Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.430
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 124, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744846

RESUMEN

Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.


Asunto(s)
Mitocondrias , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Enfermedades Mitocondriales/metabolismo , ADN Mitocondrial/genética , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Animales
2.
J Cell Mol Med ; 28(10): e18324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760897

RESUMEN

Early research suggested that bone morphogenetic protein 10 (BMP10) is primarily involved in cardiac development and congenital heart disease processes. BMP10 is a newly identified cardiac-specific protein. In recent years, reports have emphasized the effects of BMP10 on myocardial apoptosis, fibrosis and immune response, as well as its synergistic effects with BMP9 in vascular endothelium and role in endothelial dysfunction. We believe that concentrating on this aspect of the study will enhance our knowledge of the pathogenesis of diabetes and the cardiovascular field. However, there have been no reports of any reviews discussing the role of BMP10 in diabetes and cardiovascular disease. In addition, the exact pathogenesis of diabetic cardiomyopathy is not fully understood, including myocardial energy metabolism disorders, microvascular changes, abnormal apoptosis of cardiomyocytes, collagen structural changes and myocardial fibrosis, all of which cause cardiac function impairment directly or indirectly and interact with one another. This review summarizes the research results of BMP10 in cardiac development, endothelial function and cardiovascular disease in an effort to generate new ideas for future research into diabetic cardiomyopathy.


Asunto(s)
Proteínas Morfogenéticas Óseas , Enfermedades Cardiovasculares , Diabetes Mellitus , Cardiomiopatías Diabéticas , Humanos , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis
3.
Sci Adv ; 10(19): eadn3510, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728407

RESUMEN

Cardiovascular disease (CVD), the world's leading cause of death, exhibits notable epidemiological, clinical, and pathophysiological differences between sexes. Many such differences can be linked back to cardiovascular sexual dimorphism, yet sex-specific in vitro models are still not the norm. A lack of sex reporting and apparent male bias raises the question of whether in vitro CVD models faithfully recapitulate the biology of intended treatment recipients. To ensure equitable treatment for the overlooked female patient population, sex as a biological variable (SABV) inclusion must become commonplace in CVD preclinical research. Here, we discuss the role of sex in CVD and underlying cardiovascular (patho)physiology. We review shortcomings in current SABV practices, describe the relevance of sex, and highlight emerging strategies for SABV inclusion in three major in vitro model types: primary cell, stem cell, and three-dimensional models. Last, we identify key barriers to inclusive design and suggest techniques for overcoming them.


Asunto(s)
Enfermedades Cardiovasculares , Caracteres Sexuales , Humanos , Enfermedades Cardiovasculares/patología , Femenino , Masculino , Animales , Factores Sexuales , Modelos Biológicos
5.
Sci Rep ; 14(1): 9092, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643302

RESUMEN

Vascular and neural structures of the retina can be visualized non-invasively and used to predict ocular and systemic pathologies. We set out to evaluate the association of hemoglobin (Hb) levels within the national reference interval with retinal vascular caliber, optical coherence tomography (OCT) and visual field (VF) parameters in the Northern Finland 1966 Birth Cohort (n = 2319, 42.1% male, average age 47 years). The studied parameters were evaluated in Hb quintiles and multivariable linear regression models. The lowest Hb quintile of both sexes presented the narrowest central retinal vein equivalent (CRVE) and the healthiest cardiometabolic profile compared to the other Hb quintiles. In the regression models, CRVE associated positively with Hb levels in both sexes, (Bmales = 0.068 [0.001; 0.135], Bfemales = 0.087 [0.033; 0.140]), after being adjusted for key cardiometabolic and inflammatory parameters, smoking status, and fellow vessel caliber. No statistically significant associations of Hb levels with central retinal artery equivalent, OCT or VF parameters were detected. In conclusion, Hb levels were positively and specifically associated with CRVE, indicating that Hb levels are an independent factor affecting CRVE and the effect is in parallel with established risk factors for cardiometabolic diseases.


Asunto(s)
Enfermedades Cardiovasculares , Oftalmopatías , Persona de Mediana Edad , Femenino , Humanos , Masculino , Cohorte de Nacimiento , Oftalmopatías/patología , Retina/diagnóstico por imagen , Enfermedades Cardiovasculares/patología , Hemoglobinas , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/patología
6.
Life Sci ; 347: 122653, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663839

RESUMEN

Autophagy is a cellular degradation system that recycles or degrades damaged organelles, viral particles, and aggregated proteins through the lysosomal pathway. Autophagy plays an indispensable role in cellular homeostasis and communication processes. An interesting aspect is that autophagy also mediates the secretion of cellular contents, a process known as secretory autophagy. Secretory autophagy differs from macroautophagy, which sequesters recruited proteins, organelles, or viral particles into autophagosomes and degrades these sequesters in lysosomes, while the secretory autophagy pathway participates in the extracellular export of cellular contents sequestered by autophagosomes through autophagy and endosomal modulators. Recent evidence reveals that secretory autophagy is pivotal in the occurrence and progression of diseases. In this review, we summarize the molecular mechanisms of secretory autophagy. Furthermore, we review the impact of secretory autophagy on diseases, including cancer, viral infectious diseases, neurodegenerative diseases, and cardiovascular diseases. Considering the pleiotropic actions of secretory autophagy on diseases, studying the mechanism of secretory autophagy may help to understand the relevant pathophysiological processes.


Asunto(s)
Autofagia , Humanos , Autofagia/fisiología , Animales , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neoplasias/patología , Neoplasias/metabolismo , Virosis/metabolismo , Virosis/patología , Autofagosomas/metabolismo , Lisosomas/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología
7.
Cell Signal ; 119: 111156, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38574938

RESUMEN

In the seemingly well-researched field of vascular research, there are still many underestimated factors and molecular mechanisms. In recent years, SUMOylation has become increasingly important. SUMOylation is a post-translational modification in which small ubiquitin-related modifiers (SUMO) are covalently attached to target proteins. Sites where these SUMO modification processes take place in the cell nucleus are PML nuclear bodies (PML-NBs) - multiprotein complexes with their essential main component and organizer, the PML protein. PML and SUMO, either alone or as partners, influence a variety of cellular processes, including regulation of transcription, senescence, DNA damage response and defence against microorganisms, and are involved in innate immunity and inflammatory responses. They also play an important role in maintaining homeostasis in the vascular system and in pathological processes leading to the development and progression of cardiovascular diseases. This review summarizes information about the function of SUMO(ylation) and PML(-NBs) in the human vasculature from angiogenesis to disease and highlights their clinical potential as drug targets.


Asunto(s)
Proteínas Nucleares , Proteína de la Leucemia Promielocítica , Sumoilación , Factores de Transcripción , Humanos , Proteína de la Leucemia Promielocítica/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Supresoras de Tumor/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología
8.
Cell Signal ; 119: 111169, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599440

RESUMEN

Cardiac resident macrophages (CRMs) are essential in maintaining the balance of the immune homeostasis in the heart. One of the main factors in the progression of cardiovascular diseases, such as myocarditis, myocardial infarction(MI), and heart failure(HF), is the imbalance in the regulatory mechanisms of CRMs. Recent studies have reported novel heterogeneity and spatiotemporal complexity of CRMs, and their role in maintaining cardiac immune homeostasis and treating cardiovascular diseases. In this review, we focus on the functions of CRMs, including immune surveillance, immune phagocytosis, and immune metabolism, and explore the impact of CRM's homeostasis imbalance on cardiac injury and cardiac repair. We also discuss the therapeutic approaches linked to CRMs. The immunomodulatory strategies targeting CRMs may be a therapeutic approach for the treatment of cardiovascular disease.


Asunto(s)
Homeostasis , Macrófagos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Miocardio/inmunología , Miocardio/metabolismo , Miocardio/patología , Fagocitosis , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/metabolismo
9.
Free Radic Biol Med ; 219: 64-75, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604314

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death globally, resulting in a major health burden. Thus, an urgent need exists for exploring effective therapeutic targets to block progression of CVDs and improve patient prognoses. Immune and inflammatory responses are involved in the development of atherosclerosis, ischemic myocardial damage responses and repair, calcification, and stenosis of the aortic valve. These responses can involve both large and small blood vessels throughout the body, leading to increased blood pressure and end-organ damage. While exploring potential avenues for therapeutic intervention in CVDs, researchers have begun to focus on immune metabolism, where metabolic changes that occur in immune cells in response to exogenous or endogenous stimuli can influence immune cell effector responses and local immune signaling. Itaconate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, is related to pathophysiological processes, including cellular metabolism, oxidative stress, and inflammatory immune responses. The expression of immune response gene 1 (IRG1) is upregulated in activated macrophages, and this gene encodes an enzyme that catalyzes the production of itaconate from the TCA cycle intermediate, cis-aconitate. Itaconate and its derivatives have exerted cardioprotective effects through immune modulation in various disease models, such as ischemic heart disease, valvular heart disease, vascular disease, heart transplantation, and chemotherapy drug-induced cardiotoxicity, implying their therapeutic potential in CVDs. In this review, we delve into the associated signaling pathways through which itaconate exerts immunomodulatory effects, summarize its specific roles in CVDs, and explore emerging immunological therapeutic strategies for managing CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Succinatos , Humanos , Succinatos/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/patología , Ciclo del Ácido Cítrico , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Carboxiliasas
10.
Cardiovasc Toxicol ; 24(6): 598-621, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38689163

RESUMEN

Cardiovascular diseases (CVDs) can be described as a global health emergency imploring possible prevention strategies. Although the pathogenesis of CVDs has been extensively studied, the role of mitochondrial dysfunction in CVD development has yet to be investigated. Diabetic cardiomyopathy, ischemic-reperfusion injury, and heart failure are some of the CVDs resulting from mitochondrial dysfunction Recent evidence from the research states that any dysfunction of mitochondria has an impact on metabolic alteration, eventually causes the death of a healthy cell and therefore, progressively directing to the predisposition of disease. Cardiovascular research investigating the targets that both protect and treat mitochondrial damage will help reduce the risk and increase the quality of life of patients suffering from various CVDs. One such target, i.e., nuclear sirtuin SIRT6 is strongly associated with cardiac function. However, the link between mitochondrial dysfunction and SIRT6 concerning cardiovascular pathologies remains poorly understood. Although the Role of SIRT6 in skeletal muscles and cardiomyocytes through mitochondrial regulation has been well understood, its specific role in mitochondrial maintenance in cardiomyocytes is poorly determined. The review aims to explore the domain-specific function of SIRT6 in cardiomyocytes and is an effort to know how SIRT6, mitochondria, and CVDs are related.


Asunto(s)
Enfermedades Cardiovasculares , Mitocondrias Cardíacas , Miocitos Cardíacos , Sirtuinas , Sirtuinas/metabolismo , Humanos , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/efectos de los fármacos , Animales , Miocitos Cardíacos/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/patología , Transducción de Señal , Metabolismo Energético/efectos de los fármacos
11.
Hum Cell ; 37(3): 607-624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38498133

RESUMEN

Due to aging populations and changes in lifestyle, cardiovascular diseases including cardiomyopathy, hypertension, and atherosclerosis, are the leading causes of death worldwide. The heart is a complicated organ composed of multicellular types, including cardiomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells, and immune cells. Cellular specialization and complex interplay between different cell types are crucial for the cardiac tissue homeostasis and coordinated function of the heart. Mounting studies have demonstrated that dysfunctional cells and disordered cardiac microenvironment are closely associated with the pathogenesis of various cardiovascular diseases. In this paper, we discuss the composition and the homeostasis of cardiac tissues, and focus on the role of cardiac environment and underlying molecular mechanisms in various cardiovascular diseases. Besides, we elucidate the novel treatment for cardiovascular diseases, including stem cell therapy and targeted therapy. Clarification of these issues may provide novel insights into the prevention and potential targets for cardiovascular diseases.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/terapia , Enfermedades Cardiovasculares/patología , Células Endoteliales/metabolismo , Miocitos Cardíacos/patología , Envejecimiento
12.
Magn Reson Imaging ; 109: 67-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484947

RESUMEN

PURPOSE: To investigate longitudinal thoracic aorta injury using 3-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) parameters and to evaluate their value for predicting the subsequent main adverse cardiovascular events (MACEs) in breast cancer patients receiving anthracyclines. METHODS: Between July 2020 and July 2021, eighty-eight female participants with breast cancer scheduled to receive anthracyclines with or without trastuzumab prospectively enrolled. Each subjects underwent 4D flow MRI at baseline, 3 and 6 months in relation to baseline. The diameter, peak velocity (Vpeak), wall shear stress (WSS), pulse wave velocity (PWV), energy loss (EL) and pressure gradient (PG) of thoracic aorta were measured. The association between these parameters and subsequent MACEs was performed by Cox proportional hazard models. RESULTS: Ten participants had subsequently MACEs. The Vpeak and PG gradually decreased and the WSS, PWV and EL progressively increased at 3 and 6 months compared with baseline. Adjusted multivariable analysis showed that the WSS of the proximal, mid- and distal ascending aorta [HR, 1.314 (95% confidence interval (CI): 1.003, 1.898)], [HR, 1.320 (95% CI: 1.002, 1.801)] and [HR, 1.322 (95% CI: 1.001, 1.805)] and PWV of ascending aorta [HR, 2.223 (95% CI: 1.010, 4.653)] at 3 months were associated with subsequent MACEs. Combined WSS and PWV of ascending aorta at 3 months yielded the highest AUC (0.912) for predicting subsequent MACEs. CONCLUSION: Combined WSS and PWV of ascending aorta at 3 months is helpful for predicting the subsequent MACEs in breast cancer patients treated by anthracyclines.


Asunto(s)
Neoplasias de la Mama , Enfermedades Cardiovasculares , Humanos , Femenino , Aorta Torácica/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Análisis de la Onda del Pulso , Antraciclinas/efectos adversos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Enfermedades Cardiovasculares/patología , Velocidad del Flujo Sanguíneo , Hemodinámica , Estrés Mecánico
13.
Front Immunol ; 15: 1335519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515760

RESUMEN

Cardiovascular diseases (CVDs) are multifactorial chronic diseases and have the highest rates of morbidity and mortality worldwide. The ubiquitin-proteasome system (UPS) plays a crucial role in posttranslational modification and quality control of proteins, maintaining intracellular homeostasis via degradation of misfolded, short-lived, or nonfunctional regulatory proteins. Noncoding RNAs (ncRNAs, such as microRNAs, long noncoding RNAs, circular RNAs and small interfering RNAs) serve as epigenetic factors and directly or indirectly participate in various physiological and pathological processes. NcRNAs that regulate ubiquitination or are regulated by the UPS are involved in the execution of target protein stability. The cross-linked relationship between the UPS, ncRNAs and CVDs has drawn researchers' attention. Herein, we provide an update on recent developments and perspectives on how the crosstalk of the UPS and ncRNAs affects the pathological mechanisms of CVDs, particularly myocardial ischemia/reperfusion injury, myocardial infarction, cardiomyopathy, heart failure, atherosclerosis, hypertension, and ischemic stroke. In addition, we further envision that RNA interference or ncRNA mimics or inhibitors targeting the UPS can potentially be used as therapeutic tools and strategies.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Humanos , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Ubiquitina , Ligasas , ARN no Traducido/genética , MicroARNs/genética , Complejo de la Endopetidasa Proteasomal
14.
Cell Rep ; 43(4): 114008, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536819

RESUMEN

The metabolic syndrome is accompanied by vascular complications. Human in vitro disease models are hence required to better understand vascular dysfunctions and guide clinical therapies. Here, we engineered an open microfluidic vessel-on-chip platform that integrates human pluripotent stem cell-derived endothelial cells (SC-ECs). The open microfluidic design enables seamless integration with state-of-the-art analytical technologies, including single-cell RNA sequencing, proteomics by mass spectrometry, and high-resolution imaging. Beyond previous systems, we report SC-EC maturation by means of barrier formation, arterial toning, and high nitric oxide synthesis levels under gravity-driven flow. Functionally, we corroborate the hallmarks of early-onset atherosclerosis with low sample volumes and cell numbers under flow conditions by determining proteome and secretome changes in SC-ECs stimulated with oxidized low-density lipoprotein and free fatty acids. More broadly, our organ-on-chip platform enables the modeling of patient-specific human endothelial tissue and has the potential to become a general tool for animal-free vascular research.


Asunto(s)
Células Endoteliales , Dispositivos Laboratorio en un Chip , Humanos , Células Endoteliales/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Lipoproteínas LDL/metabolismo , Diferenciación Celular , Células Madre Pluripotentes/metabolismo
15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159484, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521491

RESUMEN

Perivascular adipose tissue (PVAT) has emerged as a dynamic organ influencing vascular function and cardiovascular health. In this brief review, an overview of the recent research in the investigation of PVAT is presented, ranging from in vivo studies to single-cell methodologies, in particular those based on Raman spectroscopy. The strengths and limitations of each, emphasizing their contributions to the current understanding of PVAT biology were discussed. Ultimately, the integration of these diverse methodologies promises to uncover new therapeutic targets and diagnostic biomarkers, including those emerging from simple Raman spectroscopy-based measurements of alterations in lipid unsaturation degree, invariably associated with PVAT dysfunction.


Asunto(s)
Tejido Adiposo , Análisis de la Célula Individual , Espectrometría Raman , Espectrometría Raman/métodos , Tejido Adiposo/metabolismo , Humanos , Análisis de la Célula Individual/métodos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/diagnóstico por imagen
17.
Biomed Pharmacother ; 174: 116457, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518600

RESUMEN

Ferroptosis, distinct from apoptosis, necrosis, autophagy, and other types of cell death, is a novel iron-dependent regulated cell death characterized by the accumulation of lipid peroxides and redox imbalance with distinct morphological, biochemical, and genetic features. Dysregulation of iron homeostasis, the disruption of antioxidative stress pathways and lipid peroxidation are crucial in ferroptosis. Ferroptosis is involved in the pathogenesis of several cardiovascular diseases, including atherosclerosis, cardiomyopathy, myocardial infarction, ischemia-reperfusion injury, abdominal aortic aneurysm, aortic dissection, and heart failure. Therefore, a comprehensive understanding of the mechanisms that regulate ferroptosis in cardiovascular diseases will enhance the prevention and treatment of these diseases. This review discusses the latest findings on the molecular mechanisms of ferroptosis and its regulation in cardiovascular diseases, the application of ferroptosis modulators in cardiovascular diseases, and the role of traditional Chinese medicines in ferroptosis regulation to provide a comprehensive understanding of the pathogenesis of cardiovascular diseases and identify new prevention and treatment options.


Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Ferroptosis/fisiología , Ferroptosis/efectos de los fármacos , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/patología , Animales , Hierro/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/fisiología
18.
Front Biosci (Landmark Ed) ; 29(2): 70, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38420793

RESUMEN

BACKGROUND: The number of older people in the world is increasing year by year; studies have shown that more than 90% of cardiovascular disease occurs in the older people population, indicating that aging is one of the major risks involved in the development of cardiovascular disease. Therefore, retarding the development of cardiac aging is an important strategy to prevent aging-related cardiovascular diseases. METHODS: In the current study, we examined the anti-cardiovascular aging potential of canthaxanthin in vitro and in vivo experiments. For this, a model of cardiomyocyte senescence induced by D-galactose was established, which was used to investigate the canthaxanthin's effect on cardiac premature aging. RESULTS: We found that canthaxanthin obviously mitigated the cardiomyocyte senescence in vitro. Further mechanistic studies revealed that canthaxanthin seems to alleviate cardiomyocyte senescence by regulating the autophagy process. Furthermore, the effects of canthaxanthin on cardiovascular senescence were further evaluated. We also observed that canthaxanthin mitigated cardiac aging and fibrosis in the aged mice model. CONCLUSIONS: To sum up, the current work showed that canthaxanthin could obviously alleviate cardiac premature aging, indicating that canthaxanthin could be used as a biologically active molecule for the treatment of cardiac aging and fibrosis.


Asunto(s)
Envejecimiento Prematuro , Enfermedades Cardiovasculares , Humanos , Animales , Ratones , Anciano , Cantaxantina/farmacología , Envejecimiento Prematuro/patología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/patología , Envejecimiento , Miocitos Cardíacos , Fibrosis , Senescencia Celular
19.
Adv Exp Med Biol ; 1443: 159-171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409420

RESUMEN

Cardiovascular diseases (CVDs) remain a global health challenge and are the leading cause of deaths worldwide. Proteomics has emerged as a valuable tool for unraveling the complex molecular mechanisms underlying CVDs, offering insights into biomarker discovery, drug targets, and personalized medicine. This review explores key breakthroughs in proteomic applications related to CVDs, mainly coronary artery disease (CAD), ischemic heart diseases such as myocardial infarction (MI), and cardiomyopathies. Notable findings include potential biomarkers, therapeutic targets, and insights into disease pathogenesis. The review highlights the importance of proteomics in advancing our understanding of CVDs and shaping future therapeutic approaches.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Humanos , Enfermedades Cardiovasculares/patología , Proteómica , Medicina de Precisión
20.
Cardiovasc Res ; 120(6): 567-580, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38395029

RESUMEN

Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.


Asunto(s)
Fibrosis , Hipertensión , Miofibroblastos , Humanos , Miofibroblastos/patología , Miofibroblastos/metabolismo , Animales , Hipertensión/fisiopatología , Hipertensión/metabolismo , Hipertensión/patología , Hipertensión/inmunología , Miocardio/patología , Miocardio/metabolismo , Miocardio/inmunología , Presión Sanguínea , Transducción de Señal , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/inmunología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...