Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nutr Hosp ; 41(2): 489-509, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38258666

RESUMEN

Introduction: Background: the underlying cause of the deficiency of ornithine carbamoyltransferase (OTCD) is a gene mutation on the X chromosome. In females, the phenotype is highly variable, ranging from asymptomatic to neurologic compromise secondary to hyperammonemia and it can be prompted by numerous triggers, including pregnancy. Objective: the objective of this article is to report a case of two pregnancies of an OTCD-carrier, and to review the literature describing OTCD and pregnancy, parturition and postpartum. Methods: an extensive search in PubMed in December 2021 was conducted using different search terms. After screening all abstracts, 23 papers that corresponded to our inclusion criteria were identified. Results: the article focuses on the management of OTCD during pregnancy, parturition, and the postpartum period in terms of clinical presentation, ammonia levels and treatment. Conclusions: females with OTCD can certainly plan a pregnancy, but they need a careful management during delivery and particularly during the immediate postpartum period. If possible, a multidisciplinary team of physicians, dietitians, obstetrician-gynecologist, neonatologists, pharmacists, etc. with expertise in this field should participate in the care of women with OTCD and their children during this period and in their adult life.


Introducción: Antecedentes: la causa subyacente de la deficiencia de ornitina transcarbamilasa (OTC) es una mutación genética en el cromosoma X. En las mujeres, el fenotipo es muy variable, desde asintomático hasta presentar un compromiso neurológico secundario a hiperamonemia, y puede ser provocado por numerosos factores desencadenantes, incluido el embarazo. Objetivo: el objetivo de este artículo es reportar un caso de dos embarazos de una portadora de OTC, y revisar la literatura que describe OTC y embarazo, parto y posparto. Métodos: se realizó una búsqueda exhaustiva en PubMed en diciembre de 2021 utilizando diferentes términos de búsqueda. Después de examinar todos los resúmenes, identificamos 23 artículos que correspondían a nuestros criterios de inclusión. Resultados: el artículo se centra en el manejo de la OTC durante el embarazo, el parto y el posparto en términos de presentación clínica, niveles de amonio y tratamiento. Conclusiones: las mujeres con OTC pueden planificar un embarazo, pero necesitan un manejo cuidadoso durante el parto, y particularmente, durante el posparto inmediato. Si es posible, un equipo multidisciplinar de médicos, dietistas, ginecólogos-obstetras, neonatólogos, farmacéuticos, etc., con experiencia en este campo, debe participar en el cuidado de las mujeres con OTC y sus hijos durante este periodo y en su vida adulta.


Asunto(s)
Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Humanos , Femenino , Embarazo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Adulto , Complicaciones del Embarazo/genética , Periodo Posparto , Heterocigoto
2.
Hematology ; 28(1): 2265187, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38078487

RESUMEN

Hyperammonemia is a rare and often fatal complication following the conditioning therapy in autologous and allogeneic stem cell transplant recipients. It is characterized by anorexia, vomiting, lethargy and coma without any other apparent cause. The diagnosis is often delayed because symptoms can be subtle and ammonia is usually not included among the routine analyzes. Previous reports have not identified the molecular mechanisms behind hyperammonemia in stem cell transplant recipients. Urea cycle disorders (UCDs) are inborn errors of metabolism leading to hyperammonemia that usually presents in early childhood, whereas first presentation in adults is less common. Here we describe an adult woman with hyperammonemia following autologous stem cell transplantation for multiple myeloma. No apparent cause of hyperammonemia was identified, including portosystemic shunting, liver dysfunction or recent hyperammonemia-inducing chemotherapy. Hyperammonemia, normal blood glucose as well as anion gap and a previous history of two male newborns that died early after birth, prompted biochemical and genetic investigations for a UCD. A heterozygous variant in the X-linked gene encoding ornithine transcarbamylase (OTC) was identified and was regarded as a cause of UCD. The patient improved after treatment with nitrogen scavengers and high caloric intake according to a UCD protocol. This case report suggests that UCD should be considered as a possible cause of hyperammonemia following stem cell transplantation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Adulto , Preescolar , Femenino , Humanos , Recién Nacido , Masculino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Hiperamonemia/diagnóstico , Hiperamonemia/etiología , Hiperamonemia/terapia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/complicaciones , Trasplante Autólogo/efectos adversos , Vómitos/etiología
3.
Hum Gene Ther ; 34(17-18): 917-926, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37350098

RESUMEN

Realization of the immense therapeutic potential of epigenetic editing requires development of clinically predictive model systems that faithfully recapitulate relevant aspects of the target disease pathophysiology. In female patients with ornithine transcarbamylase (OTC) deficiency, an X-linked condition, skewed inactivation of the X chromosome carrying the wild-type OTC allele is associated with increased disease severity. The majority of affected female patients can be managed medically, but a proportion require liver transplantation. With rapid development of epigenetic editing technology, reactivation of silenced wild-type OTC alleles is becoming an increasingly plausible therapeutic approach. Toward this end, privileged access to explanted diseased livers from two affected female infants provided the opportunity to explore whether engraftment and expansion of dissociated patient-derived hepatocytes in the FRG mouse might produce a relevant model for evaluation of epigenetic interventions. Hepatocytes from both infants were successfully used to generate chimeric mouse-human livers, in which clusters of primary human hepatocytes were either OTC positive or negative by immunohistochemistry (IHC), consistent with clonal expansion from individual hepatocytes in which the mutant or wild-type OTC allele was inactivated, respectively. Enumeration of the proportion of OTC-positive or -negative human hepatocyte clusters was consistent with dramatic skewing in one infant and minimal to modest skewing in the other. Importantly, IHC and fluorescence-activated cell sorting analysis of intact and dissociated liver samples from both infants showed qualitatively similar patterns, confirming that the chimeric mouse-human liver model recapitulated the native state in each infant. Also of importance was the induction of a treatable metabolic phenotype, orotic aciduria, in mice, which correlated with the presence of clonally expanded OTC-negative primary human hepatocytes. We are currently using this unique model to explore CRISPR-dCas9-based epigenetic targeting strategies in combination with efficient adeno-associated virus (AAV) gene delivery to reactivate the silenced functional OTC gene on the inactive X chromosome.


Asunto(s)
Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Ornitina Carbamoiltransferasa , Lactante , Humanos , Ratones , Femenino , Animales , Ornitina Carbamoiltransferasa/genética , Inactivación del Cromosoma X/genética , Hepatocitos , Hígado , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia
4.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146589

RESUMEN

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Asunto(s)
Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Ornitina Carbamoiltransferasa , Humanos , Sustitución de Aminoácidos , Hiperamonemia/etiología , Hiperamonemia/genética , Mutación Missense/genética , Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(4): 431-435, 2023 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-37073851

RESUMEN

The male neonate in this case study was admitted to the hospital at 15 hours of age due to respiratory distress for 15 hours and poor response for 3 hours after resuscitation from asphyxia. The neonate was highly unresponsive, with central respiratory failure and seizures. Serum ammonia was elevated (>1 000 µmol/L). Blood tandem mass spectrometry revealed a significant decrease in citrulline. Rapid familial whole genome sequencing revealed OTC gene mutations inherited from the mother. Continuous hemodialysis filtration and other treatments were given. Neurological assessment was performed by cranial magnetic resonance imaging and electroencephalogram. The neonate was diagnosed with ornithine transcarbamylase deficiency combined with brain injury. He died at 6 days of age after withdrawing care. This article focuses on the differential diagnosis of neonatal hyperammonemia and introduces the multidisciplinary management of inborn error of metabolism.


Asunto(s)
Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Humanos , Recién Nacido , Masculino , Citrulina , Electroencefalografía , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Convulsiones
6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981975

RESUMEN

The male neonate in this case study was admitted to the hospital at 15 hours of age due to respiratory distress for 15 hours and poor response for 3 hours after resuscitation from asphyxia. The neonate was highly unresponsive, with central respiratory failure and seizures. Serum ammonia was elevated (>1 000 μmol/L). Blood tandem mass spectrometry revealed a significant decrease in citrulline. Rapid familial whole genome sequencing revealed OTC gene mutations inherited from the mother. Continuous hemodialysis filtration and other treatments were given. Neurological assessment was performed by cranial magnetic resonance imaging and electroencephalogram. The neonate was diagnosed with ornithine transcarbamylase deficiency combined with brain injury. He died at 6 days of age after withdrawing care. This article focuses on the differential diagnosis of neonatal hyperammonemia and introduces the multidisciplinary management of inborn error of metabolism.


Asunto(s)
Humanos , Recién Nacido , Masculino , Citrulina , Electroencefalografía , Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Convulsiones
7.
Am J Case Rep ; 23: e937658, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377209

RESUMEN

BACKGROUND Ornithine transcarbamylase deficiency (OTCD) is an X-linked semi-dominant disorder, causing possible fatal hyperammonemia. Late-onset OTCD can develop at any time from 2 months after birth to adulthood, accounting for 70% of all OTCDs. CASE REPORT A 35-year-old man with chronic headaches stated that since childhood he felt sick after eating meat. Fourteen days before hospital admission, he began receiving 60 mg/day of intravenous prednisolone for sudden deafness. The prednisolone was stopped 5 days before hospital admission. Four days later, he was transferred to our hospital because of confusion. On admission, he had hyperammonemia of 393 µmol/L. Because he became comatose 7 hours after admission, and his serum ammonia increased to 1071 µmol/L, we promptly started hemodialysis. Because his family history included 2 deceased infant boys, we suspected late-onset OTCD. On day 2 of hospitalization, we began administering ammonia-scavenging medications. Because he gradually regained consciousness, we stopped his hemodialysis on day 6. After his general condition improved, he was transferred to the previous hospital for rehabilitation on day 32. We definitively diagnosed him with late-onset OTCD due to the low plasma citrulline and high urinary orotic acid levels found during his hospitalization. CONCLUSIONS Clinicians should suspect urea cycle disorders, such as OTCD, when adult patients present with marked hyperammonemia without liver cirrhosis. Adult patients with marked hyperammonemia should immediately undergo hemodialysis to remove ammonia, regardless of causative diseases.


Asunto(s)
Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Masculino , Lactante , Adulto , Humanos , Niño , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/complicaciones , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Hiperamonemia/etiología , Hiperamonemia/terapia , Amoníaco/uso terapéutico , Diálisis Renal/efectos adversos , Prednisolona/uso terapéutico , Ornitina Carbamoiltransferasa/uso terapéutico
8.
Ann Clin Transl Neurol ; 9(11): 1715-1726, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36217298

RESUMEN

OBJECTIVE: Ornithine transcarbamylase deficiency (OTC-D) is an X-linked metabolic disease and the most common urea cycle disorder. Due to high phenotypic heterogeneity, ranging from lethal neonatal hyperammonemic events to moderate symptoms and even asymptomatic individuals, the prediction of the disease course at an early disease stage is very important to individually adjust therapies such as medical treatment or liver transplantation. In this translational study, we developed a severity-adjusted classification system based on in vitro residual enzymatic OTC activity. METHODS: Applying a cell-based expression system, residual enzymatic OTC activities of 71 pathogenic OTC variants were spectrophotometrically determined and subsequently correlated with clinical and biochemical outcome parameters of 119 male individuals with OTC-D (mOTC-D) as reported in the UCDC and E-IMD registries. RESULTS: Integration of multiple data sources enabled the establishment of a robust disease prediction model for mOTC-D. Residual enzymatic OTC activity not only correlates with age at first symptoms, initial peak plasma ammonium concentration and frequency of metabolic decompensations but also predicts mortality. The critical threshold of 4.3% residual enzymatic activity distinguishes a severe from an attenuated phenotype. INTERPRETATION: Residual enzymatic OTC activity reliably predicts the disease severity in mOTC-D and could thus serve as a tool for severity-adjusted evaluation of therapeutic strategies and counselling patients and parents.


Asunto(s)
Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Masculino , Humanos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Hiperamonemia/etiología , Hiperamonemia/genética , Fenotipo , Índice de Severidad de la Enfermedad
9.
Sci Rep ; 12(1): 2308, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145162

RESUMEN

Autologous cell replacement therapy for inherited metabolic disorders requires the correction of the underlying genetic mutation in patient's cells. An unexplored alternative for females affected from X-linked diseases is the clonal selection of cells randomly silencing the X-chromosome containing the mutant allele, without in vivo or ex vivo genome editing. In this report, we have isolated dermal fibroblasts from a female patient affected of ornithine transcarbamylase deficiency and obtained clones based on inactivation status of either maternally or paternally inherited X chromosome, followed by differentiation to hepatocytes. Hepatocyte-like cells derived from these clones display indistinct features characteristic of hepatocytes, but express either the mutant or wild type OTC allele depending on X-inactivation pattern. When clonally derived hepatocyte-like cells were transplanted into FRG® KO mice, they were able to colonize the liver and recapitulate OTC-dependent phenotype conditioned by X-chromosome inactivation pattern. This approach opens new strategies for cell therapy of X-linked metabolic diseases and experimental in vitro models for drug development for such diseases.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Hepatocitos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Inactivación del Cromosoma X/genética , Alelos , Animales , Diferenciación Celular , Células Cultivadas , Células Clonales , Dermis/citología , Femenino , Fibroblastos , Hepatocitos/trasplante , Humanos , Ratones Noqueados , Mutación , Cromosoma X/genética
10.
Hepatology ; 76(3): 646-659, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34786702

RESUMEN

BACKGROUND AND AIMS: Patient-derived human-induced pluripotent stem cells (hiPSCs) differentiated into hepatocytes (hiPSC-Heps) have facilitated the study of rare genetic liver diseases. Here, we aimed to establish an in vitro liver disease model of the urea cycle disorder ornithine transcarbamylase deficiency (OTCD) using patient-derived hiPSC-Heps. APPROACH AND RESULTS: Before modeling OTCD, we addressed the question of why hiPSC-Heps generally secrete less urea than adult primary human hepatocytes (PHHs). Because hiPSC-Heps are not completely differentiated and maintain some characteristics of fetal PHHs, we compared gene-expression levels in human fetal and adult liver tissue to identify genes responsible for reduced urea secretion in hiPSC-Heps. We found lack of aquaporin 9 (AQP9) expression in fetal liver tissue as well as in hiPSC-Heps, and showed that forced expression of AQP9 in hiPSC-Heps restores urea secretion and normalizes the response to ammonia challenge by increasing ureagenesis. Furthermore, we proved functional ureagenesis by challenging AQP9-expressing hiPSC-Heps with ammonium chloride labeled with the stable isotope [15 N] (15 NH4 Cl) and by assessing enrichment of [15 N]-labeled urea. Finally, using hiPSC-Heps derived from patients with OTCD, we generated a liver disease model that recapitulates the hepatic manifestation of the human disease. Restoring OTC expression-together with AQP9-was effective in fully correcting OTC activity and normalizing ureagenesis as assessed by 15 NH4 Cl stable-isotope challenge. CONCLUSION: Our results identify a critical role for AQP9 in functional urea metabolism and establish the feasibility of in vitro modeling of OTCD with hiPSC-Heps. By facilitating studies of OTCD genotype/phenotype correlation and drug screens, our model has potential for improving the therapy of OTCD.


Asunto(s)
Acuaporinas/metabolismo , Células Madre Pluripotentes Inducidas , Hepatopatías , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Adulto , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Hepatopatías/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Urea
11.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33484963

RESUMEN

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Asunto(s)
Edición Génica/métodos , Hepatocitos/trasplante , Mutación , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Ornitina Carbamoiltransferasa/genética , Adulto , Anciano , Amoníaco/metabolismo , Animales , Células Cultivadas , Niño , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Hepatocitos/química , Hepatocitos/citología , Humanos , Intrones , Masculino , Ratones , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Ácido Orótico/orina , Empalme del ARN
12.
Endocrinology ; 162(1)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206168

RESUMEN

The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Hiperamonemia/terapia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Receptores de Glucagón/antagonistas & inhibidores , Aminoácidos/sangre , Amoníaco/sangre , Animales , Peso Corporal , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutaminasa/genética , Glutaminasa/metabolismo , Masculino , Ratones , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/mortalidad
13.
J Inherit Metab Dis ; 44(3): 618-628, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33336822

RESUMEN

Ornithine transcarbamylase deficiency (OTCD) is a metabolic and genetic disease caused by dysfunction of the hepatocytic urea cycle. To develop new drugs or therapies for OTCD, it is ideal to use models that are more closely related to human metabolism and pathology. Primary human hepatocytes (HHs) isolated from two patients (a 6-month-old boy and a 5-year-old girl) and a healthy donor were transplanted into host mice (hemi-, hetero-OTCD mice, and control mice, respectively). HHs were isolated from these mice and used for serial transplantation into the next host mouse or for in vitro experiments. Histological, biochemical, and enzyme activity analyses were performed. Cultured HHs were treated with ammonium chloride or therapeutic drugs. Replacement rates exceeded 80% after serial transplantation in both OTCD mice. These highly humanized OTCD mice showed characteristics similar to OTCD patients that included increased blood ammonia levels and urine orotic acid levels enhanced by allopurinol. Hemi-OTCD mice showed defects in OTC expression and significantly low enzymatic activities, while hetero-OTCD mice showed residual OTC expression and activities. A reduction in ammonium metabolism was observed in cultured HHs from OTCD mice, and treatment with the therapeutic drug reduced the ammonia levels in the culture medium. In conclusion, we established in vivo OTC mouse models with hemi- and hetero-patient HHs. HHs isolated from the mice were useful as an in vitro model of OTCD. These OTC models could be a source of valuable patient-derived hepatocytes that would enable large scale and reproducible experiments using the same donor.


Asunto(s)
Hepatocitos/trasplante , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Ornitina Carbamoiltransferasa/genética , Amoníaco/sangre , Animales , Preescolar , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Hepatocitos/química , Hepatocitos/citología , Humanos , Lactante , Masculino , Ratones , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Ácido Orótico/orina
14.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 49(5): 539-547, 2020 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-33210478

RESUMEN

Ornithine transcarbamylase deficiency(OTCD)is a most common ornithine cycle (urea cycle) disorder. It is a X-link inherited disorder caused by OTC gene mutation that in turn leads to reduction or loss of OTC enzyme activity. Its onset time is related to the lack of enzyme activity. Patients with neonatal onset usually have complete absence of OTC enzyme activity, which is mainly associated with male semi-zygotic mutations; and the disease progresses rapidly with high mortality rates. Patients with late onset vary in onset age and clinical manifestations, and the course of disease can be progressive or intermittent. The acute attack mainly manifests neuropsychiatric symptoms accompanied by digestive symptoms like liver function damage or even acute liver failure. Elevated blood ammonia is the main biochemical indicator of OTCD patients. Increased glutamine, decreased citrulline in blood, and increased orotic acid in urine are typical clinical manifestations for OTCD patients. Genetic testing of OTC gene is important for OTCD diagnosis. The goal of treatment is to minimize the neurological damage caused by hyperammonemia while ensuring the nutritional needs for patient development. For patients with poor response to medication and diet, liver transplantation is recommended under the condition of stable metabolic state and absence of severe neurological damage. During long-term treatment, physical growth indicators, nutrition status, liver function, blood ammonia and amino acids should be regularly monitored. This consensus aims to standardize the diagnosis and treatment of OTCD, improve the prognosis, reduce the mortality and disability of patients.


Asunto(s)
Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Humanos , Hiperamonemia/etiología , Trasplante de Hígado , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/prevención & control , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/complicaciones , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia
15.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228018

RESUMEN

OTC splicing mutations are generally associated with the severest and early disease onset of ornithine transcarbamylase deficiency (OTCD), the most common urea cycle disorder. Noticeably, splicing defects can be rescued by spliceosomal U1snRNA variants, which showed their efficacy in cellular and animal models. Here, we challenged an U1snRNA variant in the OTCD mouse model (spf/ash) carrying the mutation c.386G > A (p.R129H), also reported in OTCD patients. It is known that the R129H change does not impair protein function but affects pre-mRNA splicing since it is located within the 5' splice site. Through in vitro studies, we identified an Exon Specific U1snRNA (ExSpeU1O3) that targets an intronic region downstream of the defective exon 4 and rescues exon inclusion. The adeno-associated virus (AAV8)-mediated delivery of the ExSpeU1O3 to mouse hepatocytes, although in the presence of a modest transduction efficiency, led to increased levels of correct OTC transcripts (from 6.1 ± 1.4% to 17.2 ± 4.5%, p = 0.0033). Consistently, this resulted in increased liver expression of OTC protein, as demonstrated by Western blotting (~3 fold increase) and immunostaining. Altogether data provide the early proof-of-principle of the efficacy of ExSpeU1 in the spf/ash mouse model and encourage further studies to assess the potential of RNA therapeutics for OTCD caused by aberrant splicing.


Asunto(s)
Dependovirus/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Ornitina Carbamoiltransferasa/genética , Empalme del ARN , ARN Nuclear Pequeño/genética , Animales , Secuencia de Bases , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Exones , Terapia Genética/métodos , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Intrones , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Mutación , Ornitina Carbamoiltransferasa/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/enzimología , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/patología , Sitios de Empalme de ARN , ARN Nuclear Pequeño/metabolismo
16.
Sci Adv ; 6(7): eaax5701, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32095520

RESUMEN

Ornithine transcarbamylase (OTC) deficiency is an X-linked urea cycle disorder associated with high mortality. Although a promising treatment for late-onset OTC deficiency, adeno-associated virus (AAV) neonatal gene therapy would only provide short-term therapeutic effects as the non-integrated genome gets lost during hepatocyte proliferation. CRISPR-Cas9-mediated homology-directed repair can correct a G-to-A mutation in 10% of OTC alleles in the livers of newborn OTC spfash mice. However, an editing vector able to correct one mutation would not be applicable for patients carrying different OTC mutations, plus expression would not be fast enough to treat a hyperammonemia crisis. Here, we describe a dual-AAV vector system that accomplishes rapid short-term expression from a non-integrated minigene and long-term expression from the site-specific integration of this minigene without any selective growth advantage for OTC-positive cells in newborns. This CRISPR-Cas9 gene-targeting approach may be applicable to all patients with OTC deficiency, irrespective of mutation and/or clinical state.


Asunto(s)
Sistemas CRISPR-Cas/genética , Marcación de Gen , Terapia Genética , Mutación/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Animales , Reparación del ADN/genética , Dependovirus/genética , Proteínas en la Dieta , Modelos Animales de Enfermedad , Sitios Genéticos , Vectores Genéticos/metabolismo , Mutación INDEL/genética , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Factores de Tiempo
17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-879910

RESUMEN

Ornithine transcarbamylase deficiency(OTCD)is a most common ornithine cycle (urea cycle) disorder. It is a X-link inherited disorder caused by


Asunto(s)
Humanos , Hiperamonemia/etiología , Trasplante de Hígado , Enfermedades del Sistema Nervioso/prevención & control , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia
18.
Am J Case Rep ; 20: 1085-1088, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31337745

RESUMEN

BACKGROUND The urea cycle converts amino acids to urea and is excreted by the kidneys. Ornithine carbamoyltransferase (OTC) deficiency is a rare X-linked urea cycle disorder which results in hyperammonemia. Diagnosis is made based on a clinical presentation of poor feeding, hypotonia, biochemical profile, and genetic testing. Another genetic cause for hyperammonemia is hyperammonia hyperinsulinemia (HAHI) syndrome. A mutation coding for glutamate dehydrogenase (GDH) results in increased alpha-keto glutarate and ATP, triggering the secretion of pancreatic insulin. However, unlike OTC deficiency, these patients are asymptomatic but do have symptoms of hypoglycemia. The purpose of this article is to present the case of a 66-year-old woman with an unusual late-onset of OTC deficiency compounded with an underlying HAHI syndrome with co-disease management. CASE REPORT A 66-year-old female with a history significant for transient ischemic attack (TIA) and urea cycle disorder was admitted for new adverse symptoms. Further evaluation revealed hyperammonemia and hypoglycemia. Despite standard previous treatment for her underlying urea cycle disorder, high ammonia levels and hypoglycemia persisted. The contradicting values with continued hypoglycemia regardless of dextrose treatment was suspicious for underlying HAHI. Further genetic testing during her admission revealed a deletion in GLUD-1 gene concurrent with diagnosis of HAHI. After co-diagnosis was established, effective management required medications for both disorders in concordance with dietary restriction. CONCLUSIONS This is an extremely rare case of OTC deficiency, with a vague presentation in an elderly female. Exploring compounding genetic disorders in the presence of one that is already established and early recognition are crucial for prompt diagnosis and management.


Asunto(s)
Hiperamonemia/terapia , Hiperinsulinismo/terapia , Hipoglucemia/terapia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Anciano , Dieta con Restricción de Proteínas , Femenino , Glucosa/administración & dosificación , Glutamato Deshidrogenasa/genética , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/genética , Hiperinsulinismo/diagnóstico , Hiperinsulinismo/genética , Hipoglucemia/etiología , Infusiones Intravenosas , Mutación , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/complicaciones , Edulcorantes/administración & dosificación
19.
J Inherit Metab Dis ; 42(6): 1136-1146, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30932189

RESUMEN

Urea cycle disorders (UCD) are a group of rare inherited metabolic conditions of amino acid catabolism caused by an enzyme deficiency within the hepatic ammonia detoxification pathway. The presentation of these disorders ranges from life-threatening intoxication in the neonate to asymptomatic status in adults. Late-onset UCDs can present for the first time in adulthood and may mimic other causes of acute confusion or psychiatric diseases, and are often associated with neurological symptoms. Late-onset UCDs may become apparent during periods of metabolic stress such as rapid weight loss, gastric bypass surgery, chronic starvation or the postpartum period. Early diagnosis is critical for effective treatment and to prevent long-term complications of hyperammonemia. The challenges of management of adults include for example: (a) poor compliance to dietary and medical treatment which can result in recurrent hospital admissions; (b) severe neurological dysfunction; (c) the management of pregnancy and the postpartum period; and (d) access to multidisciplinary care peri-operatively. In this review, we highlight a number of challenges in the diagnosis and management of adult patient with late-onset UCDs and suggest a systematic management approach.


Asunto(s)
Trastornos Innatos del Ciclo de la Urea/diagnóstico , Trastornos Innatos del Ciclo de la Urea/terapia , Adulto , Factores de Edad , Edad de Inicio , Diagnóstico Diferencial , Femenino , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/epidemiología , Hiperamonemia/etiología , Hiperamonemia/terapia , Recién Nacido , Masculino , Trastornos Neurocognitivos/diagnóstico , Trastornos Neurocognitivos/epidemiología , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/terapia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/complicaciones , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/epidemiología , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Embarazo , Trastornos Puerperales/diagnóstico , Trastornos Puerperales/epidemiología , Trastornos Puerperales/etiología , Trastornos Puerperales/terapia , Resultado del Tratamiento , Trastornos Innatos del Ciclo de la Urea/complicaciones , Trastornos Innatos del Ciclo de la Urea/epidemiología
20.
Gut ; 68(7): 1323-1330, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30796097

RESUMEN

Decades of intense research in molecular biology and biochemistry are fructifying in the emergence of therapeutic messenger RNAs (mRNA) as a new class of drugs. Synthetic mRNAs can be sequence optimised to improve translatability into proteins, as well as chemically modified to reduce immunogenicity and increase chemical stability using naturally occurring uridine modifications. These structural improvements, together with the development of safe and efficient vehicles that preserve mRNA integrity in circulation and allow targeted intracellular delivery, have paved the way for mRNA-based therapeutics. Indeed, mRNAs formulated into biodegradable lipid nanoparticles are currently being tested in preclinical and clinical studies for multiple diseases including cancer immunotherapy and vaccination for infectious diseases. An emerging application of mRNAs is the supplementation of proteins that are not expressed or are not functional in a regulated and tissue-specific manner. This so-called 'protein replacement therapy' could represent a solution for genetic metabolic diseases currently lacking effective treatments. Here we summarise this new class of drugs and discuss the preclinical evidence supporting the potential of liver-mediated mRNA therapy for three rare genetic conditions: methylmalonic acidaemia, acute intermittent porphyria and ornithine transcarbamylase deficiency.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/terapia , Inmunoterapia/métodos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Porfiria Intermitente Aguda/terapia , ARN Mensajero/uso terapéutico , Humanos , Enfermedades Raras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...