Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Viruses ; 15(7)2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37515291

RESUMEN

In the present study, 31 samples (12 fecal, 9 nasal and 10 rectal swabs) from 28/92 (30.43%, 10 captive and 18 free-roaming African green monkeys (AGMs, Chlorocebus sabaeus)) apparently healthy AGMs in the Caribbean Island of St. Kitts tested positive for adenoviruses (AdVs) by DNA-dependent DNA polymerase (pol)-, or hexon-based screening PCR assays. Based on analysis of partial deduced amino acid sequences of Pol- and hexon- of nine AGM AdVs, at least two AdV genetic variants (group-I: seven AdVs with a Simian mastadenovirus-F (SAdV-F)/SAdV-18-like Pol and hexon, and group-II: two AdVs with a SAdV-F/SAdV-18-like Pol and a Human mastadenovirus-F (HAdV-F)/HAdV-40-like hexon) were identified, which was corroborated by analysis of the nearly complete putative Pol, complete hexon, and partial penton base sequences of a representative group-I (strain KNA-08975), and -II (KNA-S6) AdV. SAdV-F-like AdVs were reported for the first time in free-roaming non-human primates (NHPs) and after ~six decades from captive NHPs. Molecular characterization of KNA-S6 (and the other group-II AdV) indicated possible recombination and cross-species transmission events involving SAdV-F-like and HAdV-F-like viruses, corroborating the hypothesis that the evolutionary pathways of HAdVs and SAdVs are intermingled, complicated by recombination and inter-species transmission events, especially between related AdV species, such as HAdV-F and SAdV-F. To our knowledge, this is the first report on detection and molecular characterization of AdVs in AGMs.


Asunto(s)
Infecciones por Adenoviridae , Adenoviridae , Chlorocebus aethiops , Enfermedades de los Monos , Adenoviridae/clasificación , Adenoviridae/genética , Adenoviridae/aislamiento & purificación , Animales , Animales Salvajes , San Kitts y Nevis , Filogenia , Infecciones por Adenoviridae/transmisión , Infecciones por Adenoviridae/veterinaria , Infecciones por Adenoviridae/virología , Enfermedades de los Monos/transmisión , Enfermedades de los Monos/virología , Animales de Zoológico
2.
Sci Rep ; 12(1): 354, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013403

RESUMEN

Blood feeding and host-seeking behaviors of a mosquito play an imperative role in determining its vectorial capacity in transmitting pathogens. Unfortunately, limited information is available regarding blood feeding behavior of Anopheles species in Malaysia. Collection of resting Anopheles mosquitoes for blood meal analysis poses a great challenge especially for forest dwelling mosquitoes. Therefore, a laboratory-based study was conducted to evaluate the potential use of mosquitoes caught using human landing catch (HLC) for blood meal analysis, and subsequently to document blood feeding behavior of local Anopheles mosquitoes in Peninsular Malaysia. The laboratory-based experiment from this study revealed that mosquitoes caught using HLC had the potential to be used for blood meal analysis. Besides HLC, mosquitoes were also collected using manual aspirator and Mosquito Magnet. Overall, 47.4% of 321 field-caught Anopheles mosquitoes belonging to six species were positive for vertebrate host DNA in their blood meal. The most frequent blood meal source was human (45.9%) followed by wild boar (27.4%), dog (15.3%) and monkey (7.5%). Interestingly, only Anopheles cracens and Anopheles introlatus (Leucosphyrus Group) fed on monkey. This study further confirmed that members of the Leucosphyrus Group are the predominant vectors for knowlesi malaria transmission in Peninsular Malaysia mainly due to their simio-anthropophagic feeding behavior.


Asunto(s)
Anopheles/metabolismo , ADN/sangre , Conducta Alimentaria , Insectos Vectores/metabolismo , Malaria/veterinaria , Enfermedades de los Monos/transmisión , Plasmodium knowlesi/patogenicidad , Reacción en Cadena de la Polimerasa , Animales , Haplorrinos/sangre , Haplorrinos/genética , Interacciones Huésped-Parásitos , Humanos , Malaria/sangre , Malaria/parasitología , Malaria/transmisión , Enfermedades de los Monos/sangre , Enfermedades de los Monos/parasitología , Sus scrofa/sangre , Sus scrofa/genética
3.
J Virol ; 96(3): e0165321, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34788083

RESUMEN

Rhesus cytomegalovirus (RhCMV) infection of rhesus macaques (Macaca mulatta) is a valuable nonhuman primate model of human CMV (HCMV) persistence and pathogenesis. In vivo studies predominantly use tissue culture-adapted variants of RhCMV that contain multiple genetic mutations compared to wild-type (WT) RhCMV. In many studies, animals have been inoculated by nonnatural routes (e.g., subcutaneous, intravenous) that do not recapitulate disease progression via the normative route of mucosal exposure. Accordingly, the natural history of RhCMV would be more accurately reproduced by infecting macaques with strains of RhCMV that reflect the WT genome using natural routes of mucosal transmission. Here, we tested two WT-like RhCMV strains, UCD52 and UCD59, and demonstrated that systemic infection and frequent, high-titer viral shedding in bodily fluids occurred following oral inoculation. RhCMV disseminated to a broad range of tissues, including the central nervous system and reproductive organs. Commonly infected tissues included the thymus, spleen, lymph nodes, kidneys, bladder, and salivary glands. Histological examination revealed prominent nodular hyperplasia in spleens and variable levels of lymphoid lymphofollicular hyperplasia in lymph nodes. One of six inoculated animals had limited viral dissemination and shedding, with commensurately weak antibody responses to RhCMV antigens. These data suggest that long-term RhCMV infection parameters might be restricted by local innate factors and/or de novo host immune responses in a minority of primary infections. Together, we have established an oral RhCMV infection model that mimics natural HCMV infection. The virological and immunological parameters characterized in this study will greatly inform HCMV vaccine designs for human immunization. IMPORTANCE Human cytomegalovirus (HCMV) is globally ubiquitous with high seroprevalence rates in all communities. HCMV infections can occur vertically following mother-to-fetus transmission across the placenta and horizontally following shedding of virus in bodily fluids in HCMV-infected hosts and subsequent exposure of susceptible individuals to virus-laden fluids. Intrauterine HCMV has long been recognized as an infectious threat to fetal growth and development. Since vertical HCMV infections occur following horizontal HCMV transmission to the pregnant mother, the nonhuman primate model of HCMV pathogenesis was used to characterize the virological and immunological parameters of infection following primary mucosal exposures to rhesus cytomegalovirus.


Asunto(s)
Infecciones por Citomegalovirus/veterinaria , Citomegalovirus/fisiología , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/virología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Biopsia , ADN Viral , Susceptibilidad a Enfermedades/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunoglobulina G/inmunología , Inmunohistoquímica , Macaca mulatta , Enfermedades de los Monos/patología , Enfermedades de los Monos/transmisión , Sistemas de Lectura Abierta , Especificidad de Órganos , Carga Viral , Viremia , Esparcimiento de Virus
4.
Front Immunol ; 12: 719810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394129

RESUMEN

The maternal decidua is an immunologically complex environment that balances maintenance of immune tolerance to fetal paternal antigens with protection of the fetus against vertical transmission of maternal pathogens. To better understand host immune determinants of congenital infection at the maternal-fetal tissue interface, we performed a comparative analysis of innate and adaptive immune cell subsets in the peripheral blood and decidua of healthy rhesus macaque pregnancies across all trimesters of gestation and determined changes after Zika virus (ZIKV) infection. Using one 28-color and one 18-color polychromatic flow cytometry panel we simultaneously analyzed the frequency, phenotype, activation status and trafficking properties of αß T, γδ T, iNKT, regulatory T (Treg), NK cells, B lymphocytes, monocytes, macrophages, and dendritic cells (DC). Decidual leukocytes showed a striking enrichment of activated effector memory and tissue-resident memory CD4+ and CD8+ T lymphocytes, CD4+ Tregs, CD56+ NK cells, CD14+CD16+ monocytes, CD206+ tissue-resident macrophages, and a paucity of B lymphocytes when compared to peripheral blood. t-distributed stochastic neighbor embedding (tSNE) revealed unique populations of decidual NK, T, DC and monocyte/macrophage subsets. Principal component analysis showed distinct spatial localization of decidual and circulating leukocytes contributed by NK and CD8+ T lymphocytes, and separation of decidua based on gestational age contributed by memory CD4+ and CD8+ T lymphocytes. Decidua from 10 ZIKV-infected dams obtained 16-56 days post infection at third (n=9) or second (n=1) trimester showed a significant reduction in frequency of activated, CXCR3+, and/or Granzyme B+ memory CD4+ and CD8+ T lymphocytes and γδ T compared to normal decidua. These data suggest that ZIKV induces local immunosuppression with reduced immune recruitment and impaired cytotoxicity. Our study adds to the immune characterization of the maternal-fetal interface in a translational nonhuman primate model of congenital infection and provides novel insight in to putative mechanisms of vertical transmission.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Intercambio Materno-Fetal/inmunología , Enfermedades de los Monos/etiología , Enfermedades de los Monos/metabolismo , Infección por el Virus Zika/veterinaria , Virus Zika/inmunología , Animales , Decidua/inmunología , Decidua/metabolismo , Susceptibilidad a Enfermedades , Femenino , Inmunohistoquímica , Inmunofenotipificación , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Recuento de Leucocitos , Macaca mulatta , Enfermedades de los Monos/patología , Enfermedades de los Monos/transmisión , Embarazo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
5.
PLoS Negl Trop Dis ; 15(1): e0008923, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507996

RESUMEN

The Democratic Republic of the Congo (DRC) has a history of nonhuman primate (NHP) consumption and exposure to simian retroviruses yet little is known about the extent of zoonotic simian retroviral infections in DRC. We examined the prevalence of human T-lymphotropic viruses (HTLV), a retrovirus group of simian origin, in a large population of persons with frequent NHP exposures and a history of simian foamy virus infection. We screened plasma from 3,051 persons living in rural villages in central DRC using HTLV EIA and western blot (WB). PCR amplification of HTLV tax and LTR sequences from buffy coat DNA was used to confirm infection and to measure proviral loads (pVLs). We used phylogenetic analyses of LTR sequences to infer evolutionary histories and potential transmission clusters. Questionnaire data was analyzed in conjunction with serological and molecular data. A relatively high proportion of the study population (5.4%, n = 165) were WB seropositive: 128 HTLV-1-like, 3 HTLV-2-like, and 34 HTLV-positive but untypeable profiles. 85 persons had HTLV indeterminate WB profiles. HTLV seroreactivity was higher in females, wives, heads of households, and increased with age. HTLV-1 LTR sequences from 109 persons clustered strongly with HTLV-1 and STLV-1 subtype B from humans and simians from DRC, with most sequences more closely related to STLV-1 from Allenopithecus nigroviridis (Allen's swamp monkey). While 18 potential transmission clusters were identified, most were in different households, villages, and health zones. Three HTLV-1-infected persons were co-infected with simian foamy virus. The mean and median percentage of HTLV-1 pVLs were 5.72% and 1.53%, respectively, but were not associated with age, NHP exposure, village, or gender. We document high HTLV prevalence in DRC likely originating from STLV-1. We demonstrate regional spread of HTLV-1 in DRC with pVLs reported to be associated with HTLV disease, supporting local and national public health measures to prevent spread and morbidity.


Asunto(s)
Infecciones por HTLV-I/transmisión , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/clasificación , Virus Linfotrópico T Tipo 1 Humano/fisiología , Primates/virología , Adolescente , Animales , Animales Salvajes/virología , Niño , República Democrática del Congo , Composición Familiar , Femenino , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 2 Humano , Humanos , Enfermedades de los Monos/transmisión , Filogenia , Provirus , Salud Pública , Infecciones por Retroviridae/transmisión , Virus Linfotrópico T Tipo 1 de los Simios , Encuestas y Cuestionarios , Carga Viral , Zoonosis/transmisión
6.
Acta Trop ; 213: 105754, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33166517

RESUMEN

The mechanisms of infection and dispersion of Trypanosoma cruzi among animals, especially in the sylvatic environment, are still not entirely clear, and various aspects of the transmission dynamics of this parasite in the sylvatic environment are still unknown. T. cruzi is a parasite with a great biological and genetic diversity that infects a wide variety of hosts, therefore, transmission cycles of this parasite are complex. The objective of this study was to determine the prevalence of T. cruzi infection and analyze the genetic variability of the discrete typing units (DTUs) of the parasite in three non-human primate species (Alouatta palliata, Alouatta pigra, and Ateles geoffroyi) in southeastern Mexico. A total of one hundred sixty-four serum samples (42 samples of A. pigra, 41 samples of A. palliata (free-ranging) and 81 samples of A. geoffroyi (hosted in care centers)) were analyzed for the detection of anti-T. cruzi antibodies by ELISA assays. The seroprevalence of infection was 23.39% in A. palliata, 21.40% in A. pigra and 16.27% in A. geoffroyi. Additionally, presence of parasite DNA was assessed by PCR, and the identification of DTUs was performed by real-time PCR coupled to High Resolution Melting (qPCR-HRM). Different DTUs (TcI, TcII, TcIII, TcV and TcVI) were found in the analyzed monkeys. In addition, infection of monkeys was not associated with age or gender, but it was associated with the species. This study reveals the risk of infection in the study area and that the different DTUs of the parasite can coexist in the same habitat, indicating that T. cruzi transmission in the study area is very complex and involves many ecological factors. However, there is a need for long-term studies of host-parasite interactions to provide a solid understanding of the ecology of these species and to understand the dispersion strategies of T. cruzi.


Asunto(s)
Alouatta/parasitología , Ateles geoffroyi/parasitología , Enfermedad de Chagas/transmisión , Enfermedades de los Monos/transmisión , Trypanosoma cruzi/patogenicidad , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/veterinaria , Genotipo , Interacciones Huésped-Parásitos , Humanos , México , Enfermedades de los Monos/parasitología , Estudios Seroepidemiológicos , Especificidad de la Especie , Trypanosoma cruzi/genética
7.
Viruses ; 12(12)2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255150

RESUMEN

Despite worldwide efforts to understand the transmission dynamics of Zika virus (ZIKV), scanty evaluation has been made on the vector competence of Aedes aegypti fed directly on viremic human and non-human primates (NHPs). We blood-fed Ae. aegypti from two districts in Rio de Janeiro on six ZIKV infected pregnant rhesus macaques at several time points, half of which were treated with Sofosbuvir (SOF). Mosquitoes were analyzed for vector competence after 3, 7 and 14 days of incubation. Although viremia extended up to eight days post monkey inoculation, only mosquitoes fed on the day of the peak of viremia, recorded on day two, became infected. The influence of SOF treatment could not be assessed because the drug was administered just after mosquito feeding on day two. The global infection, dissemination and transmission rates were quite low (4.09%, 1.91% and 0.54%, respectively); no mosquito was infected when viremia was below 1.26 × 105 RNA copies/mL. In conclusion, Ae. aegypti vector competence for ZIKV from macaques is low, likely to be due to low viral load and the short duration of ZIKV viremia in primates suitable for infecting susceptible mosquitoes. If ZIKV infection in human and macaques behaves similarly, transmission of the Zika virus in nature is most strongly affected by vector density.


Asunto(s)
Aedes/virología , Enfermedades de los Monos/transmisión , Enfermedades de los Monos/virología , Mosquitos Vectores/virología , Viremia/virología , Infección por el Virus Zika/veterinaria , Virus Zika , Animales , Femenino , Macaca mulatta , Embarazo
8.
Korean J Parasitol ; 58(5): 583-587, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33202512

RESUMEN

Blastocystis sp. is a kind of protozoa living in the intestinal tract of human and animals, which will cause intestinal diseases such as diarrhea, abdominal distension and vomiting. This paper was aimed to understand the infection of Blastocystis sp. In golden monkeys and the transmission path in North China. Thirty-seven feces samples from golden monkeys and 116 cockroach samples from Shijiazhuang Zoo were collected from July to October 2019 for PCR analysis of Blastocystis sp. Genetic diversity analysis was further conducted on the samples with positive PCR results. The results showed that the infection rate was 48.7% (18/37) in golden monkeys and 82.8% (96/116) in cockroaches, respectively. The genetic evolution analysis based on small subunit ribosomal RNA demonstrated that three subtypes (ST) of Blastocystis sp. including ST1, ST2, and ST3 existed in the intestinal tract of golden monkeys, while only ST2 was detected in the intestinal tract of cockroaches. This paper may provide supports for the quarantine and control of Blastocystis sp. for the zoo in Northern China.


Asunto(s)
Animales de Zoológico , Infecciones por Blastocystis/transmisión , Infecciones por Blastocystis/veterinaria , Blastocystis/aislamiento & purificación , Cucarachas/parasitología , Vectores de Enfermedades , Insectos Vectores , Enfermedades de los Monos/parasitología , Enfermedades de los Monos/transmisión , Enfermedades Parasitarias en Animales/parasitología , Enfermedades Parasitarias en Animales/transmisión , Animales , Blastocystis/clasificación , Blastocystis/genética , Infecciones por Blastocystis/epidemiología , Infecciones por Blastocystis/parasitología , Cercopithecus , China/epidemiología , Heces/parasitología , Femenino , Masculino , Enfermedades de los Monos/epidemiología , Enfermedades Parasitarias en Animales/epidemiología , Reacción en Cadena de la Polimerasa
9.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33125317

RESUMEN

Many non-human primate species in sub-Saharan Africa are infected with Treponema pallidum subsp. pertenue, the bacterium causing yaws in humans. In humans, yaws is often characterized by lesions of the extremities and face, while T. pallidum subsp. pallidum causes venereal syphilis and is typically characterized by primary lesions on the genital, anal or oral mucosae. It remains unclear whether other T. pallidum subspecies found in humans also occur in non-human primates and how the genomic diversity of non-human primate T. pallidum subsp. pertenue lineages is distributed across hosts and space. We observed orofacial and genital lesions in sooty mangabeys (Cercocebus atys) in Taï National Park, Côte d'Ivoire and collected swabs and biopsies from symptomatic animals. We also collected non-human primate bones from 8 species in Taï National Park and 16 species from 11 other sites across sub-Saharan Africa. Samples were screened for T. pallidum DNA using polymerase chain reactions (PCRs) and we used in-solution hybridization capture to sequence T. pallidum genomes. We generated three nearly complete T. pallidum genomes from biopsies and swabs and detected treponemal DNA in bones of six non-human primate species in five countries, allowing us to reconstruct three partial genomes. Phylogenomic analyses revealed that both orofacial and genital lesions in sooty mangabeys from Taï National Park were caused by T. pallidum subsp. pertenue. We showed that T. pallidum subsp. pertenue has infected non-human primates in Taï National Park for at least 28 years and has been present in two non-human primate species that had not been described as T. pallidum subsp. pertenue hosts in this ecosystem, western chimpanzees (Pan troglodytes verus) and western red colobus (Piliocolobus badius), complementing clinical evidence that started accumulating in Taï National Park in 2014. More broadly, simian T. pallidum subsp. pertenue strains did not form monophyletic clades based on host species or the symptoms caused, but rather clustered based on geography. Geographical clustering of T. pallidum subsp. pertenue genomes might be compatible with cross-species transmission of T. pallidum subsp. pertenue within ecosystems or environmental exposure, leading to the acquisition of closely related strains. Finally, we found no evidence for mutations that confer antimicrobial resistance.


Asunto(s)
Cercocebus atys/microbiología , Genoma Bacteriano/genética , Enfermedades de los Monos/transmisión , Treponema/genética , Buba/veterinaria , Animales , Côte d'Ivoire , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de los Monos/microbiología , Reacción en Cadena de la Polimerasa , Treponema/aislamiento & purificación , Secuenciación Completa del Genoma , Buba/microbiología , Buba/transmisión
10.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087463

RESUMEN

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/veterinaria , Macaca mulatta , Enfermedades de los Monos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Administración Oral , Animales , Animales Recién Nacidos , ADN Viral/análisis , Reservorios de Enfermedades , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1 , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/transmisión , ARN Viral/análisis , Virus Reordenados/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral
11.
Front Immunol ; 11: 850, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528466

RESUMEN

HIV-1 infection is transmitted primarily by sexual exposure, with semen being the principal contaminated fluid. However, HIV-specific immune response in semen has been understudied. We investigated specific parameters of the innate, cellular, and humoral immune response that may affect semen infectivity in macaques infected with SIVmac251. Serial semen levels of cytokines and chemokines, SIV-specific antibodies, neutralization, and FcγR-mediated functions and SIV-specific T-cell responses were assessed and compared to systemic responses across 53 cynomolgus macaques. SIV infection induced an overall inflammatory state in the semen. Several pro-inflammatory molecules correlated with SIV virus levels. Effector CD8+ T cells were expanded in semen upon infection. SIV-specific CD8+ T-cells that expressed multiple effector molecules (IFN-γ+MIP-1ß+TNF+/-) were induced in the semen of a subset of SIV-infected macaques, but this did not correlate with local viral control. SIV-specific IgG, commonly capable of engaging the FcγRIIIa receptor, was detected in most semen samples although this positively correlated with seminal viral load. Several inflammatory immune responses in semen develop in the context of higher levels of SIV seminal plasma viremia. These inflammatory immune responses could play a role in viral transmission and should be considered in the development of preventive and prophylactic vaccines.


Asunto(s)
Inmunidad Humoral , Inmunidad Innata , Activación de Linfocitos , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/transmisión , Semen/inmunología , Semen/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Macaca fascicularis , Masculino , Enfermedades de los Monos/sangre , Enfermedades de los Monos/virología , ARN Viral/sangre , Semen/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral
12.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188737

RESUMEN

Zika virus (ZIKV) infection is now firmly linked to congenital Zika syndrome (CZS), including fetal microcephaly. While Aedes species of mosquito are the primary vector for ZIKV, sexual transmission of ZIKV is a significant route of infection. ZIKV has been documented in human, mouse, and nonhuman primate (NHP) semen. It is critical to establish NHP models of the vertical transfer of ZIKV that recapitulate human pathogenesis. We hypothesized that vaginal deposition of ZIKV-infected baboon semen would lead to maternal infection and vertical transfer in the olive baboon (Papio anubis). Epidemiological studies suggest an increased rate of CZS in the Americas compared to the original link to CZS in French Polynesia; therefore, we also compared the French Polynesian (FP) ZIKV isolate to the Puerto Rican (PR) isolate. Timed-pregnant baboons (n = 6) were inoculated via vaginal deposition of baboon semen containing 106 focus-forming units (FFU) of ZIKV (n = 3 for FP isolate H/PF/2013; n = 3 for PR isolate PRVABC59) at midgestation (86 to 95 days of gestation [dG]; term, 183 dG) on day 0 (all dams) and then at 7-day intervals through 3 weeks. Maternal blood, saliva, and cervicovaginal wash (CVW) samples were obtained. Animals were euthanized at 28 days (n = 5) or 39 days (n = 1) after the initial inoculation, and maternal/fetal tissues were collected. Viremia was achieved in 3/3 FP ZIKV-infected dams and 2/3 PR ZIKV-infected dams. ZIKV RNA was detected in CVW samples of 5/6 dams. ZIKV RNA was detected in lymph nodes but not the ovaries, uterus, cervix, or vagina in FP isolate-infected dams. ZIKV RNA was detected in lymph nodes (3/3), uterus (2/3), and vagina (2/3) in PR isolate-infected dams. Placenta, amniotic fluid, and fetal tissues were ZIKV RNA negative in the FP isolate-infected dams, whereas 2/3 PR isolate-infected dam placentas were ZIKV RNA positive. We conclude that ZIKV-infected semen is a means of ZIKV transmission during pregnancy in primates. The PR isolate appeared more capable of widespread dissemination to tissues, including reproductive tissues and placenta, than the FP isolate.IMPORTANCE Zika virus remains a worldwide health threat, with outbreaks still occurring in the Americas. While mosquitos are the primary vector for the spread of the virus, sexual transmission of Zika virus is also a significant means of infection, especially in terms of passage from an infected to an uninfected partner. While sexual transmission has been documented in humans, and male-to-female transmission has been reported in mice, ours is the first study in nonhuman primates to demonstrate infection via vaginal deposition of Zika virus-infected semen. The latter is important since a recent publication indicated that human semen inhibited, in a laboratory setting, Zika virus infection of reproductive tissues. We also found that compared to the French Polynesian isolate, the Puerto Rican Zika virus isolate led to greater spread throughout the body, particularly in reproductive tissues. The American isolates of Zika virus appear to have acquired mutations that increase their efficacy.


Asunto(s)
Enfermedades de los Monos , Complicaciones Infecciosas del Embarazo , Semen/virología , Vagina/virología , Infección por el Virus Zika , Virus Zika/metabolismo , Animales , Femenino , Masculino , Enfermedades de los Monos/metabolismo , Enfermedades de los Monos/patología , Enfermedades de los Monos/transmisión , Enfermedades de los Monos/virología , Papio anubis , Embarazo , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/patología , Complicaciones Infecciosas del Embarazo/veterinaria , ARN Viral/metabolismo , Vagina/patología , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/veterinaria
13.
Comp Med ; 70(1): 75-82, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747991

RESUMEN

Despite the lack of confirmed reports of an exogenous Simian betaretrovirus (SRV) isolated from baboons (Papio sp.), reports of simian endogenous gammaretrovirus (SERV) in baboons with complete genomes suggest that such viruses may be potentially infectious. In addition, serologic tests have repeatedly demonstrated antibody reactivity to SRV in baboons from multiple colonies. These findings complicate the management and use of such animals for research. To provide further insight into this situation, we performed in vitro and in vivo studies to determine if baboons are or can be infected with SRV. In our initial experiment, we were not able to isolate SRV from 6 seropositive or sero-indeterminate baboons by coculturing their peripheral blood mononuclear cells (PBMC) with macaque PBMC or permissive cell lines. In a subsequent experiment, we found that baboon PBMC infected in vitro with high dose SRV were permissive to virus replication. To test in vivo infectibil- ity, groups of naive baboons were infused intravenously with either (i) the same SRV tissue culture virus stocks used for the in vitro studies, (ii) SRV antibody positive and PCR positive macaque blood, (iii) SRV antibody positive or indeterminate, but PCR negative baboon blood, or (iv) SRV antibody and PCR negative baboon blood. Sustained SRV infection, as defined by reproducible PCR detection and/or antibody seroconversion, was confirmed in 2 of 3 baboons receiving tissue culture virus but not in any recipients of transfused blood from seropositive macaques or baboons. In conclusion, the data indicate that even though baboon cells can be infected experimentally with high doses of tissue culture grown SRV, baboons that are repeatedly SRV antibody positive and PCR negative are unlikely to be infected with exogenous SRV and thus are unlikely to transmit a virus that would threaten the SPF status of captive baboon colonies.


Asunto(s)
Enfermedades de los Monos/transmisión , Papio , Infecciones por Retroviridae/transmisión , Animales , Betaretrovirus/aislamiento & purificación , Femenino , Leucocitos Mononucleares/virología , Masculino , Enfermedades de los Monos/sangre , Enfermedades de los Monos/virología , Infecciones por Retroviridae/sangre , Infecciones por Retroviridae/virología , Replicación Viral
14.
Sci Rep ; 9(1): 14243, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578447

RESUMEN

In our most recent study, we found that in Tanzania infection with Treponema pallidum (TP) subsp. pertenue (TPE) is present in four different monkey species. In order to gain information on the diversity and epidemiological spread of the infection in Tanzanian nonhuman primates (NHP), we identified two suitable candidate genes for multi-locus sequence typing (MLST). We demonstrate the functionality of the MLST system in invasively and non-invasively collected samples. While we were not able to demonstrate frequent interspecies transmission of TPE in Tanzanian monkeys, our results show a clustering of TPE strains according to geography and not host species, which is suggestive for rare transmission events between different NHP species. In addition to the geographic stability, we describe the relative temporal stability of the strains infecting NHPs and identified multi-strain infection. Differences between TPE strains of NHP and human origin are highlighted. Our results show that antibiotic resistance does not occur in Tanzanian TPE strains of NHP origin.


Asunto(s)
Cercopithecus/microbiología , Chlorocebus aethiops/microbiología , Especificidad del Huésped , Enfermedades de los Monos/transmisión , Papio anubis/microbiología , Papio cynocephalus/microbiología , Treponema/clasificación , Infecciones por Treponema/veterinaria , Animales , Enfermedades del Simio Antropoideo/epidemiología , Enfermedades del Simio Antropoideo/microbiología , Enfermedades del Simio Antropoideo/transmisión , Congo/epidemiología , Heces/microbiología , Estudios de Asociación Genética , Variación Genética , Gorilla gorilla/microbiología , Enfermedades de los Monos/epidemiología , Enfermedades de los Monos/microbiología , Tipificación de Secuencias Multilocus , Filogenia , Polimorfismo de Nucleótido Simple , Especificidad de la Especie , Tanzanía/epidemiología , Treponema/genética , Treponema/aislamiento & purificación , Infecciones por Treponema/epidemiología , Infecciones por Treponema/microbiología , Infecciones por Treponema/transmisión
15.
Viruses ; 11(10)2019 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-31635161

RESUMEN

Foamy viruses (FVs) are the only exogenous retrovirus to date known to infect neotropical primates (NPs). In the last decade, an increasing number of strains have been completely or partially sequenced, and molecular evolution analyses have identified an ancient co-speciation with their hosts. In this review, the improvement of diagnostic techniques that allowed the determination of a more accurate prevalence of simian FVs (SFVs) in captive and free-living NPs is discussed. Determination of DNA viral load in American primates indicates that oral tissues are the viral replicative site and that buccal swab collection can be an alternative to diagnose SFV infection in NPs. Finally, the transmission potential of NP SFVs to primate workers in zoos and primate centers of the Americas is examined.


Asunto(s)
Evolución Molecular , Enfermedades de los Monos/diagnóstico , Primates/virología , Infecciones por Retroviridae/veterinaria , Virus Espumoso de los Simios/aislamiento & purificación , Animales , Animales de Zoológico/virología , América Central/epidemiología , Humanos , Enfermedades de los Monos/transmisión , Enfermedades de los Monos/virología , Filogenia , Platirrinos/virología , Infecciones por Retroviridae/diagnóstico , Infecciones por Retroviridae/transmisión , Virus Espumoso de los Simios/fisiología , América del Sur/epidemiología
16.
J Genet ; 982019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31544794

RESUMEN

Plasmodium knowlesi contributes to the majority of human malaria incidences in Malaysia. Its uncontrollable passage among the natural monkey hosts can potentially lead to zoonotic outbreaks. The merozoite of this parasite invades host erythrocytes through interaction between its erythrocyte-binding proteins (EBPs) and their respective receptor on the erythrocytes. The regionII of P. knowlesi EBP, P. knowlesi beta (PkßII) protein is found to be mediating merozoite invasion into monkey erythrocytes by interacting with sialic acid receptors. Hence, the objective of this study was to investigate the genetic diversity, natural selection and haplotype grouping of PkßII of P. knowlesi isolates in Malaysia. Polymerase chain reaction amplifications of PkßII were performed on archived blood samples from Malaysia and 64 PkßII sequences were obtained. Sequence analysis revealed length polymorphism, and its amino acids at critical residues indicate the ability of PkßII to mediate P. knowlesi invasion into monkey erythrocytes. Low genetic diversity (π = 0.007) was observed in the PkßII of Malaysia Borneo compared to Peninsular Malaysia (π = 0.015). The PkßII was found to be under strong purifying selection to retain infectivity in monkeys and it plays a limited role in the zoonotic potential of P. knowlesi. Its haplotypes could be clustered into Peninsular Malaysia and Malaysia Borneo groups, indicating the existence of two distinct P. knowlesi parasites in Malaysia as reported in an earlier study.


Asunto(s)
Macaca , Malaria/veterinaria , Enfermedades de los Monos/parasitología , Plasmodium knowlesi/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Animales , Borneo , Eritrocitos/parasitología , Haplotipos , Malaria/parasitología , Malaria/transmisión , Malasia , Enfermedades de los Monos/transmisión , Filogenia , Plasmodium knowlesi/aislamiento & purificación , Proteínas Protozoarias/sangre , Receptores de Superficie Celular , Selección Genética , Análisis de Secuencia de ADN
17.
Arch Virol ; 164(10): 2515-2518, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31270608

RESUMEN

Data on natural HEV infection of infection in monkeys are limited. We report a case of hepatitis E virus genotype 4 infection in captive non-human primates (cynomolgus monkeys) imported from Vietnam. Phylogenetic analysis demonstrated that HEV infection was not the result of spillover from single source of infection, but rather the persistent circulation of HEV-4 among cynomolgus monkeys or multiple infections by related strains from a human or swine reservoir.


Asunto(s)
Virus de la Hepatitis E/aislamiento & purificación , Hepatitis E/veterinaria , Macaca fascicularis , Enfermedades de los Monos/virología , Animales , Transmisión de Enfermedad Infecciosa , Genotipo , Hepatitis E/transmisión , Hepatitis E/virología , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/genética , Epidemiología Molecular , Enfermedades de los Monos/transmisión , Filogenia , Vietnam
18.
Emerg Microbes Infect ; 8(1): 787-795, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31132935

RESUMEN

Pteropine orthoreoviruses (PRV) are emerging bat-borne viruses with proven zoonotic transmission. We recently demonstrated human exposure to PRV in Singapore, which together with previous reports from Malaysia and Vietnam suggest that human infection of PRV may occur periodically in the region. This raises the question whether bats are the only sources of human infection. In this study, we screened 517 cynomolgus macaques caught in Singapore for evidence of exposure to PRV3M (also known as Melaka virus), which was first isolated from human patients in Melaka, Malaysia. We found that 67 serum samples were PRV3M positive by ELISA and 34 were also positive by virus neutralization assay. To investigate whether monkeys could act as hosts for PRV transmission, we experimentally infected cynomolgus macaques with PRV3M and housed these animals with uninfected monkeys. Although no clinical signs of infection were observed in infected animals, viral RNA was detected in nasal and rectal swabs and all infected macaques seroconverted. Additionally, one of the uninfected animals seroconverted, implying active shedding and transmission of PRV3M. We provide evidence that PRV exposure in the macaque population in Singapore occurs at a relatively high prevalence and this study suggests that cynomolgus macaques may be an intermediate or reservoir host for PRVs.


Asunto(s)
Macaca fascicularis/virología , Enfermedades de los Monos/virología , Orthoreovirus/fisiología , Infecciones por Reoviridae/transmisión , Infecciones por Reoviridae/veterinaria , Zoonosis/transmisión , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Macaca fascicularis/sangre , Enfermedades de los Monos/sangre , Enfermedades de los Monos/transmisión , Pruebas de Neutralización , Orthoreovirus/genética , Infecciones por Reoviridae/sangre , Infecciones por Reoviridae/virología , Singapur , Zoonosis/sangre , Zoonosis/virología
19.
Am J Trop Med Hyg ; 100(2): 357-364, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30628564

RESUMEN

Gastrointestinal parasites have diverse life cycles that can involve people, animals, and the environment (e.g., water and soil), demonstrating the utility of One Health frameworks in characterizing infection risk. Kosumpee Forest Park (Thailand) is home to a dense population of long-tailed macaques (Macaca fascicularis) that frequently interact with tourists and local residents. Our study investigated the presence of zoonotic parasites, and barriers to healthy coexistence by conducting stool analysis on macaques (N = 102) and people (N = 115), and by examining risk factors for infection with a household questionnaire (N = 95). Overall, 44% of macaques and 12% of people were infected with one or more gastrointestinal helminths, including Strongyloides spp., Ascaris spp., and Trichuris sp. An adults-only generalized linear mixed model identified three factors significantly associated with human infection: household size, occupational exposure, and contact with macaque feces at home. Participants identified both advantages and disadvantages to living in close contact with macaques, suggesting that interventions to improve human and animal health in Kosumpee Forest Park would be welcome.


Asunto(s)
Helmintiasis Animal/epidemiología , Helmintiasis/epidemiología , Parasitosis Intestinales/veterinaria , Macaca fascicularis/parasitología , Enfermedades de los Monos/epidemiología , Adolescente , Adulto , Animales , Ascaris/clasificación , Ascaris/aislamiento & purificación , Niño , Preescolar , Composición Familiar , Heces/parasitología , Femenino , Helmintiasis/parasitología , Helmintiasis/transmisión , Helmintiasis Animal/parasitología , Helmintiasis Animal/transmisión , Humanos , Parasitosis Intestinales/epidemiología , Parasitosis Intestinales/parasitología , Parasitosis Intestinales/transmisión , Masculino , Persona de Mediana Edad , Enfermedades de los Monos/parasitología , Enfermedades de los Monos/transmisión , Parques Recreativos , Strongyloides/clasificación , Strongyloides/aislamiento & purificación , Encuestas y Cuestionarios , Tailandia/epidemiología , Trichuris/clasificación , Trichuris/aislamiento & purificación
20.
Ecohealth ; 16(4): 594-610, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30675676

RESUMEN

Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.


Asunto(s)
Anopheles/parasitología , Macaca/parasitología , Malaria/transmisión , Enfermedades de los Monos/transmisión , Plasmodium knowlesi/aislamiento & purificación , Zoonosis/transmisión , Animales , Asia Sudoriental/epidemiología , Conservación de los Recursos Naturales , Ecosistema , Humanos , Malaria/epidemiología , Enfermedades de los Monos/epidemiología , Mosquitos Vectores , Zoonosis/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...