Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Eur J Pharmacol ; 967: 176370, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320719

RESUMEN

At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1ß and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.


Asunto(s)
Enfermedad de Machado-Joseph , Neuroblastoma , Animales , Humanos , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Interleucina-1beta/antagonistas & inhibidores , Interleucina-6 , Lipopolisacáridos/farmacología , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
2.
J Clin Invest ; 134(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227368

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ácido Tauroquenodesoxicólico , Ratones , Adulto , Animales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Receptores de Glucocorticoides/genética , Ratones Transgénicos
3.
Sci Rep ; 14(1): 1529, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233440

RESUMEN

There is no FDA-approved drug for neurological disorders like spinocerebellar ataxia type 3. CAG repeats mutation in the ATXN3 gene, causing spinocerebellar ataxia type 3 disease. Symptoms include sleep cycle disturbance, neurophysiological abnormalities, autonomic dysfunctions, and depression. This research focuses on drug discovery against ATXN3 using phytochemicals of different plants. Three phytochemical compounds (flavonoids, diterpenoids, and alkaloids) were used as potential drug candidates and screened against the ATXN3 protein. The 3D structure of ATXN3 protein and phytochemicals were retrieved and validation of the protein was 98.1% Rama favored. The protein binding sites were identified for the interaction by CASTp. ADMET was utilized for the pre-clinical analysis, including solubility, permeability, drug likeliness and toxicity, and chamanetin passed all the ADMET properties to become a lead drug candidate. Boiled egg analysis attested that the ligand could cross the gastrointestinal tract. Pharmacophore analysis showed that chamanetin has many hydrogen acceptors and donors which can form interaction bonds with the receptor proteins. Chamanetin passed all the screening analyses, having good absorption, no violation of Lipinski's rule, nontoxic properties, and good pharmacophore properties. Chamanetin was one of the lead compounds with a - 7.2 kcal/mol binding affinity after screening the phytochemicals. The stimulation of ATXN3 showed stability after 20 ns of interaction in an overall 50 ns MD simulation. Chamanetin (Flavonoid) was predicted to be highly active against ATXN3 with good drug-like properties. In-silico active drug against ATXN3 from a plant source and good pharmacokinetics parameters would be excellent drug therapy for SC3, such as flavonoids (Chamanetin).


Asunto(s)
Enfermedad de Machado-Joseph , Humanos , Ataxina-3/genética , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Simulación por Computador , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Flavonoides/farmacología , Flavonoides/uso terapéutico , Simulación del Acoplamiento Molecular
4.
FASEB J ; 38(2): e23429, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38258931

RESUMEN

Spinocerebellar ataxia type 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. Mutation of ATXN3 causes formation of ataxin-3 protein aggregates, neurodegeneration, and motor deficits. Here we investigated the therapeutic potential and mechanistic activity of sodium butyrate (SB), the sodium salt of butyric acid, a metabolite naturally produced by gut microbiota, on cultured SH-SY5Y cells and transgenic zebrafish expressing human ataxin-3 containing 84 glutamine (Q) residues to model SCA3. SCA3 SH-SY5Y cells were found to contain high molecular weight ataxin-3 species and detergent-insoluble protein aggregates. Treatment with SB increased the activity of the autophagy protein quality control pathway in the SCA3 cells, decreased the presence of ataxin-3 aggregates and presence of high molecular weight ataxin-3 in an autophagy-dependent manner. Treatment with SB was also beneficial in vivo, improving swimming performance, increasing activity of the autophagy pathway, and decreasing the presence of insoluble ataxin-3 protein species in the transgenic SCA3 zebrafish. Co-treating the SCA3 zebrafish with SB and chloroquine, an autophagy inhibitor, prevented the beneficial effects of SB on zebrafish swimming, indicating that the improved swimming performance was autophagy-dependent. To understand the mechanism by which SB induces autophagy we performed proteomic analysis of protein lysates from the SB-treated and untreated SCA3 SH-SY5Y cells. We found that SB treatment had increased activity of Protein Kinase A and AMPK signaling, with immunoblot analysis confirming that SB treatment had increased levels of AMPK protein and its substrates. Together our findings indicate that treatment with SB can increase activity of the autophagy pathway process and that this has beneficial effects in vitro and in vivo. While our results suggested that this activity may involve activity of a PKA/AMPK-dependent process, this requires further confirmation. We propose that treatment with sodium butyrate warrants further investigation as a potential treatment for neurodegenerative diseases underpinned by mechanisms relating to protein aggregation including SCA3.


Asunto(s)
Enfermedad de Machado-Joseph , Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Animales , Ácido Butírico/farmacología , Ataxina-3/genética , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Pez Cebra , Proteínas Quinasas Activadas por AMP , Agregado de Proteínas , Proteómica , Autofagia , Animales Modificados Genéticamente , Proteínas Quinasas Dependientes de AMP Cíclico
5.
ACS Chem Neurosci ; 15(2): 278-289, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38154144

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder characterized by ataxia and other neurological manifestations, with a poor prognosis and a lack of effective therapies. The amyloid aggregation of the ataxin-3 protein is a hallmark of SCA3 and one of the main biochemical events prompting its onset, making it a prominent target for the development of preventive and therapeutic interventions. Here, we tested the efficacy of an aqueous Lavado cocoa extract and its polyphenolic components against ataxin-3 aggregation and neurotoxicity. The combination of biochemical assays and atomic force microscopy morphological analysis provided clear evidence of cocoa flavanols' ability to hinder ATX3 amyloid aggregation through direct physical interaction, as assessed by NMR spectroscopy. The chemical identity of the flavanols was investigated by ultraperformance liquid chromatography-high-resolution mass spectrometry. The use of the preclinical model Caenorhabditis elegans allowed us to demonstrate cocoa flavanols' ability to ameliorate ataxic phenotypes in vivo. To the best of our knowledge, Lavado cocoa is the first natural source whose extract is able to directly interfere with ATX3 aggregation, leading to the formation of off-pathway species.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Proteínas Amiloidogénicas/metabolismo , Amiloide/metabolismo , Caenorhabditis elegans , Polifenoles/uso terapéutico , Extractos Vegetales/farmacología
6.
Eur J Pharm Sci ; 191: 106608, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832855

RESUMEN

Exosome therapy is a novel trend in regeneration medicine. However, identifying a suitable biomarker that can associate the therapeutic efficacy of exosomes with SCA3/MJD is essential. In this study, parental cells were preconditioned with butylidenephthalide (Bdph) for exosome preparation to evaluate the therapeutic effect of SCA3/MJD. The therapeutic agent hsa-miRNA-6780-5p was enriched up to 98-fold in exosomes derived from butylidenephthalide (Bdph)-preconditioned human olfactory ensheathing cells (hOECs) compared with that in naïve hOECs exosomes. The particle sizes of exosomes derived from naïve hOECs and those derived from hOECs preconditioned with Bdph were approximately 113.0 ± 3.5 nm and 128.9 ± 0.7 nm, respectively. A liposome system was used to demonstrate the role of hsa-miRNA-6780-5p, wherein hsa-miRNA-6780-5p was found to enhance autophagy and inhibit the expression of spinocerebellar ataxia type 3 (SCA3) disease proteins with the polyglutamine (polyQ) tract. Exosomes with enriched hsa-miRNA-6780-5p were further applied to HEK-293-84Q cells, leading to decreased expression of polyQ and increased autophagy. The results were reversed when 3MA, an autophagy inhibitor, was added to the cells treated with hsa-miRNA-6780-5p-enriched exosomes, indicating that the decreased polyQ expression was modulated via autophagy. SCA3 mice showed improved motor coordination behavior when they intracranially received exosomes enriched with hsa-miRNA-6780-5p. SCA3 mouse cerebellar tissues treated with hsa-miRNA-6780-5p-enriched exosomes showed decreased expression of polyQ and increased expression of LC3II/I, an autophagy marker. In conclusion, our findings can serve as a basis for developing an alternative therapeutic strategy for SCA3 disease treatment using miRNA-enriched exosomes derived from chemically preconditioned cells.


Asunto(s)
Exosomas , Enfermedad de Machado-Joseph , MicroARNs , Humanos , Ratones , Animales , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Exosomas/metabolismo , Células HEK293 , MicroARNs/metabolismo
7.
Biomed Pharmacother ; 165: 115258, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549460

RESUMEN

The accumulation of mutant ataxin-3 (Atx3) in neuronal nuclear inclusions is a pathological hallmark of Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia Type 3. Decreasing the protein aggregation burden is a possible disease-modifying strategy to tackle MJD and other neurodegenerative disorders for which only symptomatic treatments are currently available. We performed a drug repurposing screening to identify inhibitors of Atx3 aggregation with known toxicological and pharmacokinetic profiles. Interestingly, dopamine hydrochloride and other catecholamines are among the most potent inhibitors of Atx3 aggregation in vitro. Our results indicate that low micromolar concentrations of dopamine markedly delay the formation of mature amyloid fibrils of mutant Atx3 through the inhibition of the earlier oligomerization steps. Although dopamine itself does not cross the blood-brain barrier, dopamine levels in the brain can be increased by low doses of dopamine precursors and dopamine agonists commonly used to treat Parkinsonian symptoms. In agreement, treatment with levodopa ameliorated motor symptoms in a C. elegans model of MJD. These findings suggest a possible application of dopaminergic drugs to halt or reduce Atx3 accumulation in the brains of MJD patients.


Asunto(s)
Enfermedad de Machado-Joseph , Proteínas Nucleares , Animales , Humanos , Ataxina-3/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Dopamina , Reposicionamiento de Medicamentos , Caenorhabditis elegans/metabolismo , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Dopaminérgicos
8.
Expert Opin Pharmacother ; 23(15): 1687-1694, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36254604

RESUMEN

INTRODUCTION: Machado-Joseph disease or spinocerebellar ataxia type 3 (SCA3/MJD) is the leading cause of autosomal dominant ataxia worldwide. This is a slowly progressive, but very disabling disorder. Ataxia is the main clinical feature, but additional motor and non-motor manifestations may be found. Many of these manifestations are amenable to pharmacological treatments, which may impact the quality of life of affected subjects. AREAS COVERED: Authors review available literature on both disease-modifying and symptomatic pharmacological therapies for SCA3/MJD. Discussion is stratified into motor (ataxic and non-ataxic syndromes) and non-motor manifestations. Ongoing clinical trials and future perspectives are also discussed in the manuscript. EXPERT OPINION: Symptomatic treatment is the mainstay of clinical care and should be tailored for each patient with SCA3/MJD. Management of ataxia is still a challenging task, but relief (at least partial) of dystonia, pain/cramps, fatigue, and sleep disorders is an achievable goal for many patients. Even though there are no disease-modifying treatments so far, recent advances in understanding the biology of disease and international collaborations of clinical researchers are now paving the way for a new era where more clinical trials will be available for this devastating disorder.


Asunto(s)
Enfermedad de Machado-Joseph , Trastornos del Sueño-Vigilia , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/diagnóstico , Calidad de Vida , Fatiga , Ataxia
9.
Nutrients ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079853

RESUMEN

Coenzyme Q10 (CoQ10), a well-known antioxidant, has been explored as a treatment in several neurodegenerative diseases, but its utility in spinocerebellar ataxia type 3 (SCA3) has not been explored. Herein, the protective effect of CoQ10 was examined using a transgenic mouse model of SCA3 onset. These results demonstrated that a diet supplemented with CoQ10 significantly improved murine locomotion, revealed by rotarod and open-field tests, compared with untreated controls. Additionally, a histological analysis showed the stratification of cerebellar layers indistinguishable from that of wild-type littermates. The increased survival of Purkinje cells was reflected by the reduced abundance of TUNEL-positive nuclei and apoptosis markers of activated p53, as well as lower levels of cleaved caspase 3 and cleaved poly-ADP-ribose polymerase. CoQ10 effects were related to the facilitation of the autophagy-mediated clearance of mutant ataxin-3 protein, as evidenced by the increased expression of heat shock protein 27 and autophagic markers p62, Beclin-1 and LC3II. The expression of antioxidant enzymes heme oxygenase 1 (HO-1), glutathione peroxidase 1 (GPx1) and superoxide dismutase 1 (SOD1) and 2 (SOD2), but not of glutathione peroxidase 2 (GPx2), were restored in 84Q SCA3 mice treated with CoQ10 to levels even higher than those measured in wild-type control mice. Furthermore, CoQ10 treatment also prevented skeletal muscle weight loss and muscle atrophy in diseased mice, revealed by significantly increased muscle fiber area and upregulated muscle protein synthesis pathways. In summary, our results demonstrated biochemical and pharmacological bases for the possible use of CoQ10 in SCA3 therapy.


Asunto(s)
Enfermedad de Machado-Joseph , Animales , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/patología , Ratones , Ratones Transgénicos , Péptidos , Ubiquinona/análogos & derivados
10.
Neurol Sci ; 43(5): 3423-3425, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35199253

RESUMEN

INTRODUCTION: Spinocerebellar ataxia type 3 (SCA-ATXN3) is a genetic neurodegenerative disease characterized by progressive cerebellar ataxia and other variable findings, including Parkinsonian syndrome. There is no disease-modifying treatment for SCA-ATXN3, so symptom-based management predominates. We aim to illustrate the disease's phenotypic variability and describe the effectiveness of advanced therapies in Parkinsonian symptoms. CASES: We present two patients with a predominant levodopa-responsive Parkinsonian phenotype, combined with cerebellar features. We achieved an optimal control of Parkinsonian symptoms with a carbidopa-levodopa intestinal gel infusion pump. CONCLUSIONS: We should suspect an SCA-ATXN3 etiology in patients with syndromes resembling an early-onset Parkinson disease with an autosomal dominant pattern. These patients could benefit from anti-Parkinsonian treatments, including levodopa intestinal gel infusion pump.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Trastornos Parkinsonianos , Antiparkinsonianos , Carbidopa , Combinación de Medicamentos , Geles/uso terapéutico , Humanos , Infusiones Parenterales , Levodopa , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico
11.
Cerebellum ; 21(6): 1135-1138, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34705199

RESUMEN

Depressive state is a common complication of spinocerebellar ataxia type 3 (SCA3). To the best of our knowledge, cases of SCA3 presenting with cenesthopathy have not been described. Here, we present a case of a severe depressive state with cenesthopathy and delusion in a young Japanese man with SCA3. A 43-year-old Japanese man with SCA3 developed a severe depressive state with associated cenesthopathy and delusion. He was treated with escitalopram (10 mg/day) and olanzapine (2.5 mg/day). Computed tomography showed atrophy of the cerebellum, bilateral superior cerebellar peduncle, and tegmentum of the pons. Single-photon emission computed tomography demonstrated reduced blood flow in the cerebellum, vermis, and brainstem. After 8 weeks, his depressive state and delusion improved; however, his cenesthopathy persisted. We encountered a case of a severe depressive state with cenesthopathy and delusion in a young Japanese man with SCA3. This case supports previous studies that the cerebellum could have a role beyond motor functions.


Asunto(s)
Enfermedad de Machado-Joseph , Masculino , Humanos , Adulto , Enfermedad de Machado-Joseph/complicaciones , Enfermedad de Machado-Joseph/diagnóstico por imagen , Enfermedad de Machado-Joseph/tratamiento farmacológico , Olanzapina/uso terapéutico , Deluciones/diagnóstico por imagen , Deluciones/tratamiento farmacológico , Deluciones/etiología , Japón , Cerebelo/diagnóstico por imagen
12.
Neuropathol Appl Neurobiol ; 48(1): e12763, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34432315

RESUMEN

AIMS: Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3 (SCA3), is the most common autosomal dominantly-inherited ataxia worldwide and is characterised by the accumulation of mutant ataxin-3 (mutATXN3) in different brain regions, leading to neurodegeneration. Currently, there are no available treatments able to block disease progression. In this study, we investigated whether carbamazepine (CBZ) would activate autophagy and mitigate MJD pathology. METHODS: The autophagy-enhancing activity of CBZ and its effects on clearance of mutATXN3 were evaluated using in vitro and in vivo models of MJD. To investigate the optimal treatment regimen, a daily or intermittent CBZ administration was applied to MJD transgenic mice expressing a truncated human ATXN3 with 69 glutamine repeats. Motor behaviour tests and immunohistology was performed to access the alleviation of MJD-associated motor deficits and neuropathology. A retrospective study was conducted to evaluate the CBZ effect in MJD patients. RESULTS: We found that CBZ promoted the activation of autophagy and the degradation of mutATXN3 in MJD models upon short or intermittent, but not daily prolonged, treatment regimens. CBZ up-regulated autophagy through activation of AMPK, which was dependent on the myo-inositol levels. In addition, intermittent CBZ treatment improved motor performance, as well as prevented neuropathology in MJD transgenic mice. However, in patients, no evident differences in SARA scale were found, which was not unexpected given the small number of patients included in the study. CONCLUSIONS: Our data support the autophagy-enhancing activity of CBZ in the brain and suggest this pharmacological approach as a promising therapy for MJD and other polyglutamine disorders.


Asunto(s)
Enfermedad de Machado-Joseph , Trastornos Motores , Animales , Ataxina-3/metabolismo , Autofagia , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Ratones , Preparaciones Farmacéuticas , Estudios Retrospectivos
13.
Mov Disord ; 36(11): 2675-2681, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34397117

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. OBJECTIVE: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). METHODS: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. RESULTS: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. CONCLUSIONS: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ataxina-3/genética , Estudios Transversales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Péptidos
14.
Mol Brain ; 14(1): 128, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416891

RESUMEN

Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3) is a fatal neurodegenerative disease that impairs control and coordination of movement. Here we tested whether treatment with the histone deacetylase inhibitor sodium valproate (valproate) prevented a movement phenotype that develops in larvae of a transgenic zebrafish model of the disease. We found that treatment with valproate improved the swimming of the MJD zebrafish, affected levels of acetylated histones 3 and 4, but also increased expression of polyglutamine expanded human ataxin-3. Proteomic analysis of protein lysates generated from the treated and untreated MJD zebrafish also predicted that valproate treatment had activated the sirtuin longevity signaling pathway and this was confirmed by findings of increased SIRT1 protein levels and sirtuin activity in valproate treated MJD zebrafish and HEK293 cells expressing ataxin-3 84Q, respectively. Treatment with resveratrol (another compound known to activate the sirtuin pathway), also improved swimming in the MJD zebrafish. Co-treatment with valproate alongside EX527, a SIRT1 activity inhibitor, prevented induction of autophagy by valproate and the beneficial effects of valproate on the movement in the MJD zebrafish, supporting that they were both dependent on sirtuin activity. These findings provide the first evidence of sodium valproate inducing activation of the sirtuin pathway. Further, they indicate that drugs that target the sirtuin pathway, including sodium valproate and resveratrol, warrant further investigation for the treatment of MJD and related neurodegenerative diseases.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Enfermedad de Machado-Joseph/tratamiento farmacológico , Sirtuinas/efectos de los fármacos , Ácido Valproico/uso terapéutico , Acetilación , Animales , Animales Modificados Genéticamente , Ataxina-3/antagonistas & inhibidores , Ataxina-3/genética , Ataxina-3/metabolismo , Autofagia/efectos de los fármacos , Carbazoles/farmacología , Carbazoles/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Genes Reporteros , Células HEK293 , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Péptidos/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico , Transducción de Señal , Sirtuina 1/fisiología , Sirtuinas/fisiología , Natación , Expansión de Repetición de Trinucleótido , Ácido Valproico/farmacología , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199295

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), a hereditary and lethal neurodegenerative disease, is attributed to the abnormal accumulation of undegradable polyglutamine (polyQ), which is encoded by mutated ataxin-3 gene (ATXN3). The toxic fragments processed from mutant ATXN3 can induce neuronal death, leading to the muscular incoordination of the human body. Some treatment strategies of SCA3 are preferentially focused on depleting the abnormal aggregates, which led to the discovery of small molecule n-butylidenephthalide (n-BP). n-BP-promoted autophagy protected the loss of Purkinje cell in the cerebellum that regulates the network associated with motor functions. We report that the n-BP treatment may be effective in treating SCA3 disease. n-BP treatment led to the depletion of mutant ATXN3 with the expanded polyQ chain and the toxic fragments resulting in increased metabolic activity and alleviated atrophy of SCA3 murine cerebellum. Furthermore, n-BP treated animal and HEK-293GFP-ATXN3-84Q cell models could consistently show the depletion of aggregates through mTOR inhibition. With its unique mechanism, the two autophagic inhibitors Bafilomycin A1 and wortmannin could halt the n-BP-induced elimination of aggregates. Collectively, n-BP shows promising results for the treatment of SCA3.


Asunto(s)
Autofagia , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/patología , Anhídridos Ftálicos/uso terapéutico , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adenilato Quinasa/metabolismo , Animales , Ataxina-3/genética , Autofagia/efectos de los fármacos , Cerebelo/patología , Femenino , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Enfermedad de Machado-Joseph/fisiopatología , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Mutación/genética , Anhídridos Ftálicos/farmacología , Agregado de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/patología , Transducción de Señal/efectos de los fármacos
16.
Neurochem Int ; 144: 104979, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33535071

RESUMEN

Polyglutamine (polyQ)-mediated mitochondria damage is one of the prime causes of polyQ toxicity, which leads to the loss of neurons and the injury of non-neuronal cells. With the discovery of the crucial role of the gut-brain axis and gut microbes in neurological diseases, the relationship between visceral damage and neurological disorders has also received extensive attention. This study successfully simulated the polyQ mitochondrial damage model by expressing 78 or 84 polyglutamine-containing Ataxin3 proteins in Drosophila intestinal enterocytes. In vivo, polyQ expression can reduce mitochondrial membrane potential, mitochondrial DNA damage, abnormal mitochondrial morphology, and loose mitochondrial cristae. Expression profiles evaluated by RNA-seq showed that mitochondrial structural genes and functional genes (oxidative phosphorylation and tricarboxylic acid cycle-related) were significantly down-regulated. More importantly, Bioinformatic analyses demonstrated that pathological polyQ expression induced vitamin B6 metabolic pathways abnormality. Active vitamin B6 participates in hundreds of enzymatic reactions and is very important for maintaining mitochondria's activities. In the SCA3 Drosophila model, Vitamin B6 supplementation significantly suppressed ECs mitochondria damage in guts and inhibited cellular polyQ aggregates in fat bodies, indicating a promising therapeutic strategy for the treatment of polyQ. Taken together, our results reveal a crucial role for the Vitamin B6-mediated mitochondrial protection in polyQ-induced cellular toxicity, which provides strong evidence for this process as a drug target in polyQ diseases treatment.


Asunto(s)
Ataxina-3/genética , Modelos Animales de Enfermedad , Enfermedad de Machado-Joseph/genética , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Vitamina B 6/farmacología , Animales , Animales Modificados Genéticamente , Ataxina-3/metabolismo , Drosophila , Redes Reguladoras de Genes/fisiología , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/metabolismo , Mitocondrias/genética , Fármacos Neuroprotectores/uso terapéutico , Vitamina B 6/uso terapéutico
17.
Sci Rep ; 11(1): 3345, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558582

RESUMEN

Machado-Joseph disease (MJD) is the most common dominantly-inherited ataxia worldwide with no effective treatment to prevent, stop or alleviate its progression. Neuropeptide Y (NPY) is a neuroprotective agent widely expressed in the mammalian brain. Our previous work showed that NPY overexpression mediated by stereotaxically-injected viral vectors mitigates motor deficits and neuropathology in MJD mouse models. To pursue a less invasive translational approach, we investigated whether intranasal administration of NPY would alleviate cerebellar neuropathology and motor and balance impairments in a severe MJD transgenic mouse model. For that, a NPY solution was administered into mice nostrils 5 days a week. Upon 8 weeks of treatment, we observed a mitigation of motor and balance impairments through the analysis of mice behavioral tests (rotarod, beam walking, pole and swimming tests). This was in line with a reduction of cerebellar pathology, evidenced by a preservation of cerebellar granular layer and of Purkinje cells and reduction of mutant ataxin-3 aggregate numbers. Furthermore, intranasal administration of NPY did not alter body weight gain, food intake, amount of body fat nor cholesterol or triglycerides levels. Our findings support the translational potential of intranasal infusion of NPY as a pharmacological intervention in MJD.


Asunto(s)
Enfermedad de Machado-Joseph/tratamiento farmacológico , Neuropéptido Y/farmacología , Administración Intranasal , Animales , Ataxina-3/genética , Ataxina-3/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Ratones , Ratones Transgénicos , Células de Purkinje/metabolismo , Células de Purkinje/patología
18.
Cerebellum ; 20(1): 41-53, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32789747

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is the second-most common CAG repeat disease, caused by a glutamine-encoding expansion in the ATXN3 protein. SCA3 is characterized by spinocerebellar degeneration leading to progressive motor incoordination and early death. Previous studies suggest that potassium channel dysfunction underlies early abnormalities in cerebellar cortical Purkinje neuron firing in SCA3. However, cerebellar cortical degeneration is often modest both in the human disease and mouse models of SCA3, raising uncertainty about the role of cerebellar dysfunction in SCA3. Here, we address this question by investigating Purkinje neuron excitability in SCA3. In early-stage SCA3 mice, we confirm a previously identified increase in excitability of cerebellar Purkinje neurons and associate this excitability with reduced transcripts of two voltage-gated potassium (KV) channels, Kcna6 and Kcnc3, as well as motor impairment. Intracerebroventricular delivery of antisense oligonucleotides (ASO) to reduce mutant ATXN3 restores normal excitability to SCA3 Purkinje neurons and rescues transcript levels of Kcna6 and Kcnc3. Interestingly, while an even broader range of KV channel transcripts shows reduced levels in late-stage SCA3 mice, cerebellar Purkinje neuron physiology was not further altered despite continued worsening of motor impairment. These results suggest the progressive motor phenotype observed in SCA3 may not reflect ongoing changes in the cerebellar cortex but instead dysfunction of other neuronal structures within and beyond the cerebellum. Nevertheless, the early rescue of both KV channel expression and neuronal excitability by ASO treatment suggests that cerebellar cortical dysfunction contributes meaningfully to motor dysfunction in SCA3.


Asunto(s)
Ataxina-3/genética , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Oligonucleótidos Antisentido/uso terapéutico , Células de Purkinje/patología , Proteínas Represoras/genética , Animales , Conducta Animal , Humanos , Inyecciones Intraventriculares , Canal de Potasio Kv1.6/efectos de los fármacos , Canal de Potasio Kv1.6/genética , Enfermedad de Machado-Joseph/psicología , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Fenotipo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Canales de Potasio Shaw/efectos de los fármacos , Canales de Potasio Shaw/genética , Resultado del Tratamiento
19.
Aging (Albany NY) ; 12(23): 23619-23646, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33196459

RESUMEN

Polyglutamine (polyQ)-mediated spinocerebellar ataxias (SCA) are caused by mutant genes with expanded CAG repeats encoding polyQ tracts. The misfolding and aggregation of polyQ proteins result in increased reactive oxygen species (ROS) and cellular toxicity. Inflammation is a common manifestation of oxidative stress and inflammatory process further reduces cellular antioxidant capacity. Increase of activated microglia in the pons of SCA type 3 (SCA3) patients suggests the involvement of neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of indole compound NC009-1, 4-aminophenol-arachidonic acid derivative AM404, quinoline compound VB-037 and chalcone-coumarin derivative LM-031 using human HMC3 microglia and SCA3 ATXN3/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing NO, IL-1ß, TNF-α and IL-6 production and CD68 expression of IFN-γ-activated HMC3 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP SH-SY5Y cells inflamed with IFN-γ-primed HMC3 conditioned medium, treatment with the tested compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced polyQ aggregation and ROS and/or promoted neurite outgrowth. Examination of IL-1ß- and TNF-α-mediated signaling pathways revealed that the tested compounds decreased IκBα/P65, JNK/JUN and/or P38/STAT1 signaling. The study results suggest the potential of NC009-1, AM404, VB-037 and LM-031 in treating SCA3 and probable other polyQ diseases.


Asunto(s)
Antiinflamatorios/farmacología , Ácidos Araquidónicos/farmacología , Cumarinas/farmacología , Indoles/farmacología , Enfermedad de Machado-Joseph/tratamiento farmacológico , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Quinolinas/farmacología , Línea Celular Tumoral , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/patología , Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
20.
Neurodegener Dis ; 20(2-3): 104-109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32992315

RESUMEN

BACKGROUND: Rivastigmine is an acetylcholine esterase inhibitor which is commonly used as therapy for dementia in Alzheimer's disease and Parkinson's disease (PD). Recently, a randomized controlled trial demonstrated a positive effect of rivastigmine on gait function in nondemented PD patients. Disturbed gait is a shared hallmark of PD and ataxias. OBJECTIVES: We hypothesized that the effect of rivastigmine could be translated to spinocerebellar ataxia (SCA) improving gait function. METHOD: Five patients with SCA type 3 were treated with transdermal rivastigmine for 8 weeks. The patients were monitored using the Scale for the Assessment and Rating of Ataxia (SARA) and an electronic walkway system (GAITRite®). RESULTS: Gait function was not changed by treatment, but 4 patients who continued treatment for 8 weeks showed improved coordination of extremities. The SARA sum score, which was 7.6 ± 2.2 at baseline, had dropped by 1.5 ± 1.9 after 4 weeks and by 2.1 ± 1.4 after 8 weeks. CONCLUSIONS: Contrary to our hypothesis, we observed no improvement of gait parameters as assessed by SARA and GAIT-Rite®, but coordination abilities were improved. Rivastigmine was well tolerated, but known side effects of rivastigmine, such as deterioration of asthma, may appear. Further trials in larger cohorts are needed to confirm our findings.


Asunto(s)
Inhibidores de la Colinesterasa/uso terapéutico , Enfermedad de Machado-Joseph/tratamiento farmacológico , Rivastigmina/uso terapéutico , Adulto , Femenino , Marcha/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...