature of the disease, and the major cause of morbidity and mortality, but the mechanisms underlying their pathogenesis have been elusive. Recently, we demonstrated that high-dose pexidartinib, a CSF1R inhibitor, prevents LS CNS lesions and systemic disease in the Ndufs4(-/-) mouse model of LS. While the dose-response in this study implicated peripheral immune cells, the immune populations involved have not yet been elucidated. Here, we used a targeted genetic tool, deletion of the colony-stimulating Factor 1 receptor (CSF1R) macrophage super-enhancer FIRE (Csf1rΔFIRE), to specifically deplete microglia and define the role of microglia in the pathogenesis of LS. Homozygosity for the Csf1rΔFIRE allele ablates microglia in both control and Ndufs4(-/-) animals, but onset of CNS lesions and sequalae in the Ndufs4(-/-), including mortality, are only marginally impacted by microglia depletion. The overall development of necrotizing CNS lesions is not altered, though microglia remain absent. Finally, histologic analysis of brainstem lesions provides direct evidence of a causal role for peripheral macrophages in the characteristic CNS lesions. These data demonstrate that peripheral macrophages play a key role in the pathogenesis of disease in the Ndufs4(-/-) model.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Humanos , Ratones , Animales , Niño , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Macrófagos/patología , Tronco Encefálico/patología , Modelos Animales de Enfermedad
7.
Clin Nutr ESPEN ; 56: 149-151, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37344065

RESUMEN

BACKGROUND AND AIMS: Hypercatabolism is a well-known feature of mitochondrial diseases but some patients may present with hypometabolism, as the following case. METHODS: Case report using standard investigation methods. RESULTS: The patient is a 32 years-old female with a Leigh-like syndrome due to the mtDNA variant m.10191 T > C in MT-ND3. Leigh-like syndrome is characterized by symmetric basal ganglia or brainstem lesions plus involvement of organs other than the brain. The patient presented with hypometabolism, which did not respond to ketogenic diet but responded to fasting. The patient showed a Warburg-like effect, which resulted in reliance on glucose due to the exclusion of oxidative phosphorylation with an extremely low VO2max. The patient only entered substantial ketosis when all gluconeogenic substrates were removed. Prolonged survival in the index patient may have possibly resulted from this previously unreported protective mechanism to reduce oxidative stress. The unusual Warburg-like phenomenon was interpreted as a possible mechanism of patients with a mitochondrial disease to survive into adulthood. CONCLUSIONS: This case shows that mitochondrial disease can manifest with hypometabolism and that an unusual Warburg-like effect may be responsible in some patients with mitochondrial disease to survive into adulthood.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Humanos , Femenino , Adulto , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mutación , Encéfalo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , ADN Mitocondrial/genética , Síndrome
9.
Hum Mol Genet ; 32(15): 2441-2454, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37133451

RESUMEN

MRPL39 encodes one of 52 proteins comprising the large subunit of the mitochondrial ribosome (mitoribosome). In conjunction with 30 proteins in the small subunit, the mitoribosome synthesizes the 13 subunits of the mitochondrial oxidative phosphorylation (OXPHOS) system encoded by mitochondrial Deoxyribonucleic acid (DNA). We used multi-omics and gene matching to identify three unrelated individuals with biallelic variants in MRPL39 presenting with multisystem diseases with severity ranging from lethal, infantile-onset (Leigh syndrome spectrum) to milder with survival into adulthood. Clinical exome sequencing of known disease genes failed to diagnose these patients; however quantitative proteomics identified a specific decrease in the abundance of large but not small mitoribosomal subunits in fibroblasts from the two patients with severe phenotype. Re-analysis of exome sequencing led to the identification of candidate single heterozygous variants in mitoribosomal genes MRPL39 (both patients) and MRPL15. Genome sequencing identified a shared deep intronic MRPL39 variant predicted to generate a cryptic exon, with transcriptomics and targeted studies providing further functional evidence for causation. The patient with the milder disease was homozygous for a missense variant identified through trio exome sequencing. Our study highlights the utility of quantitative proteomics in detecting protein signatures and in characterizing gene-disease associations in exome-unsolved patients. We describe Relative Complex Abundance analysis of proteomics data, a sensitive method that can identify defects in OXPHOS disorders to a similar or greater sensitivity to the traditional enzymology. Relative Complex Abundance has potential utility for functional validation or prioritization in many hundreds of inherited rare diseases where protein complex assembly is disrupted.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Multiómica , Mutación , Proteínas Ribosómicas/genética
10.
Elife ; 122023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36799301

RESUMEN

Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many characteristic symptoms of Leigh Syndrome including oxidative stress, neuroinflammation, brain lesions, and premature death. NDUFS4 knockout mice have decreased expression of nearly every Complex I subunit. As Complex I normally contains at least 8 iron-sulfur clusters and more than 25 iron atoms, we asked whether a deficiency of Complex I may lead to iron perturbations, thereby accelerating disease progression. Consistent with this, iron supplementation accelerates symptoms of brain degeneration in these mice, while iron restriction delays the onset of these symptoms, reduces neuroinflammation, and increases survival. NDUFS4 knockout mice display signs of iron overload in the liver including increased expression of hepcidin and show changes in iron-responsive element-regulated proteins consistent with increased cellular iron that were prevented by iron restriction. These results suggest that perturbed iron homeostasis may contribute to pathology in Leigh Syndrome and possibly other mitochondrial disorders.


Iron is a mineral that contributes to many vital body functions. But as people age, it accumulates in many organs, including the liver and the brain. Excess iron accumulation is linked to age-related diseases like Parkinson's disease. Too much iron may contribute to harmful chemical reactions in the body. Usually, the body has systems in place to mitigate this harm, but these mechanisms may fail as people age. Uncontrolled iron accumulation may damage essential proteins, DNA and fats in the brain. These changes may kill brain cells causing neurodegenerative diseases like Parkinson's disease. Mitochondria, the cell's energy-producing factories, use and collect iron inside cells. As people age, mitochondria fail, which is also linked with age-related diseases. It has been unclear if mitochondrial failure may also contribute to iron accumulation and associated diseases like Parkinson's. Kelly et al. show that mitochondrial dysfunction causes iron accumulation and contributes to neurodegeneration in mice. In the experiments, Kelly et al. used mice with a mutation in a key-iron processing protein in mitochondria. These mice develop neurodegenerative symptoms and die early in life. Feeding the mice a high-iron diet accelerated the animals' symptoms. But providing them with an iron-restricted diet slowed their symptoms and extended their lives. Low-iron diets also slowed iron accumulation in the animal's liver and reduced brain inflammation. The experiments suggest that mitochondrial dysfunction contributes to both iron overload and brain degeneration. The next step for scientists is understanding the processes leading to mitochondrial dysfunction and iron accumulation. Then, scientists can determine if they can develop treatments targeting these processes. This research might lead to new treatments for Parkinson's disease or other age-related conditions caused by iron overload.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Ratones , Animales , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Hierro/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Mitocondriales/patología , Mitocondrias/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Ratones Noqueados , Mamíferos/metabolismo
11.
Handb Clin Neurol ; 194: 173-185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813312

RESUMEN

The anatomic complexity of the brain in combination with its high energy demands makes this organ specifically vulnerable to defects of mitochondrial oxidative phosphorylation. Therefore, neurodegeneration is a hallmark of mitochondrial diseases. The nervous system of affected individuals typically shows selective regional vulnerability leading to distinct patterns of tissue damage. A classic example is Leigh syndrome, which causes symmetric alterations of basal ganglia and brain stem. Leigh syndrome can be caused by different genetic defects (>75 known disease genes) with variable disease onset ranging from infancy to adulthood. Other mitochondrial diseases are characterized by focal brain lesions, which is a core feature of MELAS syndrome (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes). Apart from gray matter, also white matter can be affected by mitochondrial dysfunction. White matter lesions vary depending on the underlying genetic defect and may progress into cystic cavities. In view of the recognizable patterns of brain damage in mitochondrial diseases, neuroimaging techniques play a key role in diagnostic work-up. In the clinical setting, magnetic resonance imaging (MRI) and MR spectroscopy (MRS) are the mainstay of diagnostic work-up. Apart from visualization of brain anatomy, MRS allows the detection of metabolites such as lactate, which is of specific interest in the context of mitochondrial dysfunction. However, it is important to note that findings like symmetric basal ganglia lesions on MRI or a lactate peak on MRS are not specific, and that there is a broad range of disorders that can mimic mitochondrial diseases on neuroimaging. In this chapter, we will review the spectrum of neuroimaging findings in mitochondrial diseases and discuss important differential diagnoses. Moreover, we will give an outlook on novel biomedical imaging tools that may provide interesting insights into mitochondrial disease pathophysiology.


Asunto(s)
Enfermedad de Leigh , Síndrome MELAS , Enfermedades Mitocondriales , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/patología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/patología , Enfermedades Mitocondriales/genética , Síndrome MELAS/diagnóstico , Síndrome MELAS/patología , Ácido Láctico
12.
Handb Clin Neurol ; 194: 43-63, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813320

RESUMEN

Leigh syndrome, or subacute necrotizing encephalomyelopathy, was initially recognized as a neuropathological entity in 1951. Bilateral symmetrical lesions, typically extending from the basal ganglia and thalamus through brainstem structures to the posterior columns of the spinal cord, are characterized microscopically by capillary proliferation, gliosis, severe neuronal loss, and relative preservation of astrocytes. Leigh syndrome is a pan-ethnic disorder usually with onset in infancy or early childhood, but late-onset forms occur, including in adult life. Over the last six decades it has emerged that this complex neurodegenerative disorder encompasses more than 100 separate monogenic disorders associated with enormous clinical and biochemical heterogeneity. This chapter discusses clinical, biochemical and neuropathological aspects of the disorder, and postulated pathomechanisms. Known genetic causes, including defects of 16 mitochondrial DNA (mtDNA) genes and approaching 100 nuclear genes, are categorized into disorders of subunits and assembly factors of the five oxidative phosphorylation enzymes, disorders of pyruvate metabolism and vitamin and cofactor transport and metabolism, disorders of mtDNA maintenance, and defects of mitochondrial gene expression, protein quality control, lipid remodeling, dynamics, and toxicity. An approach to diagnosis is presented, together with known treatable causes and an overview of current supportive management options and emerging therapies on the horizon.


Asunto(s)
Enfermedad de Leigh , Adulto , Humanos , Preescolar , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Encéfalo/patología , Tronco Encefálico/patología , Proteínas/metabolismo , ADN Mitocondrial/genética
13.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675121

RESUMEN

Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of 219 patients with LS and give the detailed description of three cases with rare findings in nuclear genes MORC2, NARS2 and VPS13D, demonstrating wide genetic heterogeneity of this mitochondrial disease. The most common cause of LS in Russian patients are pathogenic variants in the SURF1 gene (44.3% of patients). The most frequent pathogenic variant is c.845_846delCT (66.0% of mutant alleles; 128/192), which is also widespread in Eastern Europe. Five main LS genes, SURF1, SCO2, MT-ATP6, MT-ND5 and PDHA1, account for 70% of all LS cases in the Russian Federation. Using next generation sequencing (NGS) technique, we were able to detect pathogenic variants in other nuclear genes: NDUFV1, NDUFS2, NDUFS8, NDUFAF5, NDUFAF6, NDUFA10, SUCLG1, GFM2, COX10, PMPCB, NARS2, PDHB and SLC19A3, including two genes previously associated with Leigh-like phenotypes-MORC2 and VPS13D. We found 49 previously undescribed nucleotide variants, including two deep intronic variants which affect splicing.


Asunto(s)
Aspartato-ARNt Ligasa , Enfermedad de Leigh , Enfermedades Mitocondriales , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Enfermedades Mitocondriales/genética , Mutación , Fenotipo , Federación de Rusia , Proteínas Mitocondriales/genética , Proteínas de Transporte de Membrana/genética , Proteínas/genética , Factores de Transcripción/genética , Aspartato-ARNt Ligasa/genética
14.
Pediatr Neurol ; 138: 27-32, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335839

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA)-associated Leigh syndrome is influenced by mutant pathogenicity and corresponding heteroplasmic loads; however, the manner in which heteroplasmic mutant load affects patient phenotypes and the relationship between mutant types and heteroplasmic mutant loads remain unknown. We aimed to investigate the distribution of the mutant load of different mtDNA mutations in a single-center cohort. METHODS: We used next-generation sequencing to confirm mtDNA mutations in 31 patients with Leigh syndrome. Subsequently, we counted the number of mtDNA reads to quantitatively analyze the heteroplasmic mutant load and categorize the patients according to the mtDNA mutations they harbored. Confirmed cases of mtDNA-associated Leigh syndrome were classified according to the mutations observed in six genes and 10 nucleotides. RESULTS: Of the 31 patients with Leigh syndrome, 27 harbored known pathogenic mutations. We discovered that MT-ATP6 was the most commonly mutated gene (n = 13 patients), followed by MT-ND3 (n = 7) and MT-ND5 (n = 4). MT-ATP6 had a significantly higher mutant load than MT-ND3 and MT-ND5 (P < 0.001, each). By contrast, MT-ND5 had a significantly lower mutant load than MT-ND3 (P = 0.007). Notably, the mutation loads varied significantly among patients carrying the MT-ATP6, MT-ND3, and MT-ND5 mutations. CONCLUSIONS: Our study illustrated the heteroplasmic diversity and phenotypic expression threshold of mutated mitochondrial genes in mtDNA-associated Leigh syndrome. The results provide promising insights into the genotype-phenotype correlation in mtDNA-associated Leigh syndrome that are expected to guide the development of tailored treatments for Leigh syndrome.


Asunto(s)
Enfermedad de Leigh , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , ADN Mitocondrial/genética , Mutación/genética , Genes Mitocondriales , Fenotipo
15.
Brain Pathol ; 33(3): e13134, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36450274

RESUMEN

Mitochondrial translation defects are a continuously growing group of disorders showing a large variety of clinical symptoms including a wide range of neurological abnormalities. To date, mutations in PTCD3, encoding a component of the mitochondrial ribosome, have only been reported in a single individual with clinical evidence of Leigh syndrome. Here, we describe three additional PTCD3 individuals from two unrelated families, broadening the genetic and phenotypic spectrum of this disorder, and provide definitive evidence that PTCD3 deficiency is associated with Leigh syndrome. The patients presented in the first months of life with psychomotor delay, respiratory insufficiency and feeding difficulties. The neurologic phenotype included dystonia, optic atrophy, nystagmus and tonic-clonic seizures. Brain MRI showed optic nerve atrophy and thalamic changes, consistent with Leigh syndrome. WES and RNA-seq identified compound heterozygous variants in PTCD3 in both families: c.[1453-1G>C];[1918C>G] and c.[710del];[902C>T]. The functional consequences of the identified variants were determined by a comprehensive characterization of the mitochondrial function. PTCD3 protein levels were significantly reduced in patient fibroblasts and, consistent with a mitochondrial translation defect, a severe reduction in the steady state levels of complexes I and IV subunits was detected. Accordingly, the activity of these complexes was also low, and high-resolution respirometry showed a significant decrease in the mitochondrial respiratory capacity. Functional complementation studies demonstrated the pathogenic effect of the identified variants since the expression of wild-type PTCD3 in immortalized fibroblasts restored the steady-state levels of complexes I and IV subunits as well as the mitochondrial respiratory capacity. Additionally, minigene assays demonstrated that three of the identified variants were pathogenic by altering PTCD3 mRNA processing. The fourth variant was a frameshift leading to a truncated protein. In summary, we provide evidence of PTCD3 involvement in human disease confirming that PTCD3 deficiency is definitively associated with Leigh syndrome.


Asunto(s)
Proteínas de Arabidopsis , Enfermedad de Leigh , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mitocondrias/patología , Proteínas/genética , Mutación/genética , Fenotipo , Proteínas de Unión al ARN , Proteínas de Arabidopsis/genética
16.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557887

RESUMEN

NADH:ubiquinone oxidoreductase core subunit S8 (NDUFS8) is an essential core subunit and component of the iron-sulfur (FeS) fragment of mitochondrial complex I directly involved in the electron transfer process and energy metabolism. Pathogenic variants of the NDUFS8 are relevant to infantile-onset and severe diseases, including Leigh syndrome, cancer, and diabetes mellitus. With over 1000 nuclear genes potentially causing a mitochondrial disorder, the current diagnostic approach requires targeted molecular analysis, guided by a combination of clinical and biochemical features. Currently, there are only several studies on pathogenic variants of the NDUFS8 in Leigh syndrome, and a lack of literature on its precise mechanism in cancer and diabetes mellitus exists. Therefore, NDUFS8-related diseases should be extensively explored and precisely diagnosed at the molecular level with the application of next-generation sequencing technologies. A more distinct comprehension will be needed to shed light on NDUFS8 and its related diseases for further research. In this review, a comprehensive summary of the current knowledge about NDUFS8 structural function, its pathogenic mutations in Leigh syndrome, as well as its underlying roles in cancer and diabetes mellitus is provided, offering potential pathogenesis, progress, and therapeutic target of different diseases. We also put forward some problems and solutions for the following investigations.


Asunto(s)
Enfermedad de Leigh , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mutación , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo
17.
Stem Cell Res ; 65: 102971, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36403546

RESUMEN

Human dermal fibroblasts from a Leigh Syndrome (LS) patient harboring the heterozygous NDUFS1 R557X/D618N compound mutation were reprogrammed to generate integration-free induced pluripotent stem cells (iPSCs). The full characterization of IUFi002-A-iPSCs demonstrated that the line is free of exogenous reprogramming genes and maintains the genomic integrity. IUFi002-A-iPSCs' pluripotency was confirmed by the expression of pluripotency markers and embryoid body-based differentiation into cell types representative of each of the three germ layers. The generated iPSC line provides a powerful tool to investigate LS and analyze the molecular mechanisms underlying NDUFS1 mutations-induced pathology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Leigh , NADH Deshidrogenasa , Humanos , Genómica , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mutación , NADH Deshidrogenasa/genética , Línea Celular
18.
Clin Genet ; 102(5): 438-443, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35861300

RESUMEN

Leigh syndrome (LS) is a progressive neurodegenerative disease, characterized by extensive clinical, biochemical, and genetic heterogeneity. Recently, biallelic variants in DNAJC30 gene, encoding a protein crucial for the repair of mitochondrial complex I subunits, have been associated with Leber hereditary optic neuropathy and LS. It was suggested that clinical heterogeneity of DNAJC30-associated mitochondrial disease may be attributed to digenic inheritance. We describe three Polish patients, a 9-year-old boy, and female and male siblings, aged 17 and 11 years, with clinical and biochemical manifestations of LS. Exome sequencing (ES) identified a homozygous pathogenic variant in DNAJC30 c.152A>G, p.(Tyr51Cys) in the 9-year-old boy. In the siblings, ES identified two DNAJC30 variants: c.152A>G, p.(Tyr51Cys) and c.130_131del, p.(Ser44ValfsTer8) in a compound heterozygous state. In addition, both siblings carried a novel heterozygous c.484G>T, p.(Val162Leu) variant in NDUFS8 gene. This report provides further evidence for the association of DNAJC30 variants with LS. DNAJC30-associated LS is characterized by variable age at onset, movement disorder phenotype and normal or moderately elevated blood lactate level. Identification of a candidate heterozygous variant in NDUFS8 supports the hypothesis of digenic inheritance. Importantly, DNAJC30 pathogenic variants should be suspected in patients with LS irrespective of optic nerve involvement.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Enfermedades Neurodegenerativas , Femenino , Humanos , Lactatos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Masculino , Enfermedades Mitocondriales/genética , Mutación , Fenotipo
19.
Glia ; 70(11): 2032-2044, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35770802

RESUMEN

Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the disease progresses, there is an increase in neurodegeneration and neuroinflammation, thereby leading to deteriorating neurological symptoms, including motor deficits, breathing alterations, and eventually, death of the animal. However, despite the magnitude of neuroinflammation associated with brain lesions, the role of neuroinflammatory pathways and their main cellular components have not been addressed directly as relevant players in the disease pathology. Here, we investigate the role of microglial cells, the main immune cells of the CNS, in Leigh-like syndrome pathology, by pharmacologically depleting them using the colony-stimulating factor 1 receptor antagonist PLX3397. Microglial depletion extended lifespan and delayed motor symptoms in Ndufs4 KO mice, likely by preventing neuronal loss. Next, we investigated the role of the major cytokine interleukin-6 (IL-6) in the disease progression. IL-6 deficiency partially rescued breathing abnormalities and modulated gliosis but did not extend the lifespan or rescue motor decline in Ndufs4 KO mice. The present results show that microglial accumulation is pathogenic, in a process independent of IL-6, and hints toward a contributing role of neuroinflammation in the disease of Ndufs4 KO mice and potentially in patients with Leigh syndrome.


Asunto(s)
Enfermedad de Leigh , Animales , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/metabolismo , Humanos , Interleucina-6/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Ratones , Ratones Noqueados , Microglía/metabolismo
20.
Genes Genomics ; 44(6): 691-698, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35482246

RESUMEN

BACKGROUND: Mitochondrial complex I deficiency (MCID) is the most common biochemical defect identified in childhood with mitochondrial diseases, mainly including Leigh syndrome, encephalopathy, macrocephaly with progressive leukodystrophy, hypertrophic cardiomyopathy and myopathy. OBJECTIVE: To identify genetic cause in a patient with early onset autosomal recessive MCID. METHODS: Trio whole-exome sequencing was performed and phenotype-related data analyses were conducted. All candidate mutations were confirmed by Sanger sequencing. RESULTS: Here we report a child of Leigh syndrome presented with global developmental delay, progressive muscular hypotonia and myocardial damage. A missense mutation c.118C > T (p.Arg40Trp) and a previously reported mutation c.1157G > A (p.Arg386His) in NDUFV1 have been identified as compound heterozygous in the patient. The mutation p.Arg386His is closely associated with the impairment of 4Fe-4S domain and this mutation has been reported pathogenic. The c.118C > T mutation has not been reported in ClinVar and HGMD database. In silico protein analyses showed that p.Arg40 is highly conserved in a wide range of species, and the amino acid substitution p.Trp40 largely decreases the stability of NDUFV1. In addition, the mutation has not been detected in the Asian populations and it was predicted to be deleterious by numerous prediction tools. CONCLUSION: This research expands the mutation spectrum of NDUFV1 and substantially provides an early and accurate diagnosis basis of MCID, which would benefit subsequently effective genetic counseling and prenatal diagnosis for future reproduction of the family.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...