Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Intervalo de año de publicación
1.
Urologe A ; 54(7): 1025-35; quiz 1036-7, 2015 Jul.
Artículo en Alemán | MEDLINE | ID: mdl-26162277

RESUMEN

In recent years there has been methodological improvement in established nuclear medicine procedures, such as renal and skeletal scintigraphy and new very specific probes for treatment and diagnosis of urological diseases have been introduced into the clinical routine. New diagnostic methods, such as positron emission tomography (PET) using prostate-specific membrane antigen (PSMA) ligands for highly accurate tumor localization in recurrent prostate cancer have become available in many centers. The very high and selective accumulation of these PSMA ligands in tumor tissue has shown promising therapeutic results. Moreover, since 2013 a new radiopharmaceutical agent, radium-223 dichloride, has been approved for treatment of symptomatic bone metastases of prostate cancer. Better knowledge of indications, benefits and limitations of these procedures will help clinicians to adequately introduce them into patient management. This article summarizes the state of the art in established nuclear medicine procedures for urological disorders and also reports on new diagnostic and therapeutic possibilities.


Asunto(s)
Medicina Nuclear/tendencias , Radioisótopos/uso terapéutico , Tomografía Computarizada de Emisión/tendencias , Enfermedades Urológicas/diagnóstico por imagen , Enfermedades Urológicas/radioterapia , Medicina Basada en la Evidencia , Humanos , Aumento de la Imagen/métodos , Radiofármacos/uso terapéutico
2.
Prog Urol ; 22(14): 867-70, 2012 Nov.
Artículo en Francés | MEDLINE | ID: mdl-23101957

RESUMEN

The aim of radioprotection is to protect people against harmful effects of radiation; those radiations come from electromagnetic wave or radioactivity that can be natural or related to human activity. Radiation risk is dose related and biological dose is expressed in millisievert (mSv). Mean dose received from natural radioactivity is about 3 mSv, which is a low and non-dangerous dose. Total annual biological dose received should not exceed 20 mSv a year. In endo-urology image intensifier is the main source of irradiation in operating theatre. Rules for utilisation are detailed.


Asunto(s)
Protección Radiológica/métodos , Enfermedades Urológicas/diagnóstico por imagen , Enfermedades Urológicas/radioterapia , Humanos , Guías de Práctica Clínica como Asunto , Radiografía
3.
J Urol ; 183(6): 2137-42, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20399463

RESUMEN

PURPOSE: We reviewed the literature on the effects of ionizing radiation in pediatric patients, and discuss current recommendations and challenges facing radiologists and pediatric urologists. MATERIALS AND METHODS: We performed a MEDLINE(R) search to identify articles evaluating the risk of ionizing radiation in pediatric patients. Particular attention was focused on computerized tomography. Standard radiography, fluoroscopy and nuclear imaging were also evaluated. RESULTS: To date the literature relating radiation exposure to imaging has primarily focused on the role of the pediatrician and radiologist as decision makers. However, these imaging modalities are important to treat and monitor many conditions treated by the pediatric urologist. Conflicting reports have made clinical decision making and patient education challenging. CONCLUSIONS: A lack of consensus on the risk of radiation exposure in pediatric patients increases the need for heightened awareness by the urologist requesting radiographic evaluation. Monitoring future studies is required to better understand the impact of radiation on children and ensure prompt implementation of appropriate guidelines for patient care.


Asunto(s)
Dosis de Radiación , Enfermedades Urológicas/diagnóstico por imagen , Enfermedades Urológicas/radioterapia , Niño , Humanos , Tomografía Computarizada por Rayos X/efectos adversos
4.
Urol Clin North Am ; 36(2): 189-98, viii, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19406320

RESUMEN

Since the Ruby laser was first developed in 1960 as the first successful optical laser, laser energy has continued to be developed and used in industry and medicine alike. Laser use in urology has been limited, however, largely until the last decade. The unique properties of laser energy have now led to its widespread use within urology, particularly in the treatment of benign prostatic hyperplasia, urolithiasis, stricture disease, and novel laparoscopic applications. This article details laser developments in each of these areas.


Asunto(s)
Terapia por Láser/instrumentación , Enfermedades Urológicas/radioterapia , Enfermedades Urológicas/cirugía , Humanos , Laparoscopía , Nefrectomía , Prostatectomía , Robótica
5.
Arch. esp. urol. (Ed. impr.) ; 61(9): 971-977, nov. 2008. ilus, tab
Artículo en En | IBECS | ID: ibc-69477

RESUMEN

Though the primary role of lasers in urology has always been in the treatment of urolithiasis, there are several other indications for their use. There are many different types of lasers currently available, each with unique properties conducive to treating certain disorders. As such, it is critical that today's urologist understands each laser's characteristics in order to optimize patient selection and treatment. The lasers which are primarily used in urologic applications include the carbon dioxide (CO2) laser; the Neodymium:Yttrium-Aluminum-Garnet (Nd:YAG); the Potassium Titanyl Phosphate (KTP) laser and the Holmium:YAG (Ho:YAG) laser. This review focuses on the unique characteristics of each of these lasers as well as the instrumentation needed utilize and deploy these tools in the urinary tract (AU)


Aunque el uso primario de láser en urología ha sido siempre el tratamiento de la litiasis, hay otras indicaciones para su utilización. Existen muchos tipos diferentes de láseres actualmente disponibles, cada uno de ellos con unas propiedades únicas que les permiten tratar ciertas enfermedades. Es crítico que el urólogo actual entienda las características de cada láser para optimizar la selección del paciente y el tratamiento. Los láseres utilizados primariamente en aplicaciones urológicas incluyen el láser de dióxido de carbono (CO2); el de Neodinio:Ytrio-Aluminio-granate (Nd:YAG); el láser de potasio titanilo y fosfato (KTP), y el de Holmio:YAG (Ho:YAG). Esta revisión está enfocada a las características únicas de cada uno de estos láseres, así como al instrumental necesario para utilizarlos en el aparato urinario (AU)


Asunto(s)
Rayos Láser/clasificación , Rayos Láser , Urología/métodos , Enfermedades Urológicas/radioterapia , Enfermedades Urológicas , Rayos Láser , Terapia por Láser/clasificación , Terapia por Láser/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA