Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.150
Filtrar
1.
Sci Rep ; 14(1): 9823, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684927

RESUMEN

The emergence of infectious diseases with pandemic potential is a major public health threat worldwide. The World Health Organization reports that about 60% of emerging infectious diseases are zoonoses, originating from spillover events. Although the mechanisms behind spillover events remain unclear, mathematical modeling offers a way to understand the intricate interactions among pathogens, wildlife, humans, and their shared environment. Aiming at gaining insights into the dynamics of spillover events and the outcome of an eventual disease outbreak in a population, we propose a continuous time stochastic modeling framework. This framework links the dynamics of animal reservoirs and human hosts to simulate cross-species disease transmission. We conduct a thorough analysis of the model followed by numerical experiments that explore various spillover scenarios. The results suggest that although most epidemic outbreaks caused by novel zoonotic pathogens do not persist in the human population, the rising number of spillover events can avoid long-lasting extinction and lead to unexpected large outbreaks. Hence, global efforts to reduce the impacts of emerging diseases should not only address post-emergence outbreak control but also need to prevent pandemics before they are established.


Asunto(s)
Enfermedades Transmisibles Emergentes , Salud Pública , Zoonosis , Humanos , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Animales , Zoonosis/epidemiología , Zoonosis/transmisión , Brotes de Enfermedades , Modelos Teóricos , Reservorios de Enfermedades , Pandemias
2.
Am J Vet Res ; 85(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593825

RESUMEN

Highly pathogenic avian influenza (HPAI) has persisted as a One Health threat whose current circulation and impact are addressed in the companion Currents in One Health by Puryear and Runstadler, JAVMA, May 2024. Highly pathogenic avian influenza emerged as a by-product of agricultural practices and adapted to endemic circulation in wild bird species. Over more than 20 years, continued evolution in a complex ecology involving multiple hosts has produced a lineage that expanded globally over the last 2 years. Understanding the continued evolution and movement of HPAI relies on understanding how the virus is infecting different hosts in different contexts. This includes understanding the environmental factors and the natural ecology of viral transmission that impact host exposure and ultimately evolutionary trajectories. Particularly with the rapid host expansion, increased spillover to mammalian hosts, and novel clinical phenotypes in infected hosts, despite progress in understanding the impact of specific mutations to HPAI viruses that are associated with spillover potential, the threat to public health is poorly understood. Active research is focusing on new approaches to understanding the relationship of viral genotype to phenotype and the implementation of research and surveillance pipelines to make sense of the enormous potential for diverse HPAI viruses to emerge from wild reservoirs amid global circulation.


Asunto(s)
Animales Salvajes , Aves , Gripe Aviar , Mamíferos , Animales , Gripe Aviar/virología , Gripe Aviar/transmisión , Gripe Aviar/epidemiología , Animales Salvajes/virología , Aves/virología , Mamíferos/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/epidemiología , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Enfermedades Transmisibles Emergentes/virología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/transmisión
5.
Proc Natl Acad Sci U S A ; 119(35): e2122851119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994656

RESUMEN

Disease transmission prediction across wildlife is crucial for risk assessment of emerging infectious diseases. Susceptibility of host species to pathogens is influenced by the geographic, environmental, and phylogenetic context of the specific system under study. We used machine learning to analyze how such variables influence pathogen incidence for multihost pathogen assemblages, including one of direct transmission (coronaviruses and bats) and two vector-borne systems (West Nile Virus [WNV] and birds, and malaria and birds). Here we show that this methodology is able to provide reliable global spatial susceptibility predictions for the studied host-pathogen systems, even when using a small amount of incidence information (i.e., [Formula: see text] of information in a database). We found that avian malaria was mostly affected by environmental factors and by an interaction between phylogeny and geography, and WNV susceptibility was mostly influenced by phylogeny and by the interaction between geographic and environmental distances, whereas coronavirus susceptibility was mostly affected by geography. This approach will help to direct surveillance and field efforts providing cost-effective decisions on where to invest limited resources.


Asunto(s)
Animales Salvajes , Enfermedades Transmisibles Emergentes , Susceptibilidad a Enfermedades , Animales , Animales Salvajes/parasitología , Animales Salvajes/virología , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/transmisión , Quirópteros/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/veterinaria , Coronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Bases de Datos Factuales , Ambiente , Monitoreo Epidemiológico , Geografía , Interacciones Huésped-Patógeno , Incidencia , Aprendizaje Automático , Malaria/epidemiología , Malaria/transmisión , Malaria/veterinaria , Filogenia , Medición de Riesgo , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental
7.
Ecohealth ; 19(2): 299-314, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35674864

RESUMEN

The majority of emerging and re-emerging infectious diseases in people are zoonotic. Despite substantial research in communities adjacent to protected areas with high levels of biodiversity, limited data exist on people's knowledge, attitudes, and practices to avoid exposure to infections from domestic and wild animals. We used a modified grounded-theory framework in QS NVivo to develop a Knowledge, Attitude, and Practices (KAP) survey administered at two time points, KAPT1 (April-July 2016) and KAPT2 (February-May 2018) to participants living at the edge of Kibale National Park, Uganda. We measured the difference in willingness to engage in protective behaviors around zoonotic exposure between an Intervention group (n = 61) and a Comparison group (n = 125). Prior to KAPT1, the Intervention group engaged in a human-centered design (HCD) activity identifying behaviors that reduce zoonotic exposure (March-May 2016). Using a difference-in-difference approach, we compared the Intervention and Comparison groups to assess sustained willingness and use of protective behaviors against domestic and wild animal exposures. At KAPT1, Comparison group participants had a significantly lower (p < 0.05) level of willingness to engage in behaviors that increase exposure to zoonoses from domestic animals; Intervention group participants had a significantly higher (p < 0.01) level of willingness to engage in behaviors that increase exposure to zoonoses from wild animals. At KAPT2, the treatment effect was significant (p < 0.01) for sustained willingness to engage in protective behaviors for domestic animal exposure in the Intervention group. There were no significant differences in practices to avoid domestic and wild animal zoonotic exposure between the Intervention and Comparison groups.


Asunto(s)
Enfermedades Transmisibles Emergentes , Exposición a Riesgos Ambientales , Conductas Relacionadas con la Salud , Educación en Salud , Conocimientos, Actitudes y Práctica en Salud , Zoonosis , Animales , Animales Domésticos , Animales Salvajes , Biodiversidad , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/transmisión , Exposición a Riesgos Ambientales/prevención & control , Humanos , Parques Recreativos , Encuestas y Cuestionarios , Uganda , Zoonosis/prevención & control , Zoonosis/transmisión
10.
Nucleic Acids Res ; 50(D1): D943-D949, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34634795

RESUMEN

Emerging infectious diseases significantly threaten global public health and socioeconomic security. The majority of emerging infectious disease outbreaks are caused by zoonotic/vector-borne viruses. Bats and rodents are the two most important reservoir hosts of many zoonotic viruses that can cross species barriers to infect humans, whereas mosquitos and ticks are well-established major vectors of many arboviral diseases. Moreover, some emerging zoonotic diseases require a vector to spread or are intrinsically vector-borne and zoonotically transmitted. In this study, we present a newly upgraded database of zoonotic and vector-borne viruses designated ZOVER (http://www.mgc.ac.cn/ZOVER). It incorporates two previously released databases, DBatVir and DRodVir, for bat- and rodent-associated viruses, respectively, and further collects up-to-date knowledge on mosquito- and tick-associated viruses to establish a comprehensive online resource for zoonotic and vector-borne viruses. Additionally, it integrates a set of online visualization tools for convenient comparative analyses to facilitate the discovery of potential patterns of virome diversity and ecological characteristics between/within different viral hosts/vectors. The ZOVER database will be a valuable resource for virologists, zoologists and epidemiologists to better understand the diversity and dynamics of zoonotic and vector-borne viruses and conduct effective surveillance to monitor potential interspecies spillover for efficient prevention and control of future emerging zoonotic diseases.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Bases de Datos Factuales , Programas Informáticos , Virosis/epidemiología , Virus/patogenicidad , Zoonosis/epidemiología , Animales , Quirópteros/virología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Culicidae/virología , Conjuntos de Datos como Asunto , Vectores de Enfermedades/clasificación , Monitoreo Epidemiológico , Interacciones Huésped-Patógeno , Humanos , Internet , Anotación de Secuencia Molecular , Roedores/virología , Garrapatas/virología , Virosis/transmisión , Virosis/virología , Virus/clasificación , Virus/genética , Zoonosis/transmisión , Zoonosis/virología
12.
Elife ; 102021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34544548

RESUMEN

Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind's insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.


Asunto(s)
Evolución Biológica , Enfermedades Transmisibles Emergentes/transmisión , Reservorios de Enfermedades , Zoonosis/transmisión , Animales , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/inmunología , Interacciones Huésped-Patógeno , Humanos , Virulencia , Zoonosis/epidemiología , Zoonosis/inmunología
14.
Viruses ; 13(6)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204394

RESUMEN

The possible role of viruses in feline liver disease has long remained neglected. However, in 2018, an analogue of human hepatitis B virus was identified in cats. Moreover, antibodies for human hepatitis E have been detected consistently at various prevalence rates in cats. Although the correlation between these viruses and the liver injury in cats must be clarified, hepatotropic viruses might represent an increasing risk for feline and public health.


Asunto(s)
Enfermedades de los Gatos/virología , Enfermedades Transmisibles Emergentes/veterinaria , Hígado/virología , Tropismo Viral , Virus/patogenicidad , Animales , Anticuerpos Antivirales/sangre , Gatos/virología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Hepatitis E/inmunología , Humanos , Hígado/patología , Salud Pública
15.
Cells ; 10(6)2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-34070971

RESUMEN

The recent SARS-CoV-2 pandemic has refocused attention to the betacoronaviruses, only eight years after the emergence of another zoonotic betacoronavirus, the Middle East respiratory syndrome coronavirus (MERS-CoV). While the wild source of SARS-CoV-2 may be disputed, for MERS-CoV, dromedaries are considered as source of zoonotic human infections. Testing 100 immune-response genes in 121 dromedaries from United Arab Emirates (UAE) for potential association with present MERS-CoV infection, we identified candidate genes with important functions in the adaptive, MHC-class I (HLA-A-24-like) and II (HLA-DPB1-like), and innate immune response (PTPN4, MAGOHB), and in cilia coating the respiratory tract (DNAH7). Some of these genes previously have been associated with viral replication in SARS-CoV-1/-2 in humans, others have an important role in the movement of bronchial cilia. These results suggest similar host genetic pathways associated with these betacoronaviruses, although further work is required to better understand the MERS-CoV disease dynamics in both dromedaries and humans.


Asunto(s)
Inmunidad Adaptativa/genética , Camelus/virología , Enfermedades Transmisibles Emergentes/inmunología , Infecciones por Coronavirus/inmunología , Inmunidad Innata/genética , Zoonosis/inmunología , Animales , Anticuerpos Antivirales , Bronquios/citología , Bronquios/fisiología , COVID-19/genética , COVID-19/inmunología , COVID-19/virología , Camelus/genética , Camelus/inmunología , Cilios/fisiología , Enfermedades Transmisibles Emergentes/genética , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Reservorios de Enfermedades/virología , Femenino , Predisposición Genética a la Enfermedad , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mucosa Respiratoria/citología , Mucosa Respiratoria/fisiología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Emiratos Árabes Unidos , Replicación Viral/genética , Replicación Viral/inmunología , Zoonosis/genética , Zoonosis/transmisión , Zoonosis/virología
16.
J Gen Virol ; 102(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34166178

RESUMEN

Mosquito-transmitted arboviruses constitute a large proportion of emerging infectious diseases that are both a public health problem and a threat to animal populations. Many such viruses were identified in East Africa, a region where they remain important and from where new arboviruses may emerge. We set out to describe and review the relevant mosquito-borne viruses that have been identified specifically in Uganda. We focused on the discovery, burden, mode of transmission, animal hosts and clinical manifestation of those previously involved in disease outbreaks. A search for mosquito-borne arboviruses detected in Uganda was conducted using search terms 'Arboviruses in Uganda' and 'Mosquitoes and Viruses in Uganda' in PubMed and Google Scholar in 2020. Twenty-four mosquito-borne viruses from different animal hosts, humans and mosquitoes were documented. The majority of these were from family Peribunyaviridae, followed by Flaviviridae, Togaviridae, Phenuiviridae and only one each from family Rhabdoviridae and Reoviridae. Sixteen (66.7 %) of the viruses were associated with febrile illnesses. Ten (41.7 %) of them were first described locally in Uganda. Six of these are a public threat as they have been previously associated with disease outbreaks either within or outside Uganda. Historically, there is a high burden and endemicity of arboviruses in Uganda. Given the many diverse mosquito species known in the country, there is also a likelihood of many undescribed mosquito-borne viruses. New generation diagnostic platforms have great potential to identify new viruses. Indeed, four novel viruses, two of which were from humans (Ntwetwe and Nyangole viruses) and two from mosquitoes (Kibale and Mburo viruses) including the 2010 yellow fever virus (YFV) outbreak were identified in the last decade using next generation sequencing. Given the unbiased approach of detection of viruses by this technology, its use will undoubtedly be critically important in the characterization of mosquito viromes which in turn will inform other diagnostic efforts.


Asunto(s)
Infecciones por Arbovirus , Arbovirus , Enfermedades Transmisibles Emergentes/virología , Mosquitos Vectores/virología , Enfermedades Transmitidas por Vectores/virología , Animales , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/transmisión , Infecciones por Arbovirus/veterinaria , Infecciones por Arbovirus/virología , Arbovirus/clasificación , Arbovirus/genética , Arbovirus/aislamiento & purificación , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/veterinaria , Culicidae/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Uganda/epidemiología , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/transmisión , Enfermedades Transmitidas por Vectores/veterinaria
18.
Exp Mol Med ; 53(5): 713-722, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953322

RESUMEN

An emerging infectious disease first identified in central China in 2009, severe fever with thrombocytopenia syndrome (SFTS) was found to be caused by a novel phlebovirus. Since SFTSV was first identified, epidemics have occurred in several East Asian countries. With the escalating incidence of SFTS and the rapid, worldwide spread of SFTSV vector, it is clear this virus has pandemic potential and presents an impending global public health threat. In this review, we concisely summarize the latest findings regarding SFTSV, including vector and virus transmission, genotype diversity and epidemiology, probable pathogenic mechanism, and clinical presentation of human SFTS. Ticks most likely transmit SFTSV to animals including humans; however, human-to-human transmission has been reported. The majority of arbovirus transmission cycle includes vertebrate hosts, and potential reservoirs include a variety of both domestic and wild animals. Reports of the seroprevalence of SFTSV in both wild and domestic animals raises the probability that domestic animals act as amplifying hosts for the virus. Major clinical manifestation of human SFTS infection is high fever, thrombocytopenia, leukocytopenia, gastrointestinal symptoms, and a high case-fatality rate. Several animal models were developed to further understand the pathogenesis of the virus and aid in the discovery of therapeutics and preventive measures.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/virología , Susceptibilidad a Enfermedades , Phlebovirus/fisiología , Síndrome de Trombocitopenia Febril Grave/epidemiología , Síndrome de Trombocitopenia Febril Grave/virología , Animales , Control de Enfermedades Transmisibles , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/transmisión , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Variación Genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Phlebovirus/clasificación , Virus Reordenados , Estudios Seroepidemiológicos , Síndrome de Trombocitopenia Febril Grave/prevención & control , Síndrome de Trombocitopenia Febril Grave/transmisión , Evaluación de Síntomas , Zoonosis Virales
20.
Sci Data ; 8(1): 134, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016998

RESUMEN

Dengue virus (DENV) transmission occurs primarily in tropical and subtropical climates, but within the last decade it has extended to temperate regions. Santa Fe, a temperate province in Argentina, has experienced an increase in dengue cases and virus circulation since 2009, with the recent 2020 outbreak being the largest in the province to date. The aim of this work is to describe spatio-temporal fluctuations of dengue cases from 2009 to 2020 in Santa Fe Province. The data presented in this work provide a detailed description of DENV transmission for Santa Fe Province by department. These data are useful to assist in investigating drivers of dengue emergence in Santa Fe Province and for developing a better understanding of the drivers and the impacts of ongoing dengue emergence in temperate regions across the world. This work provides data useful for future studies including those investigating socio-ecological, climatic, and environmental factors associated with DENV transmission, as well as those investigating other variables related to the biology and the ecology of vector-borne diseases.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Dengue/epidemiología , Dengue/transmisión , Brotes de Enfermedades , Aedes/virología , Animales , Argentina/epidemiología , Virus del Dengue/aislamiento & purificación , Humanos , Mosquitos Vectores/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...