Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.552
Filtrar
1.
Braz J Biol ; 84: e281671, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747863

RESUMEN

Unmanned Aerial Vehicles (UAVs), often called drones, have gained progressive prevalence for their swift operational ability as well as their extensive applicability in diverse real-world situations. Of late, UAV usage in precision agriculture has attracted much interest from scientific community. This study will look at drone aid in precise farming. Big data has the ability to analyze enormous amounts of data. Due to this, it is one of the diverse crucial technologies of Information and Communication Technology (ICT) which had applied in precision agriculture for the abstraction of critical information as well as for assisting agricultural practitioners in the comprehension of the most feasible farming practices, and also for better decision-making. This work analyses communication protocols, as well as their application toward the challenge of commanding a drone fleet for protecting crops from infestations of parasites. For computer-vision tasks as well as data-intensive applications, the method of deep learning has shown much potential. Due to its vast potential, it can also be used in the field of agriculture. This research will employ several schemes to assess the efficacy of models includes Visual Geometry Group (VGG-16), the Convolutional Neural Network (CNN) as well as the Fully-Convolutional Network (FCN) in plant disease detection. The methods of Artificial Immune Systems (AIS) can be used in order to adapt deep neural networks to the immediate situation. Simulated outcomes demonstrate that the proposed method is providing superior performance over various other technologically-advanced methods.


Asunto(s)
Agricultura , Animales , Dispositivos Aéreos No Tripulados , Productos Agrícolas , Redes Neurales de la Computación , Enfermedades de las Plantas/parasitología
2.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733408

RESUMEN

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max , Enfermedades de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Salicilatos , Tylenchoidea , Glycine max/genética , Glycine max/parasitología , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Salicilatos/metabolismo , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/genética , Resistencia a la Enfermedad/genética
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731798

RESUMEN

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Asunto(s)
Áfidos , Triticum , Animales , Áfidos/fisiología , Triticum/parasitología , Triticum/genética , Triticum/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Proteínas y Péptidos Salivales/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Adaptación Fisiológica , Enfermedades de las Plantas/parasitología , Regulación de la Expresión Génica de las Plantas , Nicotiana/parasitología , Nicotiana/genética , Ciclopentanos/metabolismo , Oxilipinas
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731814

RESUMEN

In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada.


Asunto(s)
Brassica napus , Resistencia a la Enfermedad , Fitomejoramiento , Enfermedades de las Plantas , Plasmodiophorida , Sitios de Carácter Cuantitativo , Brassica napus/genética , Brassica napus/parasitología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Plasmodiophorida/fisiología , Plasmodiophorida/patogenicidad , RNA-Seq , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Cromosomas de las Plantas/genética
5.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692851

RESUMEN

AIMS: Clonostachys rosea is a well-known mycoparasite that has recently been investigated as a bio-based alternative to chemical nematicides for the control of plant-parasitic nematodes. In the search for a promising biocontrol agent, the ability of the C. rosea strain PHP1701 to control the southern root-knot nematode Meloidogyne incognita was tested. METHODS AND RESULTS: Control of M. incognita in vitro and in soil by C. rosea strain PHP1701 was significant and concentration dependent. Small pot greenhouse trials confirmed a significant reduction in tomato root galling compared to the untreated control. In a large greenhouse trial, the control effect was confirmed in early and mid-season. Tomato yield was higher when the strain PHP1701 was applied compared to the untreated M. incognita-infected control. However, the yield of non-M. incognita-infected tomato plants was not reached. A similar reduction in root galling was also observed in a field trial. CONCLUSIONS: The results highlight the potential of this fungal strain as a promising biocontrol agent for root-knot nematode control in greenhouses, especially as part of an integrated pest management approach. We recommend the use of C. rosea strain PHP1701 for short-season crops and/or to reduce M. incognita populations on fallow land before planting the next crop.


Asunto(s)
Hypocreales , Control Biológico de Vectores , Enfermedades de las Plantas , Raíces de Plantas , Microbiología del Suelo , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitología , Animales , Tylenchoidea/fisiología , Raíces de Plantas/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Hypocreales/fisiología , Suelo/parasitología
6.
Physiol Plant ; 176(3): e14324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705866

RESUMEN

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Asunto(s)
Brasinoesteroides , Helianthus , Orobanche , Semillas , Helianthus/efectos de los fármacos , Helianthus/inmunología , Helianthus/fisiología , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Orobanche/fisiología , Orobanche/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/inmunología , Malezas/efectos de los fármacos , Malezas/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/inmunología , Raíces de Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malondialdehído/metabolismo
7.
Sci Rep ; 14(1): 9958, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693197

RESUMEN

Numerous plant parasitic nematodes (PPNs) have the potential to inflict considerable damage on agricultural crops. Through a comprehensive survey aimed at identifying PPNs affecting crops, cyst nematodes were isolated from the rhizosphere soil of buckwheat (Fagopyrum esculentum). Employing both molecular and morphological techniques, this cyst nematode was conclusively identified as Heterodera ripae. Notably, this represents the first documented occurrence of this particular cyst nematode species within the rhizosphere soil of F. esculentum.


Asunto(s)
Fagopyrum , Rizosfera , Tylenchoidea , Fagopyrum/parasitología , Animales , Tylenchoidea/genética , Suelo/parasitología , Enfermedades de las Plantas/parasitología , Filogenia
8.
Mol Plant Pathol ; 25(5): e13461, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38695657

RESUMEN

Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.


Asunto(s)
Glycine max , Enfermedades de las Plantas , Transducción de Señal , Tylenchoidea , Glycine max/parasitología , Glycine max/genética , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Tylenchoidea/fisiología , Tylenchoidea/patogenicidad , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética
9.
Theor Appl Genet ; 137(6): 122, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713254

RESUMEN

KEY MESSAGE: By deploying a multi-omics approach, we unraveled the mechanisms that might help rice to combat Yellow Stem Borer infestation, thus providing insights and scope for developing YSB resistant rice varieties. Yellow Stem Borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), is a major pest of rice, that can lead to 20-60% loss in rice production. Effective management of YSB infestation is challenged by the non-availability of adequate sources of resistance and poor understanding of resistance mechanisms, thus necessitating studies for generating resources to breed YSB resistant rice and to understand rice-YSB interaction. In this study, by using bulk-segregant analysis in combination with next-generation sequencing, Quantitative Trait Loci (QTL) intervals in five rice chromosomes were mapped that could be associated with YSB resistance at the vegetative phase in a resistant rice line named SM92. Further, multiple SNP markers that showed significant association with YSB resistance in rice chromosomes 1, 5, 10, and 12 were developed. RNA-sequencing of the susceptible and resistant lines revealed several genes present in the candidate QTL intervals to be differentially regulated upon YSB infestation. Comparative transcriptome analysis revealed a putative candidate gene that was predicted to encode an alpha-amylase inhibitor. Analysis of the transcriptome and metabolite profiles further revealed a possible link between phenylpropanoid metabolism and YSB resistance. Taken together, our study provides deeper insights into rice-YSB interaction and enhances the understanding of YSB resistance mechanism. Importantly, a promising breeding line and markers for YSB resistance have been developed that can potentially aid in marker-assisted breeding of YSB resistance among elite rice cultivars.


Asunto(s)
Mapeo Cromosómico , Mariposas Nocturnas , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/parasitología , Oryza/inmunología , Animales , Mariposas Nocturnas/fisiología , Polimorfismo de Nucleótido Simple , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Genómica/métodos , Fenotipo , Multiómica
10.
Arch Microbiol ; 206(6): 268, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38762847

RESUMEN

Actinomycetes, a diverse group of bacteria with filamentous growth characteristics, have long captivated researchers and biochemists for their prolific production of secondary metabolites. Among the myriad roles played by actinomycete secondary metabolites, their historical significance in the field of biocontrol stands out prominently. The fascinating journey begins with the discovery of antibiotics, where renowned compounds like streptomycin, tetracycline, and erythromycin revolutionized medicine and agriculture. The history of biocontrol traces its roots back to the early twentieth century, when scientists recognized the potential of naturally occurring agents to combat pests and diseases. The emergence of synthetic pesticides in the mid-twentieth century temporarily overshadowed interest in biocontrol. However, with growing environmental concerns and the realization of the negative ecological impacts of chemical pesticides, the pendulum swung back towards exploring sustainable alternatives. Beyond their historical role as antibiotics, actinomycete-produced secondary metabolites encompass a rich repertoire with biopesticide potential. The classification of these compounds based on chemical structure and mode of action is highlighted, demonstrating their versatility against both plant pathogens and insect pests. Additionally, this review provides in-depth insights into how endophytic actinomycete strains play a pivotal role in biocontrol strategies. Case studies elucidate their effectiveness in inhibiting Spodoptera spp. and nematodes through the production of bioactive compounds. By unraveling the multifunctional roles of endophytic actinomycetes, this review contributes compelling narrative knowledge to the field of sustainable agriculture, emphasizing the potential of these microbial allies in crafting effective, environmentally friendly biocontrol strategies for combating agricultural pests.


Asunto(s)
Actinobacteria , Agricultura , Control Biológico de Vectores , Actinobacteria/metabolismo , Animales , Agentes de Control Biológico/metabolismo , Metabolismo Secundario , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Plaguicidas/metabolismo , Spodoptera/microbiología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Nematodos/microbiología , Endófitos/metabolismo
11.
BMC Biol ; 22(1): 100, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679707

RESUMEN

BACKGROUND: Plant pathogens secrete effector proteins into host cells to suppress immune responses and manipulate fundamental cellular processes. One of these processes is autophagy, an essential recycling mechanism in eukaryotic cells that coordinates the turnover of cellular components and contributes to the decision on cell death or survival. RESULTS: We report the characterization of AVH195, an effector from the broad-spectrum oomycete plant pathogen, Phytophthora parasitica. We show that P. parasitica expresses AVH195 during the biotrophic phase of plant infection, i.e., the initial phase in which host cells are maintained alive. In tobacco, the effector prevents the initiation of cell death, which is caused by two pathogen-derived effectors and the proapoptotic BAX protein. AVH195 associates with the plant vacuolar membrane system and interacts with Autophagy-related protein 8 (ATG8) isoforms/paralogs. When expressed in cells from the green alga, Chlamydomonas reinhardtii, the effector delays vacuolar fusion and cargo turnover upon stimulation of autophagy, but does not affect algal viability. In Arabidopsis thaliana, AVH195 delays the turnover of ATG8 from endomembranes and promotes plant susceptibility to P. parasitica and the obligate biotrophic oomycete pathogen Hyaloperonospora arabidopsidis. CONCLUSIONS: Taken together, our observations suggest that AVH195 targets ATG8 to attenuate autophagy and prevent associated host cell death, thereby favoring biotrophy during the early stages of the infection process.


Asunto(s)
Autofagia , Nicotiana , Phytophthora , Enfermedades de las Plantas , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Nicotiana/microbiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Interacciones Huésped-Patógeno
12.
Plant Physiol Biochem ; 210: 108636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657547

RESUMEN

Plants synthesize a plethora of chemical defence compounds, which vary between evolutionary lineages. We hypothesize that plants evolved the ability to utilize defence compounds synthesized and released by neighbouring heterospecific plants. In two experiments, we incubated clover (Trifolium repens L.) seedlings with individual benzoxazinoid (BX) compounds (2,4-dihydroxy-1,4-benzoxazin-3-one, 2-hydroxy-1,4-benzoxazin-3-one, benzoxazolinone, and 6-methoxy- benzoxazolin-2-one), a group of bioactive compounds produced by cereals, to allow clover BX uptake. Subsequently, we transplanted the seedlings into soil and quantified BX root and shoot content and invasion of root-knot nematodes in clover roots up to 8 weeks after transplantation. We show that clover root uptake of BXs substantially enhanced clover's resistance against the root-knot nematode Meloidogyne incognita. This effect lasted up to 6 weeks after the clover roots were exposed to the BXs. BXs were absorbed by clover roots, and then translocated to the shoots. As a result of clover metabolization, we detected the parent BXs and a range of their transformation products in the roots and shoots. Based on these novel findings, we envisage that co-cultivation of crop species with complementary and transferable chemical defence systems can add to plant protection.


Asunto(s)
Benzoxazinas , Raíces de Plantas , Trifolium , Tylenchoidea , Animales , Benzoxazinas/metabolismo , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo , Trifolium/metabolismo , Trifolium/parasitología , Tylenchoidea/fisiología , Enfermedades de las Plantas/parasitología , Grano Comestible/parasitología , Grano Comestible/metabolismo , Resistencia a la Enfermedad , Brotes de la Planta/metabolismo , Brotes de la Planta/parasitología
13.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673832

RESUMEN

Phytophthora root rot is a devastating disease of soybean caused by Phytophthora sojae. However, the resistance mechanism is not yet clear. Our previous studies have shown that GmAP2 enhances sensitivity to P. sojae in soybean, and GmMYB78 is downregulated in the transcriptome analysis of GmAP2-overexpressing transgenic hairy roots. Here, GmMYB78 was significantly induced by P. sojae in susceptible soybean, and the overexpressing of GmMYB78 enhanced sensitivity to the pathogen, while silencing GmMYB78 enhances resistance to P. sojae, indicating that GmMYB78 is a negative regulator of P. sojae. Moreover, the jasmonic acid (JA) content and JA synthesis gene GmAOS1 was highly upregulated in GmMYB78-silencing roots and highly downregulated in overexpressing ones, suggesting that GmMYB78 could respond to P. sojae through the JA signaling pathway. Furthermore, the expression of several pathogenesis-related genes was significantly lower in GmMYB78-overexpressing roots and higher in GmMYB78-silencing ones. Additionally, we screened and identified the upstream regulator GmbHLH122 and downstream target gene GmbZIP25 of GmMYB78. GmbHLH122 was highly induced by P. sojae and could inhibit GmMYB78 expression in resistant soybean, and GmMYB78 was highly expressed to activate downstream target gene GmbZIP25 transcription in susceptible soybean. In conclusion, our data reveal that GmMYB78 triggers soybean sensitivity to P. sojae by inhibiting the JA signaling pathway and the expression of pathogenesis-related genes or through the effects of the GmbHLH122-GmMYB78-GmbZIP25 cascade pathway.


Asunto(s)
Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Glycine max , Oxilipinas , Phytophthora , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Glycine max/genética , Glycine max/microbiología , Glycine max/parasitología , Glycine max/metabolismo , Phytophthora/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Raíces de Plantas/metabolismo
14.
Genes (Basel) ; 15(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38674336

RESUMEN

Extensive genome structure variations, such as copy number variations (CNVs) and presence/absence variations, are the basis for the remarkable genetic diversity of maize; however, the effect of CNVs on maize herbivory defense remains largely underexplored. Here, we report that the naturally occurring duplication of the maize 9-lipoxygenase gene ZmLOX5 leads to increased resistance of maize to herbivory by fall armyworms (FAWs). Previously, we showed that ZmLOX5-derived oxylipins are required for defense against chewing insect herbivores and identified several inbred lines, including Yu796, that contained duplicated CNVs of ZmLOX5, referred to as Yu796-2×LOX5. To test whether introgression of the Yu796-2×LOX5 locus into a herbivore-susceptible B73 background that contains a single ZmLOX5 gene is a feasible approach to increase resistance, we generated a series of near-isogenic lines that contained either two, one, or zero copies of the Yu796-2×LOX5 locus in the B73 background via six backcrosses (BC6). Droplet digital PCR (ddPCR) confirmed the successful introgression of the Yu796-2×LOX5 locus in B73. The resulting B73-2×LOX5 inbred line displayed increased resistance against FAW, associated with increased expression of ZmLOX5, increased wound-induced production of its primary oxylipin product, the α-ketol, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA), and the downstream defense hormones regulated by this molecule, 12-oxo-phytodienoic acid (12-OPDA) and abscisic acid (ABA). Surprisingly, wound-induced JA-Ile production was not increased in B73-2×LOX5, resulting from the increased JA catabolism. Furthermore, B73-2×LOX5 displayed reduced water loss in response to drought stress, likely due to increased ABA and 12-OPDA content. Taken together, this study revealed that the duplicated CNV of ZmLOX5 quantitively contributes to maize antiherbivore defense and presents proof-of-concept evidence that the introgression of naturally occurring duplicated CNVs of a defensive gene into productive but susceptible crop varieties is a feasible breeding approach for enhancing plant resistance to herbivory and tolerance to abiotic stress.


Asunto(s)
Variaciones en el Número de Copia de ADN , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/parasitología , Animales , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lipooxigenasa/genética , Herbivoria , Oxilipinas/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética
15.
Curr Protoc ; 4(4): e1039, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665046

RESUMEN

Clubroot caused by the obligate parasite Plasmodiophora brassicae is a devastating disease affecting the canola industry worldwide. The socio-economic impact of clubroot can be significant, particularly in regions where Brassica crops are a major agricultural commodity. The disease can cause significant crop losses, leading to reduced yield and income for farmers. Extensive studies have been conducted to understand the biology and genetics of the pathogens and develop more effective management strategies. However, the basic procedures used for pathogen storage and virulence analysis have not been assembled or discussed in detail. As a result, there are discrepancies among the different protocols used today. The aim of this article is to provide a comprehensive and easily accessible resource for researchers who are interested in replicating or building upon the methods used in the study of the clubroot pathogen. Here, we discuss in detail the methods used for P. brassicae spore isolation, inoculation, quantification, propagation, and molecular techniques such as DNA extraction and PCR. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Extraction of Plasmodiophora brassicae resting spores and propagation Support Protocol 1: Evans blue staining to identify resting spore viability Support Protocol 2: Storage of Plasmodiophora brassicae Basic Protocol 2: Generation of single spore isolates from P. brassicae field isolates Basic Protocol 3: Phenotyping of Plasmodiophora brassicae isolates Basic Protocol 4: Genomic DNA extraction from Plasmodiophora brassicae resting spores Basic Protocol 5: Molecular detection of Plasmodiophora brassicae.


Asunto(s)
Enfermedades de las Plantas , Plasmodiophorida , Plasmodiophorida/genética , Plasmodiophorida/aislamiento & purificación , Plasmodiophorida/patogenicidad , Enfermedades de las Plantas/parasitología , Brassica/parasitología , Brassica napus/parasitología
16.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658156

RESUMEN

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Asunto(s)
Acetatos , Alelos , Áfidos , Ciclopentanos , Sorghum , Sorghum/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Áfidos/genética , Oxilipinas/farmacología , Oxilipinas/metabolismo , Perfilación de la Expresión Génica , Animales , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genes myc/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología
17.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673861

RESUMEN

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Asunto(s)
Arabidopsis , Betaína , Péptido Sintasas , Tylenchoidea , Betaína/metabolismo , Animales , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitología , Arabidopsis/metabolismo , Arabidopsis/genética , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Nematodos/metabolismo , Nematodos/genética
18.
Cell Rep ; 43(4): 113971, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38537644

RESUMEN

Sorghum bicolor is among the most important cereals globally and a staple crop for smallholder farmers in sub-Saharan Africa. Approximately 20% of sorghum yield is lost annually in Africa due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies are not singularly effective and integrated approaches are needed. Here, we demonstrate the functional potential of the soil microbiome to suppress Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation and with depletion of haustorium-inducing factors, compounds required for the initial stages of Striga infection. We further identify specific bacterial taxa that trigger the observed Striga-suppressive traits. Collectively, our study describes the importance of the soil microbiome in the early stages of root infection by Striga and pinpoints mechanisms of Striga suppression. These findings open avenues to broaden the effectiveness of integrated Striga management practices.


Asunto(s)
Microbiota , Raíces de Plantas , Microbiología del Suelo , Sorghum , Striga , Sorghum/microbiología , Sorghum/metabolismo , Striga/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Metaboloma , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología
19.
Int J Biol Macromol ; 266(Pt 1): 131105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531527

RESUMEN

Chitin is composed of N-acetylglucosamine units. Chitin a polysaccharide found in the cell walls of fungi and exoskeletons of insects and crustaceans, can elicit a potent defense response in plants. Through the activation of defense genes, stimulation of defensive compound production, and reinforcement of physical barriers, chitin enhances the plant's ability to defend against pathogens. Chitin-based treatments have shown efficacy against various plant diseases caused by fungal, bacterial, viral, and nematode pathogens, and have been integrated into sustainable agricultural practices. Furthermore, chitin treatments have demonstrated additional benefits, such as promoting plant growth and improving tolerance to abiotic stresses. Further research is necessary to optimize treatment parameters, explore chitin derivatives, and conduct long-term field studies. Continued efforts in these areas will contribute to the development of innovative and sustainable strategies for disease management in agriculture, ultimately leading to improved crop productivity and reduced reliance on chemical pesticides.


Asunto(s)
Quitina , Resistencia a la Enfermedad , Enfermedades de las Plantas , Plantas , Quitina/farmacología , Quitina/química , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Plantas/metabolismo
20.
Exp Appl Acarol ; 92(4): 759-775, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38512422

RESUMEN

Citrus leprosis is the most important viral disease affecting citrus. The disease is caused predominantly by CiLV-C and is transmitted by Brevipalpus yothersi Baker mites. This study brings some insight into the colonization of B. yothersi in citrus [(Citrus × sinensis (L.) Osbeck (Rutaceae)] previously infested by viruliferous or non-viruliferous B. yothersi. It also assesses the putative role of shelters on the behavior of B. yothersi. Expression of PR1 and PR4 genes, markers of plant defense mechanisms, were evaluated by RT-qPCR to correlate the role of the plant hormonal changes during the tri-trophic virus-mite-plant interplay. A previous infestation with either non-viruliferous and viruliferous mites positively influenced oviposition and the number of adult individuals in the resulting populations. Mite populations were higher on branches that had received a previous mite infestation than branches that did not. There was an increase in the expression of PR4, a marker gene in the jasmonic acid (JA) pathway, in the treatment with non-viruliferous mites, indicating a response from the plant to their feeding. Conversely, an induced expression of PR1, a marker gene in the salicylic acid (SA) pathway, was observed mainly in the treatment with viruliferous mites, which suggests the activation of a plant response against the pathogen. The earlier mite infestation, as well as the presence of leprosis lesions and a gypsum mixture as artificial shelters, all fostered the growth of the B. yothersi populations after the second infestation, regardless of the presence or absence of CiLV-C. Furthermore, it is suggested that B. yothersi feeding actually induces the JA pathway in plants. At the same time, the CiLV-C represses the JA pathway and induces the SA pathway, which benefits the mite vector.


Asunto(s)
Citrus sinensis , Ácaros , Animales , Ácaros/fisiología , Enfermedades de las Plantas/parasitología , Femenino , Infestaciones por Ácaros/veterinaria , Infestaciones por Ácaros/parasitología , Oviposición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...