Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
PLoS One ; 18(3): e0280650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36928510

RESUMEN

Tay-Sachs disease is a lethal lysosomal storage disorder caused by mutations in the HexA gene encoding the α subunit of the lysosomal ß-hexosaminidase enzyme (HEXA). Abnormal GM2 ganglioside accumulation causes progressive deterioration in the central nervous system in Tay-Sachs patients. Hexa-/- mouse model failed to display abnormal phenotype. Recently, our group generated Hexa-/-Neu3-/- mouse showed severe neuropathological indications similar to Tay-Sachs patients. Despite excessive GM2 ganglioside accumulation in the brain and visceral organs, the regulation of autophagy has not been clarified yet in the Tay-Sachs disease mouse model. Therefore, we investigated distinct steps of autophagic flux using markers including LC3 and p62 in four different brain regions from the Hexa-/-Neu3-/- mice model of Tay-Sachs disease. Our data revealed accumulated autophagosomes and autophagolysosomes indicating impairment in autophagic flux in the brain. We suggest that autophagy might be a new therapeutic target for the treatment of devastating Tay-Sachs disease.


Asunto(s)
Autofagia , Enfermedad de Tay-Sachs , Animales , Ratones , Autofagia/fisiología , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Gangliósido G(M2)/uso terapéutico , Hexosaminidasa A/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/patología , Modelos Animales de Enfermedad
2.
J Inherit Metab Dis ; 46(4): 687-694, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36700853

RESUMEN

Treatment of monogenic disorders has historically relied on symptomatic management with limited ability to target primary molecular deficits. However, recent advances in gene therapy and related technologies aim to correct these underlying deficiencies, raising the possibility of disease management or even prevention for diseases that can be treated pre-symptomatically. Tay-Sachs disease (TSD) would be one such candidate, however very little is known about the presymptomatic stage of TSD. To better understand the effects of TSD on brain development, we evaluated the transcriptomes of human fetal brain samples with biallelic pathogenic variants in HEXA. We identified dramatic changes in the transcriptome, suggesting a perturbation of normal development. We also observed a shift in the expression of the sphingolipid metabolic pathway away from production of the HEXA substrate, GM2 ganglioside, presumptively to compensate for dysfunction of the enzyme. However, we do not observe transcriptomic signatures of end-stage disease, suggesting that developmental perturbations precede neurodegeneration. To our knowledge, this is the first report of the relationship between fetal disease pathology in juvenile onset TSD and the analysis of gene expression in fetal TSD tissues. This study highlights the need to better understand the "pre-symptomatic" stage of disease to set realistic expectations for patients receiving early therapeutic intervention.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Humanos , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/patología , Gangliosidosis GM2/genética , Gangliosidosis GM2/metabolismo , Encéfalo/patología , Expresión Génica
3.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36142595

RESUMEN

The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the ß-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the ß-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay-Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the ß-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the ß-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.


Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Desoxirribonucleasa I/metabolismo , Fibroblastos/metabolismo , Proteína Activadora de G (M2) , Gangliósido G(M2)/genética , Gangliósido G(M2)/metabolismo , Gangliosidosis GM2/genética , Gangliosidosis GM2/metabolismo , Gangliosidosis GM2/terapia , Edición Génica , Globósidos/metabolismo , Glicosaminoglicanos/metabolismo , Hexosaminidasa A/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Liposomas/metabolismo , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , beta-N-Acetilhexosaminidasas/metabolismo
4.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961778

RESUMEN

Glycosphingolipids (GSLs) are a specialized class of membrane lipids composed of a ceramide backbone and a carbohydrate-rich head group. GSLs populate lipid rafts of the cell membrane of eukaryotic cells, and serve important cellular functions including control of cell-cell signaling, signal transduction and cell recognition. Of the hundreds of unique GSL structures, anionic gangliosides are the most heavily implicated in the pathogenesis of lysosomal storage diseases (LSDs) such as Tay-Sachs and Sandhoff disease. Each LSD is characterized by the accumulation of GSLs in the lysosomes of neurons, which negatively interact with other intracellular molecules to culminate in cell death. In this review, we summarize the biosynthesis and degradation pathways of GSLs, discuss how aberrant GSL metabolism contributes to key features of LSD pathophysiology, draw parallels between LSDs and neurodegenerative proteinopathies such as Alzheimer's and Parkinson's disease and lastly, discuss possible therapies for patients.


Asunto(s)
Gangliósidos/metabolismo , Glicoesfingolípidos/metabolismo , Lisosomas/metabolismo , Enfermedad de Sandhoff/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Animales , Humanos , Lisosomas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Enfermedad de Sandhoff/patología , Enfermedad de Sandhoff/terapia , Enfermedad de Tay-Sachs/patología , Enfermedad de Tay-Sachs/terapia
5.
J Neuroinflammation ; 17(1): 277, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32951593

RESUMEN

BACKGROUND: Tay-Sachs disease (TSD), a type of GM2-gangliosidosis, is a progressive neurodegenerative lysosomal storage disorder caused by mutations in the α subunit of the lysosomal ß-hexosaminidase enzyme. This disease is characterized by excessive accumulation of GM2 ganglioside, predominantly in the central nervous system. Although Tay-Sachs patients appear normal at birth, the progressive accumulation of undegraded GM2 gangliosides in neurons leads to death. Recently, an early onset Tay-Sachs disease mouse model, with genotype Hexa-/-Neu3-/-, was generated. Progressive accumulation of GM2 led to premature death of the double KO mice. Importantly, this double-deficient mouse model displays typical features of Tay-Sachs patients, such as cytoplasmic vacuolization of nerve cells, deterioration of Purkinje cells, neuronal death, deceleration in movement, ataxia, and tremors. GM2-gangliosidosis is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage, and astrocyte activation, along with the production of inflammatory mediators. However, the mechanism of disease progression in Hexa-/-Neu3-/- mice, relevant to neuroinflammation is poorly understood. METHOD: In this study, we investigated the onset and progression of neuroinflammatory changes in the cortex, cerebellum, and retina of Hexa-/-Neu3-/- mice and control littermates by using a combination of molecular genetics and immunochemical procedures. RESULTS: We found elevated levels of pro-inflammatory cytokine and chemokine transcripts, such as Ccl2, Ccl3, Ccl4, and Cxcl10 and also extensive microglial and astrocyte activation and proliferation, accompanied by peripheral blood mononuclear cell infiltration in the vicinity of neurons and oligodendrocytes. Behavioral tests demonstrated a high level of anxiety, and age-dependent loss in both spatial learning and fear memory in Hexa-/-Neu3-/- mice compared with that in the controls. CONCLUSION: Altogether, our data suggest that Hexa-/-Neu3-/- mice display a phenotype similar to Tay-Sachs patients suffering from chronic neuroinflammation triggered by GM2 accumulation. Furthermore, our work contributes to better understanding of the neuropathology in a mouse model of early onset Tay-Sachs disease.


Asunto(s)
Encéfalo/metabolismo , Modelos Animales de Enfermedad , Gangliósido G(M2)/metabolismo , Mediadores de Inflamación/metabolismo , Retina/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Animales , Encéfalo/patología , Gangliósido G(M2)/genética , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Retina/patología , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/patología
6.
J Genet ; 992020.
Artículo en Inglés | MEDLINE | ID: mdl-32529985

RESUMEN

Tay-Sachs disease (TSD), a deficiency of b-hexosaminidase A (Hex A), is a rare but debilitating hereditary metabolic disorder. Symptoms include extensive neurodegeneration and often result in death in infancy. We report an in silico study of 42 Hex A variants associated with the disease. Variants were separated into three groups according to the age of onset: infantile (n=28), juvenile (n=9) and adult (n=5). Protein stability, aggregation potential and the degree of conservation of residues were predicted using a range of in silico tools. We explored the relationship between these properties and the age of onset of TSD. There was no significant relationship between proteinstability and disease severity or between protein aggregation and disease severity. Infantile TSD had a significantly higher mean conservation score than nondisease associated variants. This was not seen in either juvenile or adult TSD. This study has established that the degree of residue conservation may be predictive of infantile TSD. It is possible that these more highly conserved residues are involved in trafficking of the protein to the lysosome. In addition, we developed and validated software tools to automate the process of in silico analysis of proteins involved in inherited metabolic diseases. Further work is required to identify the function of well-conserved residues to establish an in silico predictive model of TSD severity.


Asunto(s)
Simulación por Computador , Gangliósido G(M1)/metabolismo , Hexosaminidasa A/genética , Hexosaminidasa A/metabolismo , Mutación , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
7.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32592687

RESUMEN

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/genética , Enfermedad de Sandhoff/terapia , Animales , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Gangliósido G(M2)/metabolismo , Expresión Génica , Predisposición Genética a la Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones , Mutación , Enfermedad de Sandhoff/genética , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , Transgenes , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/metabolismo
8.
Neuroscience ; 414: 128-140, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31283907

RESUMEN

Tay-Sachs disease (TSD) is a GM2 gangliosidosis lysosomal storage disease caused by a loss of lysosomal hexosaminidase-A (HEXA) activity and characterized by progressive neurodegeneration due to the massive accumulation of GM2 ganglioside in the brain. Here, we generated iPSCs derived from patients with TSD, and found similar potential for neural differentiation between TSD-iPSCs and normal iPSCs, although neural progenitor cells (NPCs) derived from the TSD-iPSCs exhibited enlarged lysosomes and upregulation of the lysosomal marker, LAMP1, caused by the accumulation of GM2 ganglioside. The NPCs derived from TSD-iPSCs also had an increased incidence of oxidative stress-induced cell death. TSD-iPSC-derived neurons showed a decrease in exocytotic activity with the accumulation of GM2 ganglioside, suggesting deficient neurotransmission in TSD. Our findings demonstrated that NPCs and mature neurons derived from TSD-iPSCs are potentially useful cellular models of TSD and are useful for investigating the efficacy of drug candidates in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Terminales Presinápticos/fisiología , Enfermedad de Tay-Sachs/fisiopatología , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Células-Madre Neurales/fisiología , Neuritas/fisiología , Sinapsinas/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Regulación hacia Arriba/fisiología
9.
SLAS Discov ; 24(3): 295-303, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30616450

RESUMEN

Tay-Sachs disease is an inherited lysosomal storage disease resulting from mutations in the lysosomal enzyme, ß-hexosaminidase A, and leads to excessive accumulation of GM2 ganglioside. Tay-Sachs patients with the infantile form do not live beyond 2-4 years of age due to rapid, progressive neurodegeneration. Enzyme replacement therapy is not a therapeutic option due to its inability to cross the blood-brain barrier. As an alternative, small molecules identified from high-throughput screening could provide leads suitable for chemical optimization to target the central nervous system. We developed a new high-throughput phenotypic assay utilizing infantile Tay-Sachs patient cells based on disrupted lysosomal calcium signaling as a monitor of diseased phenotype. The assay was validated in a pilot screen on a collection of Food and Drug Administration-approved drugs to identify compounds that could reverse or attenuate the disease. Pyrimethamine, a known pharmacological chaperone of ß-hexosaminidase A, was identified from the primary screen. The mechanism of action of pyrimethamine in reversing the defective lysosomal phenotype was by improving autophagy. This new high-throughput screening assay in patient cells will enable the screening of larger chemical compound collections. Importantly, this approach could lead to identification of new molecular targets previously unknown to impact the disease and accelerate the discovery of new treatments for Tay-Sachs disease.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Lisosomas/fisiología , Bibliotecas de Moléculas Pequeñas/análisis , Enfermedad de Tay-Sachs/fisiopatología , Autofagia , Señalización del Calcio/efectos de los fármacos , Línea Celular , Evaluación Preclínica de Medicamentos , Humanos , Lisosomas/metabolismo , Proyectos Piloto , Prueba de Estudio Conceptual , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Enfermedad de Tay-Sachs/tratamiento farmacológico , Enfermedad de Tay-Sachs/metabolismo
10.
Methods Mol Biol ; 1885: 233-250, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30506202

RESUMEN

Tay-Sachs disease (TSD) is an autosomal recessive lysosomal storage disorder caused by mutations of the HEXA gene resulting in the deficiency of hexosaminidase A (Hex A) and subsequent neuronal accumulation of GM2 gangliosides. Infantile TSD is a devastating and fetal neurodegenerative disease with death before the age of 3-5 years. A small proportion of TSD patients carry milder mutations and may present juvenile or adult onset milder disease. TSD is more prevalent among Ashkenazi Jewish (AJ) individuals and some other genetically isolated populations with carrier frequencies of approximately ~1:27 which is much higher than that of 1:300 in the general population. Carrier screening and prenatal testing for TSD are effective in preventing the birth of affected fetuses greatly diminishing the incidence of TSD. Testing of targeted HEXA mutations by genotyping or sequencing can detect 98% of carriers in AJ individuals; however, the detection rate is much lower for most other ethnic groups. When combined with enzyme analysis, above 98% of carriers can be reliably identified regardless of ethnic background. Multiplex PCR followed by allele-specific primer extension is one method to test for known and common mutations. Sanger sequencing or other sequencing methods are useful to identify private mutations. For prenatal testing, only predefined parental mutations need to be tested. In the event of unknown mutational status or the presence of variants of unknown significance (VUS), enzyme analysis must be performed in conjunction with DNA-based assays to enhance the diagnostic accuracy. Enzymatic assays involve the use of synthetic substrates 4-methylumbelliferyl-N-acetyl-ß-glucosamine (4-MUG) and 4-methylumbelliferyl-6-sulfo-2-acetamido-2-deoxy-ß-D-glucopyranoside (4-MUGS) to measure the percentage Hex A activity (Hex A%) and specific Hex A activity respectively. These biochemical and molecular tests can be performed in both direct specimens and cultured cells from chorionic villi sampling or amniocentesis.


Asunto(s)
Pruebas Genéticas , Diagnóstico Prenatal/métodos , Enfermedad de Tay-Sachs/diagnóstico , Enfermedad de Tay-Sachs/genética , Alelos , Contaminación de ADN , Análisis Mutacional de ADN , Electroforesis Capilar , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Genotipo , Humanos , Mutación , Reacción en Cadena de la Polimerasa , Diagnóstico Prenatal/normas , Enfermedad de Tay-Sachs/metabolismo , Cadena alfa de beta-Hexosaminidasa/genética , Cadena alfa de beta-Hexosaminidasa/metabolismo
11.
J Mol Med (Berl) ; 96(12): 1359-1373, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30341570

RESUMEN

Tay-Sachs disease (TSD) is a lethal lysosomal storage disease (LSD) caused by mutations in the HexA gene, which can lead to deficiency of ß-hexosaminidase A (HexA) activity and consequent accumulation of its substrate, GM2 ganglioside. Recent reports that progranulin (PGRN) functions as a chaperone of lysosomal enzymes and its deficiency is associated with LSDs, including Gaucher disease and neuronal ceroid lipofuscinosis, prompted us to screen the effects of recombinant PGRN on lysosomal storage in fibroblasts from 11 patients affected by various LSDs, which led to the isolation of TSD in which PGRN demonstrated the best effects in reducing lysosomal storage. Subsequent in vivo studies revealed significant GM2 accumulation and the existence of typical TSD cells containing zebra bodies in both aged and ovalbumin-challenged adult PGRN-deficient mice. In addition, HexA, but not HexB, was aggregated in PGRN-deficient cells. Furthermore, recombinant PGRN significantly reduced GM2 accumulation and lysosomal storage in these animal models. Mechanistic studies indicated that PGRN bound to HexA through granulins G and E domain and increased the enzymatic activity and lysosomal delivery of HexA. More importantly, Pcgin, an engineered PGRN derivative bearing the granulin E domain, also effectively bound to HexA and reduced the GM2 accumulation. Collectively, these studies not only provide new insights into the pathogenesis of TSD but may also have implications for developing PGRN-based therapy for this life-threatening disorder. KEY MESSAGES: GM2 accumulation and the existence of typical TSD cells containing zebra bodies are detected in both aged and ovalbumin-challenged adult PGRN deficient mice. Recombinant PGRN significantly reduces GM2 accumulation and lysosomal storage both in vivo and in vitro, which works through increasing the expression and lysosomal delivery of HexA. Pcgin, an engineered PGRN derivative bearing the granulin E domain, also effectively binds to to HexA and reduces GM2 accumulation.


Asunto(s)
Gangliósidos/metabolismo , Hexosaminidasa A/metabolismo , Lisosomas/metabolismo , Progranulinas/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Progranulinas/genética , Células RAW 264.7 , Proteínas Recombinantes/farmacología
12.
Orphanet J Rare Dis ; 13(1): 152, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30220252

RESUMEN

BACKGROUND: Tay-Sachs disease (TSD) is a rare neurodegenerative disorder caused by autosomal recessive mutations in the HEXA gene on chromosome 15 that encodes ß-hexosaminidase. Deficiency in HEXA results in accumulation of GM2 ganglioside, a glycosphingolipid, in lysosomes. Currently, there is no effective treatment for TSD. RESULTS: We generated induced pluripotent stem cells (iPSCs) from two TSD patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). The TSD neural stem cells exhibited a disease phenotype of lysosomal lipid accumulation. The Tay-Sachs disease NSCs were then used to evaluate the therapeutic effects of enzyme replacement therapy (ERT) with recombinant human Hex A protein and two small molecular compounds: hydroxypropyl-ß-cyclodextrin (HPßCD) and δ-tocopherol. Using this disease model, we observed reduction of lipid accumulation by employing enzyme replacement therapy as well as by the use of HPßCD and δ-tocopherol. CONCLUSION: Our results demonstrate that the Tay-Sachs disease NSCs possess the characteristic phenotype to serve as a cell-based disease model for study of the disease pathogenesis and evaluation of drug efficacy. The enzyme replacement therapy with recombinant Hex A protein and two small molecules (cyclodextrin and tocopherol) significantly ameliorated lipid accumulation in the Tay-Sachs disease cell model.


Asunto(s)
Células-Madre Neurales/citología , Enfermedad de Tay-Sachs/tratamiento farmacológico , Enfermedad de Tay-Sachs/terapia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Diferenciación Celular/fisiología , Línea Celular , Terapia de Reemplazo Enzimático/métodos , Femenino , Técnica del Anticuerpo Fluorescente , Gangliosidosis GM2/metabolismo , Hexosaminidasa A/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Repeticiones de Microsatélite/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Pichia/metabolismo , Espectrometría de Masas en Tándem , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Tocoferoles/uso terapéutico
13.
Hormones (Athens) ; 17(3): 415-418, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29943104

RESUMEN

Tay-Sachs disease is an autosomal recessive type of lysosomal storage disorder. The disease is very rare in Turkey, with an incidence of 0.54/100,000. The clinical manifestations of Tay-Sachs disease include progressive developmental delay, seizures, deafness, blindness, spasticity, and dystonia, which are caused by the accumulation of gangliosides in the central nervous system. To date, only one case indicating the association between Tay-Sachs disease and central precocious puberty has been reported. Although the mechanism of this association is not clear, it is thought to be due to ganglioside accumulation in the central nervous system or the inhibition of the hypothalamic inhibiting pathway. Herein, we report two patients with genetically proven Tay-Sachs disease who developed central precocious puberty during follow-up. Pubertal development in patients affected by Tay-Sachs disease should be carefully assessed.


Asunto(s)
Pubertad Precoz/etiología , Enfermedad de Tay-Sachs/complicaciones , Niño , Preescolar , Femenino , Humanos , Pubertad Precoz/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/fisiopatología
14.
Int J Mol Sci ; 18(12)2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-29186855

RESUMEN

Sphingolipids, long thought to be passive components of biological membranes with merely a structural role, have proved throughout the past decade to be major players in the pathogenesis of many human diseases. The study and characterization of several genetic disorders like Fabry's and Tay Sachs, where sphingolipid metabolism is disrupted, leading to a systemic array of clinical symptoms, have indeed helped elucidate and appreciate the importance of sphingolipids and their metabolites as active signaling molecules. In addition to being involved in dynamic cellular processes like apoptosis, senescence and differentiation, sphingolipids are implicated in critical physiological functions such as immune responses and pathophysiological conditions like inflammation and insulin resistance. Interestingly, the kidneys are among the most sensitive organ systems to sphingolipid alterations, rendering these molecules and the enzymes involved in their metabolism, promising therapeutic targets for numerous nephropathic complications that stand behind podocyte injury and renal failure.


Asunto(s)
Enfermedad de Fabry/metabolismo , Enfermedades Renales/metabolismo , Podocitos/metabolismo , Esfingolípidos/metabolismo , Enfermedad de Tay-Sachs/metabolismo , Animales , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , Humanos , Enfermedades Renales/genética , Enfermedades Renales/terapia , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/terapia , Investigación Biomédica Traslacional
15.
Stem Cell Res ; 17(2): 289-291, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27879213

RESUMEN

Human iPSC line TSD-01-hiPSC was generated from fibroblasts of a patient with infantile Tay-Sachs disease (TSD). The patient is compound heterozygous at the HEXA gene by carrying a 1278insTATC allele and an IVS12+1G>C allele. STEMCCA lentivirus, which expresses OCT4, SOX2, KLF4, and c-MYC from a polycistronic transcript, were used for reprogramming. TSD-01-hiPSC express pluripotency markers such as OCT4, SOX2, NANOG, Tra-1-60, and alkaline phosphatase, and can differentiate into tissues from all the three embryonic germ layers. This TSD patient-derived hiPSC line may serve as a valuable in vitro tool for disease modeling and drug test.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Enfermedad de Tay-Sachs/patología , Cadena alfa de beta-Hexosaminidasa/genética , Alelos , Animales , Secuencia de Bases , Diferenciación Celular , Línea Celular , Análisis Mutacional de ADN , Fibroblastos/citología , Fibroblastos/metabolismo , Genotipo , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Cariotipo , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Endogámicos NOD , Mutagénesis Insercional , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Teratoma/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trasplante Heterólogo
16.
Mol Biol Cell ; 27(24): 3813-3827, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27682588

RESUMEN

Loss of function of the enzyme ß-hexosaminidase A (HexA) causes the lysosomal storage disorder Tay-Sachs disease (TSD). It has been proposed that mutations in the α chain of HexA can impair folding, enzyme assembly, and/or trafficking, yet there is surprisingly little known about the mechanisms of these potential routes of pathogenesis. We therefore investigated the biosynthesis and trafficking of TSD-associated HexA α mutants, seeking to identify relevant cellular quality control mechanisms. The α mutants E482K and G269S are defective in enzymatic activity, unprocessed by lysosomal proteases, and exhibit altered folding pathways compared with wild-type α. E482K is more severely misfolded than G269S, as observed by its aggregation and inability to associate with the HexA ß chain. Importantly, both mutants are retrotranslocated from the endoplasmic reticulum (ER) to the cytosol and are degraded by the proteasome, indicating that they are cleared via ER-associated degradation (ERAD). Leveraging these discoveries, we observed that manipulating the cellular folding environment or ERAD pathways can alter the kinetics of mutant α degradation. Additionally, growth of patient fibroblasts at a permissive temperature or with chemical chaperones increases cellular Hex activity by improving mutant α folding. Therefore modulation of the ER quality control systems may be a potential therapeutic route for improving some forms of TSD.


Asunto(s)
Hexosaminidasa A/genética , Hexosaminidasa A/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/fisiología , Células HEK293 , Hexosaminidasa A/biosíntesis , Hexosaminidasa A/fisiología , Humanos , Lisosomas/metabolismo , Chaperonas Moleculares/metabolismo , Mutación , Cultivo Primario de Células , Transporte de Proteínas/fisiología , Proteolisis , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo
17.
J Lipid Res ; 56(9): 1747-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26175473

RESUMEN

Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with ß-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.


Asunto(s)
Proteína Activadora de G (M2)/metabolismo , Gangliósido G(M2)/metabolismo , Liposomas/metabolismo , Lípidos de la Membrana/metabolismo , Ceramidas/metabolismo , Colesterol/genética , Colesterol/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteína Activadora de G (M2)/genética , Células HEK293 , Humanos , Hidrólisis/efectos de los fármacos , Lisofosfolípidos/administración & dosificación , Lípidos de la Membrana/genética , Monoglicéridos/administración & dosificación , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Esfingomielinas/metabolismo , Resonancia por Plasmón de Superficie , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/patología , Cadena alfa de beta-Hexosaminidasa/metabolismo
18.
Biochim Biophys Acta ; 1849(8): 1104-15, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25934542

RESUMEN

Nonsense-mediated mRNA decay (NMD), an mRNA surveillance mechanism, eliminates premature termination codon-containing (PTC⁺) transcripts. For instance, it maintains the homeostasis of splicing factors and degrades aberrant transcripts of human genetic disease genes. Here we examine the inhibitory effect on the NMD pathway and consequent increase of PTC+ transcripts by the dietary compound curcumin. We have found that several PTC⁺ transcripts including that of serine/arginine-rich splicing factor 1 (SRSF1) were specifically increased in cells by curcumin. We also observed a similar curcumin effect on the PTC⁺ mutant transcript from a Tay-Sachs-causing HEXA allele or from a beta-globin reporter gene. The curcumin effect was accompanied by significantly reduced expression of the NMD factors UPF1, 2, 3A and 3B. Consistently, in chromatin immunoprecipitation assays, curcumin specifically reduced the occupancy of acetyl-histone H3 and RNA polymerase II at the promoter region (-376 to -247nt) of human UPF1, in a time- and dosage-dependent way. Importantly, knocking down UPF1 abolished or substantially reduced the difference of PTC(+) transcript levels between control and curcumin-treated cells. The disrupted curcumin effect was efficiently rescued by expression of exogenous Myc-UPF1 in the knockdown cells. Together, our data demonstrate that a group of PTC⁺ transcripts are stabilized by a dietary compound curcumin through the inhibition of UPF factor expression and the NMD pathway.


Asunto(s)
Codón sin Sentido/genética , Curcumina/farmacología , Degradación de ARNm Mediada por Codón sin Sentido/efectos de los fármacos , ARN Mensajero/metabolismo , Terminación de la Transcripción Genética/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Proteínas Nucleares/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Factores de Empalme Serina-Arginina , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Cadena alfa de beta-Hexosaminidasa/genética , Cadena alfa de beta-Hexosaminidasa/metabolismo
19.
Curr Mol Med ; 15(2): 138-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25732146

RESUMEN

Methodologies for generating functional neuronal cells directly from human fibroblasts [induced neuronal (iN) cells] have been recently developed, but the research so far has only focused on technical refinements or recapitulation of known pathological phenotypes. A critical question is whether this novel technology will contribute to elucidation of novel disease mechanisms or evaluation of therapeutic strategies. Here we have addressed this question by studying Tay-Sachs disease, a representative lysosomal storage disease, and Dravet syndrome, a form of severe myoclonic epilepsy in infancy, using human iN cells with feature of immature postmitotic glutamatergic neuronal cells. In Tay-Sachs disease, we have successfully characterized canonical neuronal pathology, massive accumulation of GM2 ganglioside, and demonstrated the suitability of this novel cell culture for future drug screening. In Dravet syndrome, we have identified a novel functional phenotype that was not suggested by studies of classical mouse models and human autopsied brains. Taken together, the present study demonstrates that human iN cells are useful for translational neuroscience research to explore novel disease mechanisms and evaluate therapeutic compounds. In the future, research using human iN cells with well-characterized genomic landscape can be integrated into multidisciplinary patient-oriented research on neuropsychiatric disorders to address novel disease mechanisms and evaluate therapeutic strategies.


Asunto(s)
Epilepsias Mioclónicas/metabolismo , Fibroblastos/metabolismo , Gangliósido G(M2)/metabolismo , Neuronas/metabolismo , Enfermedad de Tay-Sachs/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Potenciales de Acción/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Epilepsias Mioclónicas/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Lentivirus/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , Enfermedad de Tay-Sachs/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética , Transgenes
20.
Mol Genet Metab ; 114(2): 274-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25557439

RESUMEN

BACKGROUND: The gangliosidoses (Tay-Sachs disease, Sandhoff disease, and GM1-gangliosidosis) are progressive neurodegenerative diseases caused by lysosomal enzyme activity deficiencies and consequent accumulation of gangliosides in the central nervous system (CNS). The infantile forms are distinguished from the juvenile forms by age of onset, rate of disease progression, and age of death. There are no approved treatments for the gangliosidoses. In search of potential biomarkers of disease, we quantified 188 analytes in CSF and serum from living human patients with longitudinal (serial) measurements. Notably, several associated with inflammation were elevated in the CSF of infantile gangliosidosis patients, and less so in more slowly progressing forms of juvenile gangliosidosis, but not in MPS disease. Thirteen CSF and two serum biomarker candidates were identified. Five candidate biomarkers were distinguished by persistent elevation in the CSF of patients with the severe infantile phenotype: ENA-78, MCP-1, MIP-1α, MIP-1ß, and TNFR2. Correspondence of abnormal elevation with other variables of disease-i.e., severity of clinical phenotype, differentiation from changes in serum, and lack of abnormality in other neurodegenerative lysosomal diseases-identifies these analytes as biomarkers of neuropathology specific to the gangliosidosis diseases.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Gangliosidosis/diagnóstico , Inflamación/diagnóstico , Adolescente , Biomarcadores/sangre , Sistema Nervioso Central/metabolismo , Quimiocina CCL2/líquido cefalorraquídeo , Quimiocina CCL4/líquido cefalorraquídeo , Quimiocina CXCL5/líquido cefalorraquídeo , Niño , Preescolar , Femenino , Gangliosidosis/metabolismo , Gangliosidosis GM1/diagnóstico , Gangliosidosis GM1/metabolismo , Humanos , Lactante , Masculino , Receptores Tipo II del Factor de Necrosis Tumoral/líquido cefalorraquídeo , Enfermedad de Sandhoff/diagnóstico , Enfermedad de Sandhoff/metabolismo , Enfermedad de Tay-Sachs/diagnóstico , Enfermedad de Tay-Sachs/metabolismo , Factores de Transcripción/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...