Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 340
Filtrar
2.
Sci Data ; 9(1): 438, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871228

RESUMEN

The zoonotic origin of SARS-CoV-2, the etiological agent of COVID-19, is not yet fully resolved. Although natural infections in animals are reported in a wide range of species, large knowledge and data gaps remain regarding SARS-CoV-2 in animal hosts. We used two major health databases to extract unstructured data and generated a global dataset of SARS-CoV-2 events in animals. The dataset presents harmonized host names, integrates relevant epidemiological and clinical data on each event, and is readily usable for analytical purposes. We also share the code for technical and visual validation of the data and created a user-friendly dashboard for data exploration. Data on SARS-CoV-2 occurrence in animals is critical to adapting monitoring strategies, preventing the formation of animal reservoirs, and tailoring future human and animal vaccination programs. The FAIRness and analytical flexibility of the data will support research efforts on SARS-CoV-2 at the human-animal-environment interface. We intend to update this dataset weekly for at least one year and, through collaborations, to develop it further and expand its use.


Asunto(s)
Enfermedades de los Animales , COVID-19 , SARS-CoV-2 , Enfermedades de los Animales/virología , Animales , Humanos
3.
PLoS Negl Trop Dis ; 16(2): e0010024, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108284

RESUMEN

Rift Valley fever (RVF) is a mosquito-borne disease mostly affecting wild and domestic ruminants. It is widespread in Africa, with spillovers in the Arab Peninsula and the southwestern Indian Ocean. Although RVF has been circulating in West Africa for more than 30 years, its epidemiology is still not clearly understood. In 2013, an RVF outbreak hit Senegal in new areas that weren't ever affected before. To assess the extent of the spread of RVF virus, a national serological survey was implemented in young small ruminants (6-18 months old), between November 2014 and January 2015 (after the rainy season) in 139 villages. Additionally, the drivers of this spread were identified. For this purpose, we used a beta-binomial ([Formula: see text]) logistic regression model. An Integrated Nested Laplace Approximation (INLA) approach was used to fit the spatial model. Lower cumulative rainfall, and higher accessibility were both associated with a higher RVFV seroprevalence. The spatial patterns of fitted RVFV seroprevalence pointed densely populated areas of western Senegal as being at higher risk of RVFV infection in small ruminants than rural or southeastern areas. Thus, because slaughtering infected animals and processing their fresh meat is an important RVFV transmission route for humans, more human populations might have been exposed to RVFV during the 2013-2014 outbreak than in previous outbreaks in Senegal.


Asunto(s)
Enfermedades de los Animales/epidemiología , Brotes de Enfermedades/veterinaria , Fiebre del Valle del Rift/epidemiología , Enfermedades de los Animales/virología , Crianza de Animales Domésticos , Animales , Humanos , Modelos Logísticos , Lluvia , Fiebre del Valle del Rift/transmisión , Virus de la Fiebre del Valle del Rift/inmunología , Virus de la Fiebre del Valle del Rift/aislamiento & purificación , Rumiantes/virología , Senegal/epidemiología , Estudios Seroepidemiológicos , Zoonosis Virales/epidemiología
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046024

RESUMEN

Transmissible vaccines have the potential to revolutionize how zoonotic pathogens are controlled within wildlife reservoirs. A key challenge that must be overcome is identifying viral vectors that can rapidly spread immunity through a reservoir population. Because they are broadly distributed taxonomically, species specific, and stable to genetic manipulation, betaherpesviruses are leading candidates for use as transmissible vaccine vectors. Here we evaluate the likely effectiveness of betaherpesvirus-vectored transmissible vaccines by developing and parameterizing a mathematical model using data from captive and free-living mouse populations infected with murine cytomegalovirus (MCMV). Simulations of our parameterized model demonstrate rapid and effective control for a range of pathogens, with pathogen elimination frequently occurring within a year of vaccine introduction. Our results also suggest, however, that the effectiveness of transmissible vaccines may vary across reservoir populations and with respect to the specific vector strain used to construct the vaccine.


Asunto(s)
Betaherpesvirinae/genética , Vectores Genéticos/genética , Inmunogenicidad Vacunal , Modelos Teóricos , Vacunación Basada en Ácidos Nucleicos/inmunología , Vacunas/inmunología , Algoritmos , Enfermedades de los Animales/prevención & control , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Teorema de Bayes , Reservorios de Enfermedades , Vectores de Enfermedades , Vectores Genéticos/inmunología , Infecciones por Herpesviridae/veterinaria , Ratones , Muromegalovirus , Vacunación Basada en Ácidos Nucleicos/genética , Prevalencia , Vacunas/genética
5.
Emerg Microbes Infect ; 11(1): 95-112, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34842046

RESUMEN

ABSTRACTSARS-CoV-2 was first reported circulating in human populations in December 2019 and has since become a global pandemic. Recent history involving SARS-like coronavirus outbreaks have demonstrated the significant role of intermediate hosts in viral maintenance and transmission. Evidence of SARS-CoV-2 natural infection and experimental infections of a wide variety of animal species has been demonstrated, and in silico and in vitro studies have indicated that deer are susceptible to SARS-CoV-2 infection. White-tailed deer (WTD) are amongst the most abundant and geographically widespread wild ruminant species in the US. Recently, WTD fawns were shown to be susceptible to SARS-CoV-2. In the present study, we investigated the susceptibility and transmission of SARS-CoV-2 in adult WTD. In addition, we examined the competition of two SARS-CoV-2 isolates, representatives of the ancestral lineage A and the alpha variant of concern (VOC) B.1.1.7 through co-infection of WTD. Next-generation sequencing was used to determine the presence and transmission of each strain in the co-infected and contact sentinel animals. Our results demonstrate that adult WTD are highly susceptible to SARS-CoV-2 infection and can transmit the virus through direct contact as well as vertically from doe to fetus. Additionally, we determined that the alpha VOC B.1.1.7 isolate of SARS-CoV-2 outcompetes the ancestral lineage A isolate in WTD, as demonstrated by the genome of the virus shed from nasal and oral cavities from principal infected and contact animals, and from the genome of virus present in tissues of principal infected deer, fetuses and contact animals.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , COVID-19/veterinaria , Ciervos , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Susceptibilidad a Enfermedades , Ensayo de Inmunoadsorción Enzimática , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad de Órganos , Embarazo , ARN Viral , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Esparcimiento de Virus
6.
J Exp Med ; 219(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34958350

RESUMEN

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats-which harbor natural rodent pathogens-are cohoused with laboratory mice. This "dirty" mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Asunto(s)
Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Virosis/etiología , Virosis/transmisión , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Biomarcadores , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Ratones , Ratones Noqueados , Interacciones Microbianas , Roedores , Virosis/metabolismo
7.
J Virol ; 96(3): e0109821, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34668771

RESUMEN

Paramyxoviruses are a diverse group of negative-sense, single-stranded RNA viruses of which several species cause significant mortality and morbidity. In recent years the collection of paramyxovirus sequences detected in wild mammals has substantially grown; however, little is known about paramyxovirus diversity in North American mammals. To better understand natural paramyxovirus diversity, host range, and host specificity, we sought to comprehensively characterize paramyxoviruses across a range of diverse cooccurring wild small mammals in southern Arizona. We used highly degenerate primers to screen fecal and urine samples and obtained a total of 55 paramyxovirus sequences from 12 rodent species and 6 bat species. We also performed Illumina transcriptome sequencing (RNA-seq) and de novo assembly on 14 of the positive samples to recover a total of 5 near-full-length viral genomes. We show there are at least two clades of rodent-borne paramyxoviruses in Arizona, while bat-associated paramyxoviruses formed a putative single clade. Using structural homology modeling of the viral attachment protein, we infer that three of the five novel viruses likely bind sialic acid in a manner similar to other respiroviruses, while the other two viruses from heteromyid rodents likely bind a novel host receptor. We find no evidence for cross-species transmission, even among closely related sympatric host species. Taken together, these data suggest paramyxoviruses are a common viral infection in some bat and rodent species present in North America and illuminate the evolution of these viruses. IMPORTANCE There are a number of viral lineages that are potential zoonotic threats to humans. One of these, paramyxoviruses have jumped into humans multiple times from wild and domestic animals. We conducted one of the largest viral surveys of wild mammals in the United States to better understand paramyxovirus diversity and evolution.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Quirópteros/virología , Infecciones por Paramyxoviridae/veterinaria , Paramyxoviridae/clasificación , Paramyxoviridae/genética , Secuencia de Aminoácidos , Enfermedades de los Animales/diagnóstico , Animales , Arizona/epidemiología , Biodiversidad , Evolución Biológica , Genoma Viral , Genómica/métodos , Geografía Médica , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad del Huésped , Humanos , Modelos Moleculares , Técnicas de Diagnóstico Molecular/métodos , América del Norte/epidemiología , Filogenia , Unión Proteica , ARN Viral , Receptores Virales/química , Receptores Virales/metabolismo , Respirovirus/clasificación , Respirovirus/genética , Infecciones por Respirovirus/veterinaria , Roedores/virología
8.
PLoS Negl Trop Dis ; 15(11): e0009909, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34727113

RESUMEN

INTRODUCTION: Underestimation of zoonoses is exacerbated in low and middle-income countries due mainly to inequalities with serious consequences in healthcare. This is difficult to gauge and reduce the impact of those diseases. Our study focuses on Paraguay, where the livestock industry is one of the major components of the country's economy. Therefore, the rationale of this study was to develop a case study in Paraguay to estimate the dual impact of zoonotic diseases on both the human health and animal health sector and thus determine the societal burden of such diseases. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a systemic review (including a meta-analysis) to assess the burden of zoonoses in Paraguay, including official reports and grey literature of disease incidence and prevalence. We estimated the Disability Adjusted Life Years (DALYs) and Zoonosis Disability Adjusted Life Years (zDALYs) to measure the difference between the current health status and the desired health situation of animals and the Paraguayan population based on 50 zoonotic diseases suggested by the WHO (World Health Organization), OIE (World Organization for Animal Health) and the National Health in Paraguay. The total DALYs represent 19,384 (95% CI: from 15,805 to 29,733), and zDALYs, 62,178 (95% CI: from 48,696 to 77,188). According to the results, the priority pathogens for DALYs are E. coli, Trypanosoma cruzi, Leishmania spp, and Toxoplasma gondii. When we include the additional animal health burden, the most important pathogens are Brucella spp, E. coli, Trypanosoma cruzi, and Fasciola hepatica for zDALYs. CONCLUSION/SIGNIFICANCE: This is the first study to integrate DALYs and zDALYs with important clues related to the health status of Paraguay. Through DALYs and zDALYs, our perspective becomes more complete because we consider not only human health but also animal health. This is important for setting priorities in disease control, especially in a society where livestock contribute significantly to the economy and to human well-being.


Asunto(s)
Enfermedades de los Animales/epidemiología , Zoonosis/epidemiología , Enfermedades de los Animales/microbiología , Enfermedades de los Animales/parasitología , Enfermedades de los Animales/virología , Animales , Gatos , Bovinos , Años de Vida Ajustados por Discapacidad , Perros , Caballos , Humanos , Paraguay/epidemiología , Ovinos , Organización Mundial de la Salud , Zoonosis/microbiología , Zoonosis/parasitología , Zoonosis/virología
9.
Nat Commun ; 12(1): 6802, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815406

RESUMEN

In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Evolución Molecular , Granjas , Visón/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Secuencia de Aminoácidos , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Teorema de Bayes , Brotes de Enfermedades , Humanos , Países Bajos/epidemiología , Filogenia , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de Proteína , Glicoproteína de la Espiga del Coronavirus/clasificación , Glicoproteína de la Espiga del Coronavirus/genética
10.
Viruses ; 13(11)2021 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-34835121

RESUMEN

Abalone amyotrophia is a viral disease that causes mass mortality of juvenile Haliotis discus and H. madaka. Although the cause of this disease has yet to be identified, we had previously postulated a novel virus with partial genome sequence similarity to that of African swine fever virus is the causative agent and proposed abalone asfa-like virus (AbALV) as a provisional name. In this study, three species of juvenile abalone (H. gigantea, H. discus discus, and H. diversicolor) and four species of adult abalone (the above three species plus H. discus hannai) were experimentally infected, and their susceptibility to AbALV was investigated by recording mortality, quantitatively determining viral load by PCR, and conducting immunohistological studies. In the infection test using 7-month-old animals, H. gigantea, which was previously reported to be insusceptible to the disease, showed multiplication of the virus to the same extent as in H. discus discus, resulting in mass mortality. H. discus discus at 7 months old showed abnormal cell masses, notches in the edge of the shell and brown pigmentation inside of the shell, which are histopathological and external features of this disease, while H. gigantea did not show any of these characteristics despite suffering high mortality. Adult abalones had low mortality and viral replication in all species; however, all three species, except H. diversicolor, became carriers of the virus. In immunohistological observations, cells positive for viral antigens were detected predominantly in the gills of juvenile H. discus discus and H. gigantea, and mass mortality was observed in these species. In H. diversicolor, neither juvenile nor adult mortality from infection occurred, and the AbALV genome was not increased by experimental infection through cohabitation or injection. Our results suggest that H. gigantea, H. discus discus and H. discus hannai are susceptible to AbALV, while H. diversicolor is not. These results confirmed that AbALV is the etiological agent of abalone amyotrophia.


Asunto(s)
Enfermedades de los Animales , Virus ADN/inmunología , Moluscos , Virosis , Virus no Clasificados/inmunología , Enfermedades de los Animales/inmunología , Enfermedades de los Animales/virología , Animales , Moluscos/inmunología , Moluscos/virología , Virosis/inmunología , Virosis/virología
11.
Viruses ; 13(11)2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835126

RESUMEN

Across Africa, the Middle East, and Asia, peste des petits ruminants virus (PPRV) places a huge disease burden on agriculture, affecting, in particular, small ruminant production. The recent PPR outbreaks in Northern Africa, the European part of Turkey, and Bulgaria represent a significant threat to mainland Europe, as a source of disease. Although two safe and efficacious live attenuated vaccines (Sungri/96 and Nigeria/75/1) are available for the control of PPR, current serological tests do not enable the differentiation between naturally infected and vaccinated animals (DIVA). The vaccinated animals develop a full range of immune responses to viral proteins and, therefore, cannot be distinguished serologically from those that have recovered from a natural infection. This poses a serious problem for the post-vaccinal sero-surveillance during the ongoing PPR eradication program. Furthermore, during the latter stages of any eradication program, vaccination is only possible if the vaccine used is fully DIVA compliant. Using reverse genetics, we have developed two live attenuated PPR DIVA vaccines (Sungri/96 DIVA and Nigeria/75/1 DIVA), in which the C-terminal variable region of the PPRV N-protein has been replaced with dolphin morbillivirus (DMV). As a proof of principle, both the DIVA vaccines were evaluated in goats in pilot studies for safety and efficacy, and all the animals were clinically protected against the intranasal virulent virus challenge, similar to the parent vaccines. Furthermore, it is possible to differentiate between infected animals and vaccinated animals using two newly developed ELISAs. Therefore, these DIVA vaccines and associated tests can facilitate the sero-monitoring process and speed up the implementation of global PPR eradication through vaccination.


Asunto(s)
Enfermedades de los Animales , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes/inmunología , Rumiantes/virología , Vacunación/veterinaria , Vacunas Virales/inmunología , Enfermedades de los Animales/inmunología , Enfermedades de los Animales/prevención & control , Enfermedades de los Animales/virología , Animales , Peste de los Pequeños Rumiantes/inmunología , Peste de los Pequeños Rumiantes/prevención & control , Peste de los Pequeños Rumiantes/virología
12.
Front Immunol ; 12: 718627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675918

RESUMEN

The Chinese giant salamander, belonging to an ancient amphibian lineage, is the largest amphibian existing in the world, and is also an important animal for artificial cultivation in China. However, some aspects of the innate and adaptive immune system of the Chinese giant salamander are still unknown. The Chinese giant salamander iridovirus (GSIV), a member of the Ranavirus genus (family Iridoviridae), is a prominent pathogen causing high mortality and severe economic losses in Chinese giant salamander aquaculture. As a serious threat to amphibians worldwide, the etiology of ranaviruses has been mainly studied in model organisms, such as the Ambystoma tigrinum and Xenopus. Nevertheless, the immunity to ranavirus in Chinese giant salamander is distinct from other amphibians and less known. We review the unique immune system and antiviral responses of the Chinese giant salamander, in order to establish effective management of virus disease in Chinese giant salamander artificial cultivation.


Asunto(s)
Enfermedades de los Animales/inmunología , Enfermedades de los Animales/virología , Interacciones Huésped-Patógeno/inmunología , Sistema Inmunológico/fisiología , Urodelos/inmunología , Urodelos/virología , Inmunidad Adaptativa , Animales , China , Infecciones por Virus ADN/veterinaria , Resistencia a la Enfermedad , Inmunidad Innata , Activación de Linfocitos/inmunología , Ranavirus/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
13.
Viruses ; 13(9)2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578266

RESUMEN

To date, no evidence supports the fact that animals play a role in the epidemiology of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus infectious disease 2019 (COVID-19). However, several animal species are naturally susceptible to SARS-CoV-2 infection. Besides pets (cats, dogs, Syrian hamsters, and ferrets) and farm animals (minks), different zoo animal species have tested positive for SARS-CoV-2 (large felids and non-human primates). After the summer of 2020, a second wave of SARS-CoV-2 infection occurred in Barcelona (Spain), reaching a peak of positive cases in November. During that period, four lions (Panthera leo) at the Barcelona Zoo and three caretakers developed respiratory signs and tested positive for the SARS-CoV-2 antigen. Lion infection was monitored for several weeks and nasal, fecal, saliva, and blood samples were taken at different time-points. SARS-CoV-2 RNA was detected in nasal samples from all studied lions and the viral RNA was detected up to two weeks after the initial viral positive test in three out of four animals. The SARS-CoV-2 genome was also detected in the feces of animals at different times. Virus isolation was successful only from respiratory samples of two lions at an early time-point. The four animals developed neutralizing antibodies after the infection that were detectable four months after the initial diagnosis. The partial SARS-CoV-2 genome sequence from one animal caretaker was identical to the sequences obtained from lions. Chronology of the events, the viral dynamics, and the genomic data support human-to-lion transmission as the origin of infection.


Asunto(s)
Enfermedades de los Animales/virología , COVID-19/veterinaria , Leones , SARS-CoV-2 , Enfermedades de los Animales/diagnóstico , Enfermedades de los Animales/inmunología , Enfermedades de los Animales/transmisión , Animales , Animales Salvajes , Animales de Zoológico , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Genoma Viral , Genómica/métodos , Interacciones Huésped-Patógeno/inmunología , Masculino , SARS-CoV-2/clasificación , SARS-CoV-2/genética , España
14.
Viruses ; 13(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34452372

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus in humans, has expanded globally over the past year. COVID-19 remains an important subject of intensive research owing to its huge impact on economic and public health globally. Based on historical archives, the first coronavirus-related disease recorded was possibly animal-related, a case of feline infectious peritonitis described as early as 1912. Despite over a century of documented coronaviruses in animals, the global animal industry still suffers from outbreaks. Knowledge and experience handling animal coronaviruses provide a valuable tool to complement our understanding of the ongoing COVID-19 pandemic. In this review, we present an overview of coronaviruses, clinical signs, COVID-19 in animals, genome organization and recombination, immunopathogenesis, transmission, viral shedding, diagnosis, treatment, and prevention. By drawing parallels between COVID-19 in animals and humans, we provide perspectives on the pathophysiological mechanisms by which coronaviruses cause diseases in both animals and humans, providing a critical basis for the development of effective vaccines and therapeutics against these deadly viruses.


Asunto(s)
Enfermedades de los Animales/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Coronavirus/fisiología , Enfermedades de los Animales/epidemiología , Animales , COVID-19/epidemiología , COVID-19/virología , Coronavirus/genética , Infecciones por Coronavirus/epidemiología , Humanos , Salud Pública , SARS-CoV-2/genética , SARS-CoV-2/fisiología
15.
Viruses ; 13(6)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199957

RESUMEN

Viruses, and in particular the deformed wing virus (DWV), are considered as one of the main antagonists of honey bee health. The 'suppressed in ovo virus infection' trait (SOV) described for the first time that control of a virus infection can be achieved from genetically inherited traits and that the virus state of the eggs is indicative for this. This research aims to explore the effect of the SOV trait on DWV infections in queens descending from both SOV-positive (QDS+) and SOV-negative (QDS-) queens. Twenty QDS+ and QDS- were reared from each time four queens in the same starter-finisher colony. From each queen the head, thorax, ovaries, spermatheca, guts and eviscerated abdomen were dissected and screened for the presence of the DWV-A and DWV-B genotype using qRT-PCR. Queens descending from SOV-positive queens showed significant lower infection loads for DWV-A and DWV-B as well as a lower number of infected tissues for DWV-A. Surprisingly, differences were less expressed in the reproductive tissues, the ovaries and spermatheca. These results confirm that selection on the SOV trait is associated with increased virus resistance across viral genotypes and that this selection drives DWV towards an increased tissue specificity for the reproductive tissues. Further research is needed to explore the mechanisms underlying the interaction between the antiviral response and DWV.


Asunto(s)
Enfermedades de los Animales/virología , Abejas/virología , Cruzamiento , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno/genética , Infecciones por Virus ARN/veterinaria , Virus ARN/fisiología , Enfermedades de los Animales/genética , Animales , Carga Viral
16.
Viruses ; 13(6)2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205750

RESUMEN

Rabbit haemorrhagic disease virus 2 (RHDV2 or GI.2, referring to any virus with lagovirus GI.2 structural genes) is a recently emerged calicivirus that causes generalised hepatic necrosis and disseminated intravascular coagulation leading to death in susceptible lagomorphs (rabbits and hares). Previous studies investigating the virulence of RHDV2 have reported conflicting results, with case fatality rates ranging from 0% to 100% even within a single study. Lagoviruses are of particular importance in Australia and New Zealand where they are used as biocontrol agents to manage wild rabbit populations, which threaten over 300 native species and result in economic impacts in excess of $200 million AUD annually to Australian agricultural industries. It is critically important that any pest control method is both highly effective (i.e., virulent, in the context of viral biocontrols) and has minimal animal welfare impacts. To determine whether RHDV2 might be a suitable candidate biocontrol agent, we investigated the virulence and disease progression of a naturally occurring Australian recombinant RHDV2 in both 5-week-old and 11-week-old New Zealand White laboratory rabbits after either high or low dose oral infection. Objective measures of disease progression were recorded through continuous body temperature monitoring collars, continuous activity monitors, and twice daily observations. We observed a 100% case fatality rate in both infected kittens and adult rabbits after either high dose or low dose infection. Clinical signs of disease, such as pyrexia, weight loss, and reduced activity, were evident in the late stages of infection. Clinical disease, i.e., welfare impacts, were limited to the period after the onset of pyrexia, lasting on average 12 h and increasing in severity as disease progressed. These findings confirm the high virulence of this RHDV2 variant in naïve rabbits. While age and infectious dose significantly affected disease progression, the case fatality rate was consistently 100% under all conditions tested.


Asunto(s)
Enfermedades de los Animales/patología , Enfermedades de los Animales/virología , Infecciones por Caliciviridae/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo , Factores de Edad , Animales , Progresión de la Enfermedad , Femenino , Virus de la Enfermedad Hemorrágica del Conejo/patogenicidad , Masculino , Conejos , Virulencia
17.
Viruses ; 13(6)2021 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-34199268

RESUMEN

White Spot Disease (WSD) presents a major barrier to penaeid shrimp production. Mechanisms underlying White Spot Syndrome Virus (WSSV) susceptibility in penaeids are poorly understood due to limited information related to early infection. We investigated mRNA and miRNA transcription in Penaeus vannamei over 36 h following infection. Over this time course, 6192 transcripts and 27 miRNAs were differentially expressed-with limited differential expression from 3-12 h post injection (hpi) and a more significant transcriptional response associated with the onset of disease symptoms (24 hpi). During early infection, regulated processes included cytoskeletal remodelling and alterations in phagocytic activity that may assist WSSV entry and translocation, novel miRNA-induced metabolic shifts, and the downregulation of ATP-dependent proton transporter subunits that may impair cellular recycling. During later infection, uncoupling of the electron transport chain may drive cellular dysfunction and lead to high mortalities in infected penaeids. We propose that post-transcriptional silencing of the immune priming gene Dscam (downregulated following infections) by a novel shrimp miRNA (Pva-pmiR-78; upregulated) as a potential mechanism preventing future recognition of WSSV that may be suppressed in surviving shrimp. Our findings improve our understanding of WSD pathogenesis in P. vannamei and provide potential avenues for future development of prophylactics and treatments.


Asunto(s)
Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Penaeidae/genética , Penaeidae/virología , ARN Mensajero/genética , Virus del Síndrome de la Mancha Blanca 1 , Enfermedades de los Animales/genética , Enfermedades de los Animales/patología , Enfermedades de los Animales/virología , Animales , Biología Computacional , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/química , Modelos Biológicos , ARN Mensajero/química , Transcriptoma , Carga Viral
18.
Sci Rep ; 11(1): 15028, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294840

RESUMEN

Deformed wing virus (DWV) prevalence is high in honey bee (Apis mellifera) populations. The virus infects honey bees through vertical and horizontal transmission, leading to behavioural changes, wing deformity, and early mortality. To better understand the impacts of viral infection in the larval stage of honey bees, artificially reared honey bee larvae were infected with DWV (1.55 × 1010 copies/per larva). No significant mortality occurred in infected honey bee larvae, while the survival rates decreased significantly at the pupal stage. Examination of DWV replication revealed that viral replication began at 2 days post inoculation (d.p.i.), increased dramatically to 4 d.p.i., and then continuously increased in the pupal stage. To better understand the impact of DWV on the larval stage, DWV-infected and control groups were subjected to transcriptomic analysis at 4 d.p.i. Two hundred fifty-five differentially expressed genes (DEGs) (fold change ≥ 2 or ≤ -2) were identified. Of these DEGs, 168 genes were downregulated, and 87 genes were upregulated. Gene Ontology (GO) analysis showed that 141 DEGs (55.3%) were categorized into molecular functions, cellular components and biological processes. One hundred eleven genes (38 upregulated and 73 downregulated) were annotated by KO (KEGG Orthology) pathway mapping and involved metabolic pathways, biosynthesis of secondary metabolites and glycine, serine and threonine metabolism pathways. Validation of DEGs was performed, and the related gene expression levels showed a similar tendency to the DEG predictions at 4 d.p.i.; cell wall integrity and stress response component 1 (wsc1), cuticular protein and myo-inositol 2-dehydrogenase (iolG) were significantly upregulated, and small conductance calcium-activated potassium channel protein (SK) was significantly downregulated at 4 d.p.i. Related gene expression levels at different d.p.i. revealed that these DEGs were significantly regulated from the larval stage to the pupal stage, indicating the potential impacts of gene expression levels from the larval to the pupal stages. Taken together, DWV infection in the honey bee larval stage potentially influences the gene expression levels from larvae to pupae and reduces the survival rate of the pupal stage. This information emphasizes the consequences of DWV prevalence in honey bee larvae for apiculture.


Asunto(s)
Abejas/genética , Abejas/virología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Virus ARN , Transcriptoma , Enfermedades de los Animales/genética , Enfermedades de los Animales/mortalidad , Enfermedades de los Animales/virología , Animales , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Larva , Tasa de Supervivencia
20.
Viruses ; 13(5)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065570

RESUMEN

Microvariant genotypes of Ostreid herpesvirus 1 (OsHV-1) are associated with mass mortality events of Pacific oysters in many countries. The OsHV-1 microvariant (µVar) emerged in France 2008 and caused significant economic losses as it became endemic and displaced the previously dominant OsHV-1 reference genotype. Recently, considerable genotypic variation has been described for OsHV-1 microvariants, however, less is known about variation in viral phenotype. This study used an in vivo laboratory infection model to assess differences in total cumulative mortality, peak viral load, transmissibility, and dose-response for three OsHV-1 isolates obtained between 2011 and 2015 from endemic waterways in Australia. This followed field observations of apparent reductions in the severity of mass mortalities over this time. Significantly higher hazard of death and cumulative mortality were observed for an isolate obtained in 2011 compared to isolates from 2014-2015. In keeping with other studies, the hazard of death was higher in oysters challenged by injection compared to challenge by cohabitation and the mortality was higher when the initial dose was 1 × 104 OsHV-1 DNA copies per oyster injection compared to 1 × 102 DNA copies. There was no difference in the quantity of OsHV-1 DNA at time of death that could be related to isolate or dose, suggesting similar pathogenetic processes in the individual oysters that succumbed to end-stage disease. While the isolates examined in this study were biased towards pathogenic types of OsHV-1, as they were collected during disease outbreaks, the variation in virulence that was observed, when combined with prior data on subclinical infections, suggests that surveillance for low virulence genotypes of OsHV-1 would be rewarding. This may lead to new approaches to disease management which utilize controlled exposure to attenuated strains of OsHV-1.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Infecciones por Virus ADN/veterinaria , Virus ADN/genética , Virus ADN/patogenicidad , Variación Genética , Ostreidae/virología , Enfermedades de los Animales/historia , Animales , Australia/epidemiología , Virus ADN/aislamiento & purificación , Historia del Siglo XXI , Estimación de Kaplan-Meier , Mortalidad , Modelos de Riesgos Proporcionales , Vigilancia en Salud Pública , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...