Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.638
Filtrar
1.
Sci Rep ; 14(1): 10947, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740811

RESUMEN

The immunomodulatory effects of omega-3 and omega-6 fatty acids are a crucial subject of investigation for sustainable fish aquaculture, as fish oil is increasingly replaced by terrestrial vegetable oils in aquafeeds. Unlike previous research focusing on fish oil replacement with vegetable alternatives, our study explored how the omega-6 to omega-3 polyunsaturated fatty acid (PUFA) ratio in low-fish oil aquafeeds influences Atlantic salmon's antiviral and antibacterial immune responses. Atlantic salmon were fed aquafeeds rich in soy oil (high in omega-6) or linseed oil (high in omega-3) for 12 weeks and then challenged with bacterial (formalin-killed Aeromonas salmonicida) or viral-like (polyriboinosinic polyribocytidylic acid) antigens. The head kidneys of salmon fed high dietary omega-3 levels exhibited a more anti-inflammatory fatty acid profile and a restrained induction of pro-inflammatory and neutrophil-related genes during the immune challenges. The high-omega-3 diet also promoted a higher expression of genes associated with the interferon-mediated signaling pathway, potentially enhancing antiviral immunity. This research highlights the capacity of vegetable oils with different omega-6 to omega-3 PUFA ratios to modulate specific components of fish immune responses, offering insights for future research on the intricate lipid nutrition-immunity interplay and the development of novel sustainable low-fish oil clinical aquaculture feeds.


Asunto(s)
Aeromonas salmonicida , Ácidos Grasos Omega-3 , Ácidos Grasos Omega-6 , Enfermedades de los Peces , Salmo salar , Animales , Salmo salar/inmunología , Ácidos Grasos Omega-6/farmacología , Ácidos Grasos Omega-3/farmacología , Aeromonas salmonicida/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Riñón Cefálico/inmunología , Alimentación Animal , Aceite de Soja/farmacología , Aceites de Pescado/farmacología , Acuicultura/métodos
2.
Sci Rep ; 14(1): 11783, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782944

RESUMEN

Cyprinid herpesvirus is a causative agent of a destructive disease in common and koi carp (Cyprinus carpio), which leads to substantial global financial losses in aquaculture industries. Among the strains of C. herpesvirus, C. herpesvirus 1 (CyHV-1) and C. herpesvirus 3 (CyHV-3) are known as highly pathogenic to carp fishes in Europe, Asia, and Africa. To date, no effective vaccine has been developed to combat these viruses. This study aimed to develop unique multi-epitope subunit vaccines targeting the CyHV-1 and CyHV-3 using a reverse vaccinology approach. The study began with a comprehensive literature review to identify the most critical proteins, which were then subjected to in silico analyses to predict highly antigenic epitopes. These analyses involved assessing antigenicity, transmembrane topology screening, allergenecity, toxicity, and molecular docking approaches. We constructed two multi-epitope-based vaccines incorporating a suitable adjuvant and appropriate linkers. It revealed that both the vaccines are non-toxic and immunogenic. The tertiary structures of the vaccine proteins were generated, refined, and validated to ensure their suitability. The binding affinity between the vaccine constructs and TLR3 and TLR5 receptors were assessed by molecular docking studies. Molecular dynamics simulations indicated that vaccine construct V1 exhibited greater stability with both TLR3 and TLR5 based on RMSD analysis. Hydrogen bond analysis revealed a stronger binding affinity between the vaccine constructs and TLR5 compared to TLR3. Furthermore, MM-PBSA analysis suggested that both vaccine constructs exhibited a better affinity for TLR5. Considering all aspects, the results suggest that in silico development of CyHV vaccines incorporating multiple epitopes holds promise for management of diseases caused by CyHV-1 and CyHV-3. However, further in vivo trials are highly recommended to validate the efficacies of these vaccines.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Herpesviridae , Herpesviridae , Simulación del Acoplamiento Molecular , Vacunas de Subunidad , Animales , Vacunas de Subunidad/inmunología , Carpas/virología , Carpas/inmunología , Herpesviridae/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Vacunas Virales/inmunología , Epítopos/inmunología , Epítopos/química , Biología Computacional/métodos , Vacunas contra Herpesvirus/inmunología , Inmunoinformática
3.
J Vet Diagn Invest ; 36(3): 338-345, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693675

RESUMEN

We performed a diagnostic disease investigation on a cohort of coho salmon (Oncorhynchus kisutch) fingerlings in Alaska exhibiting anorexia, gaping mouths, anemia, and increased mortality. Histologic examination revealed mild-to-severe myocardial degeneration and lymphohistiocytic and neutrophilic myocarditis, moderate splenic histiocytosis, and mild renal histiocytosis. Piscine orthoreoviruses 1 and 3 were not detected by molecular methods, and no other viruses could be cultured on 3 common diagnostic fish cell lines. De novo assembly produced a viral genome of 10 linear segments with >80% homology to piscine orthoreovirus 2 (PRV2) encoding all 11 PRV2 proteins. An in situ hybridization probe using RNAscope was developed against 697 viral nucleotides identified by sequencing, which revealed viral genome in heart, spleen, gill, kidney, liver, blood, and the lamina propria of the intestines. Our findings are supportive of a novel piscine orthoreovirus most closely related to PRV2 associated with morbidity and mortality of coho salmon in the northeastern Pacific.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus kisutch , Orthoreovirus , Infecciones por Reoviridae , Animales , Enfermedades de los Peces/virología , Enfermedades de los Peces/patología , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Orthoreovirus/genética , Orthoreovirus/aislamiento & purificación , Alaska , Oncorhynchus kisutch/virología , Filogenia , Genoma Viral , Distribución Tisular
4.
Fish Shellfish Immunol ; 149: 109614, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710342

RESUMEN

Chemokines are critical molecules involved in immune reaction and immune system homeostasis, and some chemokines play a role in antiviral immunity. It is not known if the C-C motif chemokine ligand 3 (CCL3), a member of the CC chemokine family, possesses antiviral properties in fish. In this study, a ccl3 was cloned from the mandarin fish (Siniperca chuatsi), and it has an open reading frame (ORF) of 276 base pairs, which are predicted to encode a 91-amino acid peptide. Mandarin fish CCL3 revealed conserved sequence features with four cysteine residues and closely relationships with the CCL3s from other vertebrates based on the sequence alignment and phylogenetic analysis. The transcripts of ccl3 were notably enriched in immune-related organs, such as spleen and gills in healthy mandarin fish, and the ccl3 was induced in the isolated mandarin fish brain (MFB) cells following infection with infectious spleen and kidney necrosis virus (ISKNV). Moreover, in MFB cells, overexpression of CCL3 induced immune factors, such as IL1ß, TNFα, MX, IRF1 and IFNh, and exhibited antiviral activity against ISKNV. This study sheds light on the immune role of CCL3 in immune response of mandarin fish, and its antiviral defense mechanism is of interest for further investigation.


Asunto(s)
Secuencia de Aminoácidos , Infecciones por Virus ADN , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Iridoviridae , Perciformes , Filogenia , Alineación de Secuencia , Animales , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Perciformes/inmunología , Perciformes/genética , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Iridoviridae/fisiología , Alineación de Secuencia/veterinaria , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Clonación Molecular , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases
5.
Virulence ; 15(1): 2355971, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38745468

RESUMEN

The vertebrate central nervous system (CNS) is the most complex system of the body. The CNS, especially the brain, is generally regarded as immune-privileged. However, the specialized immune strategies in the brain and how immune cells, specifically macrophages in the brain, respond to virus invasion remain poorly understood. Therefore, this study aimed to examine the potential immune response of macrophages in the brain of orange-spotted groupers (Epinephelus coioides) following red-spotted grouper nervous necrosis virus (RGNNV) infection. We observed that RGNNV induced macrophages to produce an inflammatory response in the brain of orange-spotted grouper, and the macrophages exhibited M1-type polarization after RGNNV infection. In addition, we found RGNNV-induced macrophage M1 polarization via the CXCR3.2- CXCL11 pathway. Furthermore, we observed that RGNNV triggered M1 polarization in macrophages, resulting in substantial proinflammatory cytokine production and subsequent damage to brain tissue. These findings reveal a unique mechanism for brain macrophage polarization, emphasizing their role in contributing to nervous tissue damage following viral infection in the CNS.


Asunto(s)
Encéfalo , Enfermedades de los Peces , Macrófagos , Nodaviridae , Infecciones por Virus ARN , Animales , Macrófagos/inmunología , Macrófagos/virología , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Encéfalo/virología , Encéfalo/inmunología , Encéfalo/patología , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Quimiocina CXCL11 , Receptores CXCR3/metabolismo , Lubina/inmunología , Lubina/virología , Transducción de Señal , Citocinas/metabolismo , Citocinas/inmunología , Proteínas de Peces/inmunología , Proteínas de Peces/genética
6.
Virulence ; 15(1): 2349027, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38680083

RESUMEN

Infectious spleen and kidney necrosis virus (ISKNV), a member of the genus Megalocytivirus in the family Iridoviridae, can infect over 50 fish species and cause significant economic losses in Asia. Our previous study showed that hypoxia triggers the hypoxia-inducible factor pathway (HIF-pathway), leading to increased replication of ISKNV through promoting the upregulation of viral hypoxic response genes like orf077r. This study delved into the molecular mechanism of how ISKNV manipulates the HIF-pathway to enhance its replication. In vitro and in vivo experiments confirmed that ISKNV infection activated the HIF-pathway, which in turn promoted ISKNV replication. These findings suggest that ISKNV actively manipulates the HIF-pathway. Co-immunoprecipitation experiments revealed that the ISKNV-encoded protein VP077R interacts with the Von Hippel-Lindau (VHL) protein at the HIF-binding region, competitively inhibiting the interaction of HIF-1α with VHL. This prevents HIF degradation and activates the HIF-pathway. Furthermore, VP077R interacts with factor-inhibiting HIF (FIH), recruiting FIH and S-phase kinase-associated protein 1 (Skp1) to form an FIH - VP077R - Skp1 complex. This complex promotes FIH protein degradation via ubiquitination, further activating the HIF-pathway. These findings indicated that ISKNV takes over the HIF-pathway by releasing two "brakes" on this pathway (VHL and FIH) via VP077R, facilitating virus replication. We speculate that hypoxia initiates a positive feedback loop between ISKNV VP077R and the HIF pathway, leading to the outbreak of ISKNV disease. This work offers valuable insights into the complex interactions between the environment, host, and virus.


Asunto(s)
Infecciones por Virus ADN , Enfermedades de los Peces , Iridoviridae , Replicación Viral , Animales , Iridoviridae/fisiología , Iridoviridae/genética , Infecciones por Virus ADN/virología , Enfermedades de los Peces/virología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Humanos
7.
Viruses ; 16(4)2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675990

RESUMEN

Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses in two different species belonging to the Novirhabdovirus genus. IHNV has a narrow host range restricted to trout and salmon species, and viruses in the M genogroup of IHNV have high virulence in rainbow trout (Oncorhynchus mykiss). In contrast, the VHSV genotype IVb that invaded the Great Lakes in the United States has a broad host range, with high virulence in yellow perch (Perca flavescens), but not in rainbow trout. By using reverse-genetic systems of IHNV-M and VHSV-IVb strains, we generated six IHNV:VHSV chimeric viruses in which the glycoprotein (G), non-virion-protein (NV), or both G and NV genes of IHNV-M were replaced with the analogous genes from VHSV-IVb, and vice versa. These chimeric viruses were used to challenge groups of rainbow trout and yellow perch. The parental recombinants rIHNV-M and rVHSV-IVb were highly virulent in rainbow trout and yellow perch, respectively. Parental rIHNV-M was avirulent in yellow perch, and chimeric rIHNV carrying G, NV, or G and NV genes from VHSV-IVb remained low in virulence in yellow perch. Similarly, the parental rVHSV-IVb exhibited low virulence in rainbow trout, and chimeric rVHSV with substituted G, NV, or G and NV genes from IHNV-M remained avirulent in rainbow trout. Thus, the G and NV genes of either virus were not sufficient to confer high host-specific virulence when exchanged into a heterologous species genome. Some exchanges of G and/or NV genes caused a loss of host-specific virulence, providing insights into possible roles in viral virulence or fitness, and interactions between viral proteins.


Asunto(s)
Enfermedades de los Peces , Novirhabdovirus , Oncorhynchus mykiss , Percas , Infecciones por Rhabdoviridae , Animales , Oncorhynchus mykiss/virología , Percas/virología , Virulencia , Novirhabdovirus/genética , Novirhabdovirus/patogenicidad , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Glicoproteínas/genética , Virus de la Necrosis Hematopoyética Infecciosa/genética , Virus de la Necrosis Hematopoyética Infecciosa/patogenicidad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Especificidad del Huésped
8.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636698

RESUMEN

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Asunto(s)
Autofagia , Factor 7 Regulador del Interferón , Factores Reguladores del Interferón , Lisosomas , Rhabdoviridae , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Autofagia/inmunología , Lisosomas/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Rhabdoviridae/fisiología , Rhabdoviridae/inmunología , Interferones/metabolismo , Poli I-C/inmunología , Infecciones por Rhabdoviridae/inmunología , Proteolisis , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Humanos , Inmunidad Innata
9.
Antiviral Res ; 226: 105881, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604448

RESUMEN

Spring viremia of carp virus (SVCV), as a high pathogenicity pathogen, has seriously restricts the healthy and sustainable development of cyprinid farming industry. In this study, we selected 5-Fluorouracil (5-Fu) as the drug model based on zeolitic imidazolate framework-8 (ZIF-8) to construct a drug delivery system (5-Fu@ZIF-8), and the anti-SVCV activity was detected in vitro and in vivo. The results showed 5-Fu@ZIF-8 was uniform cubic particle with truncated angle and smooth surface, and the particle size was 90 nm. The anti-SVCV activity in vitro results showed that the highest inhibition rate of 5-Fu was 77.93% at 40 mg/L and the inhibitory concentration at half-maximal activity (IC50) was 20.86 mg/L. For 5-Fu@ZIF-8, the highest inhibition rate was 91.36% at 16 mg/L, and the IC50 value was 5.85 mg/L. In addition, the cell viability was increased by 18.1% after 5-Fu treatment. Similarly, after 5-Fu@ZIF-8 treatment, the cell viability increased by 27.3%. Correspondingly, in vivo experimental results showed the viral loads reduced by 18.1% on the days 7 and the survival rate increased to 19.4% at 80 mg/L after 5-Fu treatment. For 5-Fu@ZIF-8, the viral loads reduced by 41.2% and the survival rate increased to 54.8%. Mechanistically, 5-Fu inhibits viral replication by regulating p53 expression and promoting early apoptosis in infected cells. All results indicated that 5-Fu@ZIF-8 improved the anti-SVCV activity; it may be a potential strategy to construct a drug-loaded system with ZIF-8 as a carrier for the prevention and treatment of aquatic diseases.


Asunto(s)
Antivirales , Sistemas de Liberación de Medicamentos , Enfermedades de los Peces , Fluorouracilo , Estructuras Metalorgánicas , Infecciones por Rhabdoviridae , Rhabdoviridae , Fluorouracilo/farmacología , Animales , Rhabdoviridae/efectos de los fármacos , Antivirales/farmacología , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/tratamiento farmacológico , Infecciones por Rhabdoviridae/virología , Carpas , Supervivencia Celular/efectos de los fármacos , Zeolitas/farmacología , Zeolitas/química , Imidazoles
10.
Fish Shellfish Immunol ; 149: 109530, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570120

RESUMEN

The elongation of very long chain fatty acids (ELOVL) proteins are key rate-limiting enzymes that catalyze fatty acid synthesis to form long chain fatty acids. ELOVLs also play regulatory roles in the lipid metabolic reprogramming induced by mammalian viruses. However, little is known about the roles of fish ELOVLs during virus infection. Here, a homolog of ELOVL7 was cloned from Epinephelus coioides (EcELOVL7a), and its roles in red-spotted grouper nervous necrosis virus (RGNNV) and Singapore grouper iridovirus (SGIV) infection were investigated. The transcription level of EcELOVL7a was significantly increased upon RGNNV and SGIV infection or other pathogen-associated molecular patterns stimulation in grouper spleen (GS) cells. Subcellular localization analysis showed that EcELOVL7a encoded an endoplasmic reticulum (ER) related protein. Overexpression of EcELOVL7a promoted the viral production and virus release during SGIV and RGNNV infection. Furthermore, the lipidome profiling showed that EcELOVL7a overexpression reprogrammed cellular lipid components in vitro, evidenced by the increase of glycerophospholipids, sphingolipids and glycerides components. In addition, VLCFAs including FFA (20:2), FFA (20:4), FFA (22:4), FFA (22:5) and FFA (24:0), were enriched in EcELOVL7a overexpressed cells. Consistently, EcELOVL7a overexpression upregulated the transcription level of the key lipid metabolic enzymes, including fatty acid synthase (FASN), phospholipase A 2α (PLA 2α), and cyclooxygenases -2 (COX-2), LPIN1, and diacylglycerol acyltransferase 1α (DGAT1α). Together, our results firstly provided the evidence that fish ELOVL7a played an essential role in SGIV and RGNNV replication by reprogramming lipid metabolism.


Asunto(s)
Lubina , Infecciones por Virus ADN , Elongasas de Ácidos Grasos , Enfermedades de los Peces , Proteínas de Peces , Metabolismo de los Lípidos , Replicación Viral , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/inmunología , Lubina/inmunología , Lubina/genética , Elongasas de Ácidos Grasos/genética , Nodaviridae/fisiología , Regulación de la Expresión Génica , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/virología , Perfilación de la Expresión Génica/veterinaria , Iridoviridae/fisiología , Iridovirus/fisiología , Filogenia , Alineación de Secuencia/veterinaria , Secuencia de Aminoácidos , Reprogramación Metabólica
11.
Fish Shellfish Immunol ; 149: 109528, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570119

RESUMEN

Stimulator of interferon genes (STING) has been demonstrated as a critical mediator in the innate immune response to cytosolic DNA and RNA derived from different pathogens. While the role of Micropterus salmoides STING (MsSTING) in largemouth bass virus is still unknown. In this study, RT-qPCR assay and Western-blot assay showed that the expression levels of MsSTING and its downstream genes were up-regulated after LMBV infection. Pull down experiment proved that a small peptide called Fusion peptide (FP) that previously reported to target to marine and human STING as a selective inhibitor also interacted with MsSTING in vitro. Comparing with the RNA-seq of Largemouth bass infected with LMBV singly, 326 genes were significantly up-regulated and 379 genes were significantly down-regulated in the FP plus LMBV group in which Largemouth bass was treatment with FP before LMBV-challenged. KEGG analysis indicated that the differentially expressed genes (DEGs) were mainly related to signaling transduction, infectious disease viral, immune system and endocrine system. Besides, the survival rate of LMBV-infected largemouth bass was highly decreased following FP treatment. Taken together, our study showed that MsSTING played an important role in immune response against LMBV infection.


Asunto(s)
Lubina , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Lubina/inmunología , Lubina/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Inmunidad Innata/genética , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Ranavirus/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología
12.
Fish Shellfish Immunol ; 149: 109552, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599364

RESUMEN

Infectious hematopoietic necrosis (IHN), caused by IHN virus, is a highly contagious and lethal disease that seriously hampers the development of rainbow trout (Oncorhynchus mykiss) aquaculture. However, the immune response mechanism of rainbow trout underlying IHNV infection remains largely unknown. MicroRNAs act as post-transcriptional regulators of gene expression and perform a crucial role in fish immune response. Herein, the regulatory mechanism and function of miR-206 in rainbow trout resistance to IHNV were investigated by overexpression and silencing. The expression analysis showed that miR-206 and its potential target receptor-interacting serine/threonine-protein kinase 2 (RIP2) exhibited significant time-dependent changes in headkidney, spleen and rainbow trout primary liver cells infected with IHNV and their expression displayed a negative correlation. In vitro, the interaction between miR-206 and RIP2 was verified by luciferase reporter assay, and miR-206 silencing in rainbow trout primary liver cells markedly increased RIP2 and interferon (IFN) expression but significantly decreased IHNV copies, and opposite results were obtained after miR-206 overexpression or RIP2 knockdown. In vivo, overexpressed miR-206 with agomiR resulted in a decrease in the expression of RIP2 and IFN in liver, headkidney and spleen. This study revealed the key role of miR-206 in anti-IHNV, which provided potential for anti-viral drug screening in rainbow trout.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Virus de la Necrosis Hematopoyética Infecciosa , MicroARNs , Oncorhynchus mykiss , Infecciones por Rhabdoviridae , Animales , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Virus de la Necrosis Hematopoyética Infecciosa/fisiología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/inmunología , MicroARNs/genética , MicroARNs/inmunología , MicroARNs/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Inmunidad Innata/genética
13.
Fish Shellfish Immunol ; 149: 109553, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615704

RESUMEN

Viral diseases have caused great economic losses to the aquaculture industry. However, there are currently no specific drugs to treat these diseases. Herein, we utilized Siniperca chuatsi as an experimental model, and successfully extracted two tissue factor pathway inhibitors (TFPIs) that were highly distributed in different tissues. We then designed four novel peptides based on the TFPIs, named TS20, TS25, TS16, and TS30. Among them, TS25 and TS30 showed good biosafety and high antiviral activity. Further studies showed that TS25 and TS30 exerted their antiviral functions by preventing viruses from invading Chinese perch brain (CPB) cells and disrupting Siniperca chuatsi rhabdovirus (SCRV)/Siniperca chuatsi ranairidovirus (SCRIV) viral structures. Additionally, compared with the control group, TS25 and TS30 could significantly reduce the mortality of Siniperca chuatsi, the relative protection rates of TS25 against SCRV and SCRIV were 71.25 % and 53.85 % respectively, and the relative protection rate of TS30 against SCRIV was 69.23 %, indicating that they also had significant antiviral activity in vivo. This study provided an approach for designing peptides with biosafety and antiviral activity based on host proteins, which had potential applications in the prevention and treatment of viral diseases.


Asunto(s)
Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/prevención & control , Rhabdoviridae/fisiología , Antivirales/farmacología , Antivirales/química , Percas , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Péptidos/farmacología , Péptidos/química , Infecciones por Virus ARN/veterinaria , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/prevención & control
14.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631439

RESUMEN

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Asunto(s)
Carpas , Enfermedades de los Peces , Interferón Tipo I , Interleucina-6 , Infecciones por Reoviridae , Reoviridae , Factor de Transcripción STAT3 , Transducción de Señal , Replicación Viral , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-6/metabolismo , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Reoviridae/fisiología , Carpas/inmunología , Carpas/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/inmunología , Transducción de Señal/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Inmunidad Innata/genética
15.
Fish Shellfish Immunol ; 149: 109586, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670410

RESUMEN

Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.


Asunto(s)
Autofagia , Carpas , Enfermedades de los Peces , MicroARNs , Proteínas Proto-Oncogénicas c-akt , Infecciones por Reoviridae , Reoviridae , Animales , MicroARNs/genética , MicroARNs/inmunología , Carpas/inmunología , Carpas/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reoviridae/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Línea Celular , Regulación de la Expresión Génica/inmunología
16.
Fish Shellfish Immunol ; 149: 109563, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642725

RESUMEN

HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.


Asunto(s)
Enfermedades de los Peces , Proteínas de Peces , Proteínas Serina-Treonina Quinasas , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/inmunología , Inmunidad Innata/genética , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/inmunología , Carpas/inmunología , Carpas/genética , Herpesviridae/fisiología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Proteínas de Pez Cebra
17.
Fish Shellfish Immunol ; 149: 109577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643957

RESUMEN

A new virus known as snakehead rhabdovirus (SHRV-In) was discovered in South India in striped snakehead (Channa striata) that had hemorrhagic patches and cutaneous ulcerations. The virus is the most potentially harmful pathogen of snakehead because it could cause 100% mortality within 5 days. The goal of the current investigation was to evaluate the infectivity of rhabdovirus in freshwater fishes and to analyze the immune response in snakehead fish after challenge with SHRV-In. The infectivity study of SHRV-In against three freshwater fish such as tilapia, grass carp and loach showed that the virus could not induce mortality in any of them. Snakehead fish challenged with SHRV-In showed significant (p < 0.05) changes in haematological parameters such as red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), mean corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), white blood cell (WBC), total platelet (PLT) counts, mean platelet volume (MPV) and immunological markers such as respiratory burst, superoxide dismutase, catalase activity and myeloperoxidase activity at 6, 12, 24 and 48 hpi. Real time PCR was executed to examine the expression profile of innate immune genes such as IRF-7, IL-8 and IL-12 in Snakehead fish at 6, 12, 24 and 48 h post SHRV-In infection. Immune gene expression of IRF-7, IL-8 and IL-12 were up-regulated in the spleen when compared to kidney at 6 and 12 hpi. However, the expression level of all the genes was down-regulated at 24 and 48 hpi. The down regulation of innate immune genes after 24 hpi in these tissues may be the result of increased multiplication of SHRV-In by interfering with the immune signaling pathway.


Asunto(s)
Enfermedades de los Peces , Inmunidad Innata , Infecciones por Rhabdoviridae , Animales , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Rhabdoviridae/fisiología , India , Perciformes/inmunología , Perciformes/virología
18.
Int J Biol Macromol ; 266(Pt 2): 131282, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565369

RESUMEN

IRF9 is a crucial component in the JAK-STAT pathway. IRF9 interacts with STAT1 and STAT2 to form IFN-I-stimulated gene factor 3 (ISGF3) in response to type I IFN stimulation, which promotes ISG transcription. However, the mechanism by which IFN signaling regulates Malabar grouper (Epinephelus malabaricus) IRF9 is still elusive. Here, we explored the nd tissue-specific mRNA distribution of the MgIRF9 gene, as well as its antiviral function in E. malabaricus. MgIRF9 encodes a protein of 438 amino acids with an open reading frame of 1317 base pairs. MgIRF9 mRNA was detected in all tissues of a healthy M. grouper, with the highest concentrations in the muscle, gills, and brain. It was significantly up-regulated by nervous necrosis virus infection and poly (I:C) stimulation. The gel mobility shift test demonstrated a high-affinity association between MgIRF9 and the promoter of zfIFN in vitro. In GK cells, grouper recombinant IFN-treated samples showed a significant response in ISGs and exhibited antiviral function. Subsequently, overexpression of MgIRF9 resulted in a considerable increase in IFN and ISGs mRNA expression (ADAR1, ADAR1-Like, and ADAR2). Co-immunoprecipitation studies demonstrated that MgIRF9 and STAT2 can interact in vivo. According to the findings, M. grouper IRF9 may play a role in how IFN signaling induces ISG gene expression in grouper species.


Asunto(s)
Lubina , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón , Animales , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Lubina/genética , Lubina/inmunología , Lubina/metabolismo , Nodaviridae , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Secuencia de Aminoácidos , Poli I-C/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Antivirales/farmacología , Regiones Promotoras Genéticas , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Dis Aquat Organ ; 158: 65-74, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661138

RESUMEN

Red sea bream iridovirus (RSIV) causes substantial economic damage to aquaculture. In the present study, RSIV in wild fish near aquaculture installations was surveyed to evaluate the risk of wild fish being an infection source for RSIV outbreaks in cultured fish. In total, 1102 wild fish, consisting of 44 species, were captured from 2 aquaculture areas in western Japan using fishing, gill nets, and fishing baskets between 2019 and 2022. Eleven fish from 7 species were confirmed to harbor the RSIV genome using a probe-based real-time PCR assay. The mean viral load of the RSIV-positive wild fish was 101.1 ± 0.4 copies mg-1 DNA, which was significantly lower than that of seemingly healthy red sea bream Pagrus major in a net pen during an RSIV outbreak (103.3 ± 1.5 copies mg-1 DNA) that occurred in 2021. Sequencing analysis of a partial region of the major capsid protein gene demonstrated that the RSIV genome detected in the wild fish was identical to that of the diseased fish in a fish farm located in the same area in which the wild fish were captured. Based on the diagnostic records of RSIV in the sampled area, the RSIV-infected wild fish appeared during or after the RSIV outbreak in cultured fish, suggesting that RSIV detected in wild fish was derived from the RSIV outbreak in cultured fish. Therefore, wild fish populations near aquaculture installations may not be a significant risk factor for RSIV outbreaks in cultured fish.


Asunto(s)
Acuicultura , Infecciones por Virus ADN , Brotes de Enfermedades , Enfermedades de los Peces , Iridovirus , Animales , Enfermedades de los Peces/virología , Enfermedades de los Peces/epidemiología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/epidemiología , Infecciones por Virus ADN/virología , Brotes de Enfermedades/veterinaria , Iridovirus/genética , Dorada/virología , Peces , Medición de Riesgo , Japón/epidemiología , Animales Salvajes
20.
Dis Aquat Organ ; 158: 101-114, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661141

RESUMEN

Snakehead vesiculovirus (SHVV) is a negative-sense single-stranded RNA virus that infects snakehead fish. This virus leads to illness and mortality, causing significant economic losses in the snakehead aquaculture industry. The replication and spread of SHVV in cells, which requires glutamine as a nitrogen source, is accompanied by alterations in intracellular metabolites. However, the metabolic mechanisms underlying the inhibition of viral replication by glutamine deficiency are poorly understood. This study utilized liquid chromatography-mass spectrometry to measure the differential metabolites between the channel catfish Parasilurus asotus ovary cell line infected with SHVV under glutamine-containing and glutamine-deprived conditions. Results showed that the absence of glutamine regulated 4 distinct metabolic pathways and influenced 9 differential metabolites. The differential metabolites PS(16:0/16:0), 5,10-methylene-THF, and PS(18:0/18:1(9Z)) were involved in amino acid metabolism. In the nuclear metabolism functional pathway, differential metabolites of guanosine were observed. In the carbohydrate metabolism pathway, differential metabolites of UDP-d-galacturonate were detected. In the signal transduction pathway, differential metabolites of SM(d18:1/20:0), SM(d18:1/22:1(13Z)), SM(d18:1/24:1(15 Z)), and sphinganine were found. Among them, PS(18:0/18:1(9Z)), PS(16:0/16:0), and UDP-d-galacturonate were involved in the synthesis of phosphatidylserine and glycoprotein. The compound 5,10-methylene-THF provided raw materials for virus replication, and guanosine and sphingosine are related to virus virulence. The differential metabolites may collectively participate in the replication, packaging, and proliferation of SHVV under glutamine deficiency. This study provides new insights and potential metabolic targets for combating SHVV infection in aquaculture through metabolomics approaches.


Asunto(s)
Glutamina , Vesiculovirus , Replicación Viral , Animales , Glutamina/metabolismo , Vesiculovirus/fisiología , Enfermedades de los Peces/virología , Metabolómica , Línea Celular , Ictaluridae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...