Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.092
Filtrar
1.
J Bone Miner Res ; 39(3): 341-356, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38477771

RESUMEN

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovitis, bone and cartilage destruction, and increased fracture risk with bone loss. Although disease-modifying antirheumatic drugs have dramatically improved clinical outcomes, these therapies are not universally effective in all patients because of the heterogeneity of RA pathogenesis. Therefore, it is necessary to elucidate the molecular mechanisms underlying RA pathogenesis, including associated bone loss, in order to identify novel therapeutic targets. In this study, we found that Budding uninhibited by benzimidazoles 1 (BUB1) was highly expressed in RA patients' synovium and murine ankle tissue with arthritis. As CD45+CD11b+ myeloid cells are a Bub1 highly expressing population among synovial cells in mice, myeloid cell-specific Bub1 conditional knockout (Bub1ΔLysM) mice were generated. Bub1ΔLysM mice exhibited reduced femoral bone mineral density when compared with control (Ctrl) mice under K/BxN serum-transfer arthritis, with no significant differences in joint inflammation or bone erosion based on a semi-quantitative erosion score and histological analysis. Bone histomorphometry revealed that femoral bone mass of Bub1ΔLysM under arthritis was reduced by increased osteoclastic bone resorption. RNA-seq and subsequent Gene Set Enrichment Analysis demonstrated a significantly enriched nuclear factor-kappa B pathway among upregulated genes in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated bone marrow-derived macrophages (BMMs) obtained from Bub1ΔLysM mice. Indeed, osteoclastogenesis using BMMs derived from Bub1ΔLysM was enhanced by RANKL and tumor necrosis factor-α or RANKL and IL-1ß treatment compared with Ctrl. Finally, osteoclastogenesis was increased by Bub1 inhibitor BAY1816032 treatment in BMMs derived from wildtype mice. These data suggest that Bub1 expressed in macrophages plays a protective role against inflammatory arthritis-associated bone loss through inhibition of inflammation-mediated osteoclastogenesis.


Rheumatoid arthritis (RA) is a disease caused by an abnormal immune system, resulting in inflammation, swelling, and bone destruction in the joints, along with systemic bone loss. While new medications have dramatically improved treatment efficacy, these therapies are not universally effective for all patients. Therefore, we need to understand the regulatory mechanisms behind RA, including associated bone loss, to develop better therapies. In this study, we found that Budding uninhibited by benzimidazoles 1 (Bub1) was highly expressed in inflamed joints, especially in myeloid cells, which are a type of immune cells. To explore its role, we created myeloid cell­specific Bub1 conditional knockout (cKO) mice and induced arthritis to analyze its role during arthritis. The cKO mice exhibited lower bone mineral density when compared with control mice under inflammatory arthritis because of increased osteoclastic bone resorption, without significant differences in joint inflammation or bone erosion. Further investigation showed that Bub1 prevents excessive osteoclast differentiation induced by inflammation in bone marrow macrophages. These data suggest that Bub1 in macrophages protects against bone loss caused by inflammatory arthritis, offering potential insights for developing treatments that focus on bone health.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Enfermedades Óseas Metabólicas , Resorción Ósea , Animales , Humanos , Ratones , Artritis Experimental/patología , Artritis Reumatoide/patología , Enfermedades Óseas Metabólicas/patología , Resorción Ósea/genética , Inflamación/patología , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Pediatr Endocrinol Metab ; 37(5): 467-471, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38529810

RESUMEN

OBJECTIVES: Inactivating GNAS mutations result in varied phenotypes depending on parental origin. Maternally inherited mutations typically lead to hormone resistance and Albright's hereditary osteodystrophy (AHO), characterised by short stature, round facies, brachydactyly and subcutaneous ossifications. Paternal inheritance presents with features of AHO or ectopic ossification without hormone resistance. This report describes the case of a child with osteoma cutis and medulloblastoma. The objective of this report is to highlight the emerging association between inactivating germline GNAS mutations and medulloblastoma, aiming to shed light on its implications for tumor biology and promote future development of targeted surveillance strategies to improve outcomes in paediatric patients with these mutations. CASE PRESENTATION: A 12-month-old boy presented with multiple plaque-like skin lesions. Biopsy confirmed osteoma cutis, prompting genetic testing which confirmed a heterozygous inactivating GNAS mutation. At 2.5 years of age, he developed neurological symptoms and was diagnosed with a desmoplastic nodular medulloblastoma, SHH molecular group, confirmed by MRI and histology. Further analysis indicated a biallelic loss of GNAS in the tumor. CONCLUSIONS: This case provides important insights into the role of GNAS as a tumor suppressor and the emerging association between inactivating GNAS variants and the development of medulloblastoma. The case underscores the importance of careful neurological assessment and ongoing vigilance in children with known inactivating GNAS variants or associated phenotypes. Further work to establish genotype-phenotype correlations is needed to inform optimal management of these patients.


Asunto(s)
Neoplasias Cerebelosas , Cromograninas , Subunidades alfa de la Proteína de Unión al GTP Gs , Meduloblastoma , Osificación Heterotópica , Enfermedades Cutáneas Genéticas , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Masculino , Cromograninas/genética , Meduloblastoma/genética , Meduloblastoma/patología , Osificación Heterotópica/genética , Osificación Heterotópica/patología , Enfermedades Cutáneas Genéticas/genética , Enfermedades Cutáneas Genéticas/patología , Enfermedades Cutáneas Genéticas/complicaciones , Lactante , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/complicaciones , Pronóstico , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Mutación
3.
Ann Biomed Eng ; 52(6): 1744-1762, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517621

RESUMEN

Osseointegration is a complex biological cascade that regulates bone regeneration after implant placement. Implants possessing complex multiscale surface topographies augment this regenerative process through the regulation of bone marrow stromal cells (MSCs) that are in contact with the implant surface. One pathway regulating osteoblastic differentiation is Wnt signaling, and upregulation of non-canonical Wnts increases differentiation of MSCs on these titanium substrates. Wnt16 is a non-canonical Wnt shown to regulate bone morphology in mouse models. This study evaluated the role of Wnt16 during surface-mediated osteoblastic differentiation of MSCs in vitro and osseointegration in vivo. MSCs were cultured on Ti substrates with different surface properties and non-canonical Wnt expression was determined. Subsequently, MSCs were cultured on Ti substrates +/-Wnt16 (100 ng/mL) and anti-Wnt16 antibodies (2 µg/mL). Wnt16 expression was increased in cells grown on microrough surfaces that were processed to be hydrophilic and have nanoscale roughness. However, treatment MSCs on these surfaces with exogenous rhWnt16b increased total DNA content and osteoprotegerin production, but reduced osteoblastic differentiation and production of local factors necessary for osteogenesis. Addition of anti-Wnt16 antibodies blocked the inhibitor effects of Wnt16. The response to Wnt16 was likely independent of other osteogenic pathways like Wnt11-Wnt5a signaling and semaphorin 3a signaling. We used an established rat model of cortical and trabecular femoral bone impairment following botox injections (2 injections of 8 units/leg each, starting and maintenance doses) to assess Wnt16 effects on whole bone morphology and implant osseointegration. Wnt16 injections did not alter whole bone morphology significantly (BV/TV, cortical thickness, restoration of trabecular bone) but were effective at increasing cortical bone-to-implant contact during impaired osseointegration in the botox model. The mechanical quality of the increased bone was not sufficient to rescue the deleterious effects of botox. Clinically, these results are important to understand the interaction of cortical and trabecular bone during implant integration. They suggest a role for Wnt16 in modulating bone remodeling by reducing osteoclastic activity. Targeted strategies to temporally regulate Wnt16 after implant placement could be used to improve osseointegration by increasing the net pool of osteoprogenitor cells.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas , Oseointegración , Ratas Sprague-Dawley , Proteínas Wnt , Animales , Proteínas Wnt/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratas , Proliferación Celular/efectos de los fármacos , Oseointegración/efectos de los fármacos , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Masculino , Titanio , Modelos Animales de Enfermedad , Células Cultivadas
4.
J Cell Physiol ; 239(5): e31217, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38327035

RESUMEN

A few ubiquitin ligases have been shown to target Runx2, the key osteogenic transcription factor and thereby regulate bone formation. The regulation of Runx2 expression and function are controlled both at the transcriptional and posttranslational levels. Really interesting new gene (RING) finger ubiquitin ligases of which RNF138 is a member are important players in the ubiquitin-proteasome system, contributing to the regulation of protein turnover and cellular processes. Here, we demonstrated that RNF138 negatively correlated with Runx2 protein levels in osteopenic ovariectomized rats which implied its role in bone loss. Accordingly, RNF138 overexpression potently inhibited osteoblast differentiation of mesenchyme-like C3H10T1/2 as well primary rat calvarial osteoblast (RCO) cells in vitro, whereas overexpression of catalytically inactive mutant RNF138Δ18-58 (lacks RING finger domain) had mild to no effect. Contrarily, RNF138 depletion copiously enhanced endogenous Runx2 levels and augmented osteogenic differentiation of C3H10T1/2 as well as RCOs. Mechanistically, RNF138 physically associates within multiple regions of Runx2 and ubiquitinates it leading to its reduced protein stability in a proteasome-dependent manner. Moreover, catalytically active RNF138 destabilized Runx2 which resulted in inhibition of its transactivation potential and physiological function of promoting osteoblast differentiation leading to bone loss. These findings underscore the functional involvement of RNF138 in bone formation which is primarily achieved through its modulation of Runx2 by stimulating ubiquitin-mediated proteasomal degradation. Thus, our findings indicate that RNF138 could be a promising novel target for therapeutic intervention in postmenopausal osteoporosis.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteoblastos , Osteogénesis , Ubiquitina-Proteína Ligasas , Ubiquitinación , Animales , Osteoblastos/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Femenino , Ratas , Ratones , Ratas Sprague-Dawley , Complejo de la Endopetidasa Proteasomal/metabolismo , Ovariectomía , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Estabilidad Proteica , Células HEK293
5.
Calcif Tissue Int ; 114(2): 119-128, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38036697

RESUMEN

The study was aimed to investigate microarchitecture of osteochondral junction in patients with osteonecrosis of the femoral head (ONFH). We hypothesis that there were microarchitecture alternations in osteochondral junction and regional differences between the necrotic region (NR) and adjacent non-necrotic region(ANR) in patients with ONFH. Femoral heads with ONFH or femoral neck fracture were included in ONFH group (n = 11) and control group (n = 11). Cylindrical specimens were drilled on the NR/ANR of femoral heads in ONFH group and matched positions in control group (CO.NR/ CO.ANR). Histology, micro-CT, and scanning electron microscope were used to investigate microarchitecture of osteochondral junction. Layered analysis of subchondral bone plate was underwent. Mankin scores on NR were higher than that on ANR or CO.NR, respectively (P < 0.001, P < 0.001). Calcified cartilage zone on the NR and ANR was thinner than that on the CO.NR and CO.ANR, respectively (P = 0.002, P = 0.002). Tidemark roughness on the NR was larger than that on the ANR (P = 0.002). Subchondral bone plate of NR and ANR was thicker than that on the CON.NR and CON.ANR, respectively (P = 0.002, P = 0.009). Bone volume fraction of subchondral bone plate on the NR was significantly decreasing compared to ANR and CON.NR, respectively (P = 0.015, P = 0.002). Subchondral bone plate on the NR had larger area percentages and more numbers of micropores than ANR and CON.NR (P = 0.002/0.002, P = 0.002/0.002). Layered analysis showed that bone mass loss and hypomineralization were mainly on the cartilage side of subchondral bone plate in ONFH. There were microarchitecture alternations of osteochondral junction in ONFH, including thinned calcified cartilage zone, thickened subchondral bone plate, decreased bone mass, altered micropores, and hypomineralization of subchondral bone plate. Regional differences in microarchitecture of osteochondral junction were found between necrotic regions and adjacent non-necrotic regions. Subchondral bone plate in ONFH had uneven distribution of bone volume fraction and bone mineral density, which might aggravate cartilage degeneration by affecting the transmission of mechanical stresses.


Asunto(s)
Enfermedades Óseas Metabólicas , Cartílago Articular , Necrosis de la Cabeza Femoral , Humanos , Cabeza Femoral/patología , Densidad Ósea , Cartílago Articular/patología , Estrés Mecánico , Enfermedades Óseas Metabólicas/patología
6.
Sci Rep ; 13(1): 11418, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452111

RESUMEN

Notch signaling regulates cell fate in multiple tissues including the skeleton. Hajdu-Cheney-Syndrome (HCS), caused by gain-of-function mutations in the Notch2 gene, is a rare inherited disease featuring early-onset osteoporosis and increased risk for fractures and non-union. As the impact of Notch2 overactivation on fracture healing is unknown, we studied bone regeneration in mice harboring a human HCS mutation. HCS mice, displaying high turnover osteopenia in the non-fractured skeleton, exhibited only minor morphologic alterations in the progression of bone regeneration, evidenced by static radiological and histological outcome measurements. Histomorphometry showed increased osteoclast parameters in the callus of HCS mice, which was accompanied by an increased expression of osteoclast and osteoblast markers. These observations were accompanied by inferior biomechanical stability of healed femora in HCS mice. Together, our data demonstrate that structural indices of bone regeneration are normal in HCS mice, which, however, exhibit signs of increased callus turnover and display impaired biomechanical stability of healed fractures.


Asunto(s)
Enfermedades Óseas Metabólicas , Síndrome de Hajdu-Cheney , Osteoporosis , Humanos , Ratones , Animales , Curación de Fractura , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Síndrome de Hajdu-Cheney/patología , Enfermedades Óseas Metabólicas/patología , Osteoporosis/patología , Osteoclastos/metabolismo , Receptor Notch2/metabolismo
7.
BMC Musculoskelet Disord ; 24(1): 508, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349814

RESUMEN

BACKGROUND: Vertebral compression fractures decrease daily life activities and increase economic and social burdens. Aging decreases bone mineral density (BMD), which increases the incidence of osteoporotic vertebral compression fractures (OVCFs). However, factors other than BMD can affect OVCFs. Sarcopenia has been a noticeable factor in the aging health problem. Sarcopenia, which involves a decrease in the quality of the back muscles, influences OVCFs. Therefore, this study aimed to evaluate the influence of the quality of the multifidus muscle on OVCFs. METHODS: We retrospectively studied patients aged 60 years and older who underwent concomitant lumbar MRI and BMD in the university hospital database, with no history of structurally affecting the lumbar spine. We first divided the recruited people into a control group and a fracture group according to the presence or absence of OVCFs, and further divided the fracture group into an osteoporosis BMD group and an osteopenia BMD group based on the BMD T-score of -2.5. Using images of lumbar spine MRI, the cross-sectional area and percentage of muscle fiber (PMF) of the multifidus muscle were obtained. RESULTS: We included 120 patients who had visited the university hospital, with 45 participants in the control group and 75 in the fracture group (osteopenia BMD: 41, osteoporosis BMD: 34). Age, BMD, and the psoas index significantly differed between the control and fracture groups. The mean cross-sectional area (CSA) of multifidus muscles measured at L4-5 and L5-S1, respectively, did not differ among the control, P-BMD, and O-BMD groups. On the other hand, the PMF measured at L4-5 and L5-S1 showed a significant difference among the three groups, and the value of the fracture group was lower than that of the control group. Logistic regression analysis showed that the PMF value, not the CSA, of the multifidus muscle at L4-5 and L5-S1 affected the risk of OVCFs, with and without adjusting for other significant factors. CONCLUSIONS: High percentage of fatty infiltration of the multifidus muscle increases the spinal fracture risk. Therefore, preserving the quality of the spinal muscle and bone density is essential for preventing OVCFs.


Asunto(s)
Enfermedades Óseas Metabólicas , Fracturas por Compresión , Osteoporosis , Fracturas Osteoporóticas , Sarcopenia , Fracturas de la Columna Vertebral , Humanos , Persona de Mediana Edad , Anciano , Fracturas por Compresión/diagnóstico por imagen , Fracturas por Compresión/epidemiología , Fracturas por Compresión/complicaciones , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/epidemiología , Fracturas de la Columna Vertebral/complicaciones , Estudios Retrospectivos , Sarcopenia/complicaciones , Sarcopenia/diagnóstico por imagen , Músculos Paraespinales/diagnóstico por imagen , Fracturas Osteoporóticas/diagnóstico por imagen , Fracturas Osteoporóticas/epidemiología , Fracturas Osteoporóticas/etiología , Osteoporosis/complicaciones , Osteoporosis/diagnóstico por imagen , Osteoporosis/epidemiología , Vértebras Lumbares/patología , Densidad Ósea , Enfermedades Óseas Metabólicas/patología
8.
Cells ; 12(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048054

RESUMEN

Paget's Disease of Bone (PDB) is a metabolic bone disease that is characterized by dysregulated osteoclast function leading to focal abnormalities of bone remodeling. It can lead to pain, fracture, and bone deformity. G protein-coupled receptor kinase 3 (GRK3) is an important negative regulator of G protein-coupled receptor (GPCR) signaling. GRK3 is known to regulate GPCR function in osteoblasts and preosteoblasts, but its regulatory function in osteoclasts is not well defined. Here, we report that Grk3 expression increases during osteoclast differentiation in both human and mouse primary cells and established cell lines. We also show that aged mice deficient in Grk3 develop bone lesions similar to those seen in human PDB and other Paget's Disease mouse models. We show that a deficiency in Grk3 expression enhances osteoclastogenesis in vitro and proliferation of hematopoietic osteoclast precursors in vivo but does not affect the osteoclast-mediated bone resorption function or cellular senescence pathway. Notably, we also observe decreased Grk3 expression in peripheral blood mononuclear cells of patients with PDB compared with age- and gender-matched healthy controls. Our data suggest that GRK3 has relevance to the regulation of osteoclast differentiation and that it may have relevance to the pathogenesis of PDB and other metabolic bone diseases associated with osteoclast activation.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Quinasa 3 del Receptor Acoplado a Proteína-G , Osteítis Deformante , Animales , Humanos , Ratones , Enfermedades Óseas Metabólicas/patología , Resorción Ósea/metabolismo , Leucocitos Mononucleares/metabolismo , Osteítis Deformante/genética , Osteítis Deformante/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Quinasa 3 del Receptor Acoplado a Proteína-G/genética
9.
Front Endocrinol (Lausanne) ; 14: 1158099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065740

RESUMEN

Introduction: Histomorphometry of rodent metaphyseal trabecular bone, by histology or microCT, is generally restricted to the mature secondary spongiosa, excluding the primary spongiosa nearest the growth plate by imposing an 'offset'. This analyses the bulk static properties of a defined segment of secondary spongiosa, usually regardless of proximity to the growth plate. Here we assess the value of trabecular morphometry that is spatially resolved according to the distance 'downstream' of-and thus time since formation at-the growth plate. Pursuant to this, we also investigate the validity of including mixed primary-secondary spongiosal trabecular bone, extending the analysed volume 'upstream' by reducing the offset. Both the addition of spatiotemporal resolution and the extension of the analysed volume have potential to enhance the sensitivity of detection of trabecular changes and to resolve changes occurring at different times and locations. Method: Two experimental mouse studies of trabecular bone are used as examples of different factors influencing metaphyseal trabecular bone: (1) ovariectomy (OVX) and pharmacological prevention of osteopenia and (2) limb disuse induced by sciatic neurectomy (SN). In a third study into offset rescaling, we also examine the relationship between age, tibia length, and primary spongiosal thickness. Results: Bone changes induced by either OVX or SN that were early or weak and marginal were more pronounced in the mixed primary-secondary upstream spongiosal region than in the downstream secondary spongiosa. A spatially resolved evaluation of the entire trabecular region found that significant differences between experimental and control bones remained undiminished either right up to or to within 100 µm from the growth plate. Intriguingly, our data revealed a remarkably linear downstream profile for fractal dimension in trabecular bone, arguing for an underlying homogeneity of the (re)modelling process throughout the entire metaphysis and against strict anatomical categorization into primary and secondary spongiosal regions. Finally, we find that a correlation between tibia length and primary spongiosal depth is well conserved except in very early and late life. Conclusions: These data indicate that the spatially resolved analysis of metaphyseal trabecular bone at different distances from the growth plate and/or times since formation adds a valuable dimension to histomorphometric analysis. They also question any rationale for rejecting primary spongiosal bone, in principle, from metaphyseal trabecular morphometry.


Asunto(s)
Enfermedades Óseas Metabólicas , Placa de Crecimiento , Ratas , Femenino , Ratones , Animales , Ratas Sprague-Dawley , Tibia/diagnóstico por imagen , Tibia/patología , Huesos , Enfermedades Óseas Metabólicas/patología , Modelos Animales de Enfermedad
10.
Int J Mol Med ; 51(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37052260

RESUMEN

Postmenopausal osteoporosis is a systemic metabolic disease that chronically endangers public health and is typically characterized by low bone mineral density and marked bone fragility. The excessive bone resorption activity of osteoclasts is a major factor in the pathogenesis of osteoporosis; therefore, strategies aimed at inhibiting osteoclast activity may prevent bone decline and attenuate the process of osteoporosis. Casticin (Cas), a natural compound, has anti­inflammatory and antitumor properties. However, the role of Cas in bone metabolism remains largely unclear. The present study found that the receptor activator of nuclear factor­κΒ (NF­κB) ligand­induced osteoclast activation and differentiation were inhibited by Cas. Tartrate­resistant acid phosphatase staining revealed that Cas inhibited osteoclast differentiation, and bone resorption pit assays demonstrated that Cas affected the function of osteoclasts. Cas significantly reduced the expression of osteoclast­specific genes and related proteins, such as nuclear factor of activated T cells, cytoplasmic 1 and c­Fos at the mRNA and protein level in a concentration­dependent manner. Cas inhibited osteoclast formation by blocking the AKT/ERK and NF­κB signaling pathways, according to the intracellular signaling analysis. The microcomputed tomography and tissue staining of tibiae from ovariectomized mice revealed that Cas prevented the bone loss induced by estrogen deficiency and reduced osteoclast activity in vivo. Collectively, these findings indicated that Cas may be used to prevent osteoporosis.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Osteoporosis , Femenino , Animales , Ratones , Humanos , Osteogénesis , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Microtomografía por Rayos X/efectos adversos , Transducción de Señal , Osteoclastos/metabolismo , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/etiología , Resorción Ósea/prevención & control , Diferenciación Celular , Osteoporosis/tratamiento farmacológico , Osteoporosis/etiología , Osteoporosis/prevención & control , Enfermedades Óseas Metabólicas/complicaciones , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Ovariectomía/efectos adversos , Ligando RANK/metabolismo
11.
Eur Spine J ; 32(5): 1553-1560, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36935451

RESUMEN

PURPOSE: To evaluate the use of the modified and simplified vertebral bone quality (VBQ) method based on T1-weighted MRI images of S1 vertebrae in assessing bone mineral density (BMD) for patients with lumbar degenerative diseases. METHODS: We reviewed the preoperative data of patients with lumbar degenerative diseases undergoing lumbar spine surgery between January 2019 and June 2022 with available non-contrast T1-weighted magnetic resonance imaging (MRI), computed tomography (CT) images and dual-energy X-ray absorptiometry (DEXA). S1 vertebral bone quality scores (S1 VBQ) and S1 CT Hounsfield units were measured with picture archiving and communication system (PACS). One-way ANOVA was applied to present the discrepancy between the S1 VBQ of patients with normal bone density (T-score ≥ - 1.0), osteopenia (- 2.5 < T-score < - 1.0) and osteoporosis (T-score ≤ - 2.5). The receiver operating characteristic curve (ROC) was drawn to analyze the diagnostic performance of S1 VBQ in distinguishing low BMD. Statistical significance was set at p < 0.05. RESULTS: A total of 207 patients were included. The S1 VBQ were significantly different between groups (p < 0.001). Interclass correlation coefficient for inter-rater reliability was 0.86 (95% CI 0.78-0.94) and 0.94(95% CI 0.89-0.98) for intra-rater reliability. According to the linear regression analysis, the S1 VBQ has moderate-to-strong correlations with DEXA T-score (r = - 0.48, p < 0.001). The area under the ROC curve indicated a predictive accuracy of 82%. A sensitivity of 77.25% with a specificity of 70% could be achieved for distinguishing low BMD by setting the S1 VBQ cutoff as 2.93. CONCLUSIONS: The S1 VBQ was a promising tool in distinguishing poor bone quality in patients with lumbar degenerative diseases, especially in cases where the previously reported VBQ method based on L1-L4 was not available. S1 VBQ score could be useful as opportunistic assessment for screening and complementary evaluation to DEXA T-score before surgery.


Asunto(s)
Densidad Ósea , Enfermedades Óseas Metabólicas , Humanos , Reproducibilidad de los Resultados , Absorciometría de Fotón/métodos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Vértebras Lumbares/patología , Enfermedades Óseas Metabólicas/patología , Imagen por Resonancia Magnética , Estudios Retrospectivos
12.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835176

RESUMEN

Skeletal muscle atrophy is a condition characterized by a loss of muscle mass and muscle strength caused by an imbalance between protein synthesis and protein degradation. Muscle atrophy is often associated with a loss of bone mass manifesting as osteoporosis. The aim of this study was to evaluate if chronic constriction injury (CCI) of the sciatic nerve in rats can be a valid model to study muscle atrophy and consequent osteoporosis. Body weight and body composition were assessed weekly. Magnetic resonance imaging (MRI) was performed on day zero before ligation and day 28 before sacrifice. Catabolic markers were assessed via Western blot and Quantitative Real-time PCR. After the sacrifice, a morphological analysis of the gastrocnemius muscle and Micro-Computed Tomography (Micro-CT) on the tibia bone were performed. Rats that underwent CCI had a lower body weight increase on day 28 compared to the naive group of rats (p < 0.001). Increases in lean body mass and fat mass were also significantly lower in the CCI group (p < 0.001). The weight of skeletal muscles was found to be significantly lower in the ipsilateral hindlimb compared to that of contralateral muscles; furthermore, the cross-sectional area of muscle fibers decreased significantly in the ipsilateral gastrocnemius. The CCI of the sciatic nerve induced a statistically significant increase in autophagic and UPS (Ubiquitin Proteasome System) markers and a statistically significant increase in Pax-7 (Paired Box-7) expression. Micro-CT showed a statistically significant decrease in the bone parameters of the ipsilateral tibial bone. Chronic nerve constriction appeared to be a valid model for inducing the condition of muscle atrophy, also causing changes in bone microstructure and leading to osteoporosis. Therefore, sciatic nerve constriction could be a valid approach to study muscle-bone crosstalk and to identify new strategies to prevent osteosarcopenia.


Asunto(s)
Enfermedades Óseas Metabólicas , Atrofia Muscular , Osteoporosis , Nervio Ciático , Animales , Ratas , Peso Corporal , Enfermedades Óseas Metabólicas/patología , Constricción , Músculo Esquelético/patología , Atrofia Muscular/patología , Osteoporosis/patología , Ratas Sprague-Dawley , Nervio Ciático/lesiones , Microtomografía por Rayos X
14.
J Cell Physiol ; 238(2): 407-419, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565474

RESUMEN

Intramuscular administration of p62/SQSTM1 (sequestosome1)-encoding plasmid demonstrated an anticancer effect in rodent models and dogs as well as a high safety profile and the first evidence of clinical benefits in humans. Also, an anti-inflammatory effect of the plasmid was reported in several rodent disease models. Yet, the mechanisms of action for the p62 plasmid remain unknown. Here, we tested a hypothesis that the p62-plasmid can act through the modulation of bone marrow multipotent mesenchymal cells (MSCs). We demonstrated that a p62 plasmid can affect MSCs indirectly by stimulating p62-transfected cells to secrete an active ingredient(s) sensed by untransfected MSCs. When we transfected MSCs with the p62-plasmid, collected their supernatant, and added it to an untransfected MSCs culture, it switched the differentiation state and prompt osteogenic responses of the untransfected MSCs. According to an accepted viewpoint, ovariectomy leads to bone pathology via dysregulation of MSCs, and restoring the MSC homeostasis would restore ovariectomy-induced bone damage. To validate our in vitro observations in a clinically relevant in vivo model, we administered the p62 plasmid to ovariectomized rats. It partially reversed bone loss and notably reduced adipogenesis with concurrent reestablishing of the MSC subpopulation pool within the bone marrow. Overall, our study suggests that remote modulation of progenitor MSCs via administering a p62-encoding plasmid may constitute a mechanism for its previously reported effects and presents a feasible disease-preventing and/or therapeutic strategy.


Asunto(s)
Enfermedades Óseas Metabólicas , Células Madre Mesenquimatosas , Animales , Femenino , Ratas , Enfermedades Óseas Metabólicas/patología , Médula Ósea , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Células Madre Multipotentes , Osteogénesis/fisiología , Proteína Sequestosoma-1 , Ratones
15.
Knee Surg Sports Traumatol Arthrosc ; 31(1): 169-176, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35674771

RESUMEN

PURPOSE: To investigate the relationship between glenoid width and other morphologic parameters using three-dimensional (3D) computed tomography (CT) images of native shoulders, and to create a new measurement tool to assess glenoid defects in a Canadian population with established anterior shoulder instability. METHODS: Forty-three glenoid CT scans were analyzed for patients who underwent contralateral shoulder glenoid reconstruction for anterior shoulder instability between 2012 and 2020. Demographic data were obtained including age, gender and BMI. The subjects were excluded if they had a prior history of ipsilateral shoulder instability, shoulder fractures, or bone tumors. The following glenoid parameters were measured: width (W), height (H), anteroposterior (AP) depth, superior-inferior (SI) depth and version. The shape of the glenoid was also classified into pear, inverted comma or oval. RESULTS: There were 35 male and 8 females with a mean age of 34.5 ± 12.9 years. The glenoid width was strongly correlated with the height (R2 = 0.9) and a regression model equation was obtained: W (mm) = 2.5 + 0.7*H (mm). There was also strong correlation with gender (P < 0.001), glenoid shape (P = 0.030), AP and SI depths (P = 0.006 and P < 0.001, respectively). Male gender was associated with higher measurement values for all parameters. The most common glenoid shapes were the pear (46.5%) and oval morphotypes (39.6%) for the whole study group. CONCLUSION: The native glenoid width can be estimated based on glenoid height using ipsilateral 3D CT. This may help with preoperative planning and surgical decision-making for patients with anterior shoulder instability and glenoid bone loss. LEVEL OF EVIDENCE: III.


Asunto(s)
Enfermedades Óseas Metabólicas , Inestabilidad de la Articulación , Articulación del Hombro , Femenino , Humanos , Masculino , Adulto Joven , Adulto , Persona de Mediana Edad , Articulación del Hombro/diagnóstico por imagen , Articulación del Hombro/cirugía , Articulación del Hombro/patología , Inestabilidad de la Articulación/diagnóstico por imagen , Inestabilidad de la Articulación/cirugía , Inestabilidad de la Articulación/patología , Imagenología Tridimensional/métodos , Canadá , Tomografía Computarizada por Rayos X/métodos , Enfermedades Óseas Metabólicas/patología
16.
Front Endocrinol (Lausanne) ; 13: 939959, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425467

RESUMEN

Background: Ceritinib is used for the treatment of patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC), who are at the risk of developing bone metastasis. During bone metastasis, tumor cells release factors that induce osteoclast formation, resulting in osteolysis. However, the effect of ceritinib on osteoclast formation remains unclear. Methods: Osteoclastogenesis was induced to assess the effect of ceritinib on osteoclast formation and osteoclast-specific gene expression. Western blotting was used to examine the molecular mechanisms underlying the effect of ceritinib on osteoclast differentiation. An in vivo ovariectomized mouse model was established to validate the effect of ceritinib in suppressing osteoclast formation and preventing bone loss. Results: The differentiation of osteoclasts and the expression of osteoclast-specific genes were inhibited upon ceritinib stimulation. Ceritinib suppressed Akt and p65 phosphorylation during the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis. The administration of ceritinib to ovariectomized mice ameliorated trabecular bone loss by inhibiting osteoclast formation. Conclusions: Ceritinib is beneficial in preventing bone loss by suppressing osteoclastic Akt and nuclear factor κB (NF-κB) signaling.


Asunto(s)
Enfermedades Óseas Metabólicas , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Osteoclastos/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Pulmonares/patología , Enfermedades Óseas Metabólicas/patología
17.
PLoS One ; 17(11): e0275439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36331919

RESUMEN

PURPOSE: Immobilization osteopenia is a major healthcare problem in clinical and social medicine. However, the mechanisms underlying this bone pathology caused by immobilization under load-bearing conditions are not yet fully understood. This study aimed to evaluate sequential changes to the three-dimensional microstructure of bone in load-bearing immobilization osteopenia using a fixed-limb rat model. MATERIALS AND METHOD: Eight-week-old specific-pathogen-free male Wistar rats were divided into an immobilized group and a control group (n = 60 each). Hind limbs in the immobilized group were fixed using orthopedic casts with fixation periods of 1, 2, 4, 8, and 12 weeks. Feeding and weight-bearing were freely permitted. Length of the right femur was measured after each fixation period and bone microstructure was analyzed by micro-computed tomography. The architectural parameters of cortical and cancellous bone were analyzed statistically. RESULTS: Femoral length was significantly shorter in the immobilized group than in the control group after 2 weeks. Total area and marrow area were significantly lower in the immobilized group than in the control group from 1 to 12 weeks. Cortical bone area, cortical thickness, and polar moment of inertia decreased significantly after 2 weeks. Some cancellous bone parameters showed osteoporotic changes at 2 weeks after immobilization and the gap with the control group widened as the fixation period extended (P < 0.05). CONCLUSION: The present results indicate that load-bearing immobilization triggers early deterioration of microstructure in both cortical and cancellous bone after 2 weeks.


Asunto(s)
Densidad Ósea , Enfermedades Óseas Metabólicas , Masculino , Ratas , Animales , Soporte de Peso , Microtomografía por Rayos X/efectos adversos , Ratas Wistar , Inmovilización/efectos adversos , Enfermedades Óseas Metabólicas/patología
18.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36173680

RESUMEN

Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement with a capacitance-based force-sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, IHC staining, and Western blot were used to assess pathological changes and underlying mechanisms of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on the articular surface, which caused rapid subchondral bone loss via activation of the RANTES-chemokine receptors-Akt2 (RANTES-CCRs-Akt2) axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating the Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of the RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoartritis , Animales , Ratas , Enfermedades Óseas Metabólicas/patología , Remodelación Ósea/fisiología , Quimiocina CCL5 , Osteoartritis/diagnóstico por imagen , Osteoartritis/patología , Osteoclastos/patología , Proteínas Proto-Oncogénicas c-akt , Articulación Temporomandibular/diagnóstico por imagen , Articulación Temporomandibular/patología , Ratones , Línea Celular
19.
DNA Cell Biol ; 41(7): 683-690, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35687365

RESUMEN

Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Osteocitos , Proteína Homóloga de Ras Enriquecida en el Cerebro , Animales , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Eliminación de Gen , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocitos/metabolismo , Osteocitos/patología , Osteogénesis/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Microtomografía por Rayos X
20.
BMC Endocr Disord ; 22(1): 70, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296306

RESUMEN

BACKGROUND: The GNAS gene on chromosome 20q13.3, encodes the alpha-subunit of the stimulatory G protein, which is expressed in most tissues and regulated through reciprocal genomic imprinting. Disorders of GNAS inactivation produce several different clinical phenotypes including pseudohypoparathyroidism (PHP), pseudopseudohypoparathyroidism (PPHP), progressive osseous heteroplasia (POH), and osteoma cutis (OC). The clinical and biochemical characteristics overlap of PHP subtypes and other related disorders presents challenges for differential diagnosis. METHODS: We enrolled a total of 11 Chinese children with PHP in our study and analyzed their clinical characteristics, laboratory results, and genetic mutations. RESULTS: Among these 11 patients, nine of them (9/11) presented with resistance to parathyroid hormone (PTH); and nine (9/11) presented with an Albright's hereditary osteodystrophy (AHO) phenotype. GNAS abnormalities were detected in all 11 patients, including nine cases with GNAS gene variations and two cases with GNAS methylation defects. These GNAS variations included an intronic mutation (c.212 + 3_212 + 6delAAGT), three missense mutations (c.314C > T, c.308 T > C, c.1123G > T), two deletion mutations (c.565_568delGACT*2, c.74delA), and two splicing mutations (c.721 + 1G > A, c.432 + 1G > A). Three of these mutations, namely, c.314C > T, c.1123G > T, and c.721 + 1G > A, were found to be novel. This data was then used to assign a GNAS subtype to each of these patients with six cases diagnosed as PHP1a, two cases as PHP1b, one as PPHP, and two as POH. CONCLUSIONS: Evaluating patients with PTH resistance and AHO phenotype improved the genetic diagnosis of GNAS mutations significantly. In addition, our results suggest that when GNAS gene sequencing is negative, GNAS methylation study should be performed. Early genetic detection is required for the differential diagnosis of GNAS disorders and is critical to the clinician's ability to distinguish between heterotopic ossification in the POH and AHO phenotype.


Asunto(s)
Enfermedades Óseas Metabólicas , Cromograninas/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Osificación Heterotópica , Seudohipoparatiroidismo , Enfermedades Cutáneas Genéticas , Adolescente , Enfermedades Óseas Metabólicas/diagnóstico , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Niño , Preescolar , China , Femenino , Humanos , Lactante , Masculino , Osificación Heterotópica/diagnóstico , Osificación Heterotópica/genética , Osificación Heterotópica/patología , Seudohipoparatiroidismo/diagnóstico , Seudohipoparatiroidismo/genética , Seudohipoparatiroidismo/patología , Seudoseudohipoparatiroidismo/diagnóstico , Seudoseudohipoparatiroidismo/genética , Seudoseudohipoparatiroidismo/patología , Enfermedades Cutáneas Genéticas/diagnóstico , Enfermedades Cutáneas Genéticas/genética , Enfermedades Cutáneas Genéticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...