Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.752
Filtrar
1.
Int J Immunopathol Pharmacol ; 38: 3946320241250293, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38712748

RESUMEN

BACKGROUND: Cell metabolism functions without a stop in normal and pathological cells. Different metabolic changes occur in the disease. Cell metabolism influences biochemical and metabolic processes, signaling pathways, and gene regulation. Knowledge regarding disease metabolism is limited. OBJECTIVE: The review examines the cell metabolism of glucose, nucleotides, and lipids during homeostatic and pathological conditions of neurotoxicity, neuroimmunological disease, Parkinson's disease, thymoma in myasthenia gravis, and colorectal cancer. METHODS: Data collection includes electronic databases, the National Center for Biotechnology Information, and Google Scholar, with several inclusion criteria: cell metabolism, glucose metabolism, nucleotide metabolism, and lipid metabolism in health and disease patients suffering from neurotoxicity, neuroinflammation, Parkinson's disease, thymoma in myasthenia gravis. The initial number of collected and analyzed papers is 250. The final analysis included 150 studies out of 94 selected papers. After the selection process, 62.67% remains useful. RESULTS AND CONCLUSION: A literature search shows that signaling molecules are involved in metabolic changes in cells. Differences between cancer and neuroimmunological diseases are present in the result section. Our finding enables insight into novel therapeutic targets and the development of scientific approaches for cancer and neurological disease onset, outcome, progression, and treatment, highlighting the importance of metabolic dysregulation. Current understanding, emerging research technologies and potential therapeutic interventions in metabolic programming is disucussed and highlighted.


Asunto(s)
Glucosa , Metabolismo de los Lípidos , Neoplasias , Enfermedades del Sistema Nervioso , Nucleótidos , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Nucleótidos/metabolismo , Glucosa/metabolismo , Animales , Transducción de Señal
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731911

RESUMEN

In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Descubrimiento de Drogas , Humanos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Descubrimiento de Drogas/métodos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/metabolismo , Fibrosis , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
3.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667285

RESUMEN

Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.


Asunto(s)
Exosomas , Exosomas/metabolismo , Humanos , Animales , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología
4.
Chem Rev ; 124(9): 5470-5504, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38607675

RESUMEN

Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.


Asunto(s)
Lisofosfolípidos , Transducción de Señal , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/química , Animales , Enfermedades Autoinmunes/metabolismo , Enfermedades del Sistema Nervioso/metabolismo
5.
J Integr Neurosci ; 23(4): 86, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38682220

RESUMEN

Due to the growth of the elderly population, age-related neurological disorders are an increasing problem. Aging begins very gradually and later leads to several neurological issues such as lower neurotransmitter levels, oxidative stress, neuronal inflammation, and continual neuronal loss. These changes might contribute to brain disorders such as Alzheimer's disease (AD), dementia or mild cognitive impairment, and epilepsy and glioma, and can also aggravate these disorders if they were previously present. Momordica charantia (bitter gourd), a member of the Cucurbitaceae family, is a good source of carbohydrates, proteins, vitamins, and minerals. It is used for diabetes and known for its hypoglycemic and antioxidant effects. In this review, we discuss the pharmaceutical effects of M. charantia on age-related neurological disorders. We searched several databases, including PubMed and Google Scholar, using MeSH terms. We searched articles published up until 2022 regardless of publication language. M. charantia is rich in luteolin, which increases acetylcholine in neurons by binding to enzymes in acetylcholine metabolism pathways, including butyrylcholinesterase and acetylcholinesterase. This binding inhibits the hyperphosphorylation of tau protein by restraining its kinase enzyme. Furthermore, this substance can lower serum cholesterol and has multi-target activity in AD and memory loss. M. charantia can also improve memory by decreasing tau protein and it also has potent antioxidant activity and anti-inflammatory effects. This review highlights that M. charantia has effects on many age-related neurological disorders, and can be a cost-effective supplement with minimal side effects.


Asunto(s)
Momordica charantia , Momordica charantia/química , Humanos , Animales , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Envejecimiento/metabolismo , Extractos Vegetales/farmacología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo
6.
Cell Death Dis ; 15(4): 268, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627382

RESUMEN

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) represents the initial tumor suppressor gene identified to possess phosphatase activity, governing various cellular processes including cell cycle regulation, migration, metabolic pathways, autophagy, oxidative stress response, and cellular senescence. Current evidence suggests that PTEN is critical for stem cell maintenance, self-renewal, migration, lineage commitment, and differentiation. Based on the latest available evidence, we provide a comprehensive overview of the mechanisms by which PTEN regulates activities of different stem cell populations and influences neurological disorders, encompassing autism, stroke, spinal cord injury, traumatic brain injury, Alzheimer's disease and Parkinson's disease. This review aims to elucidate the therapeutic impacts and mechanisms of PTEN in relation to neurogenesis or the stem cell niche across a range of neurological disorders, offering a foundation for innovative therapeutic approaches aimed at tissue repair and regeneration in neurological disorders. This review unravels novel therapeutic strategies for tissue restoration and regeneration in neurological disorders based on the regulatory mechanisms of PTEN on neurogenesis and the stem cell niche.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Humanos , Células Madre/metabolismo , Enfermedades del Sistema Nervioso/terapia , Enfermedades del Sistema Nervioso/metabolismo , Proliferación Celular , Enfermedad de Parkinson/metabolismo , Diferenciación Celular , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
7.
Expert Rev Mol Med ; 26: e11, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682637

RESUMEN

Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.


Asunto(s)
ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Animales , Pronóstico , Epigénesis Genética , Biomarcadores , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/terapia , Enfermedades del Sistema Nervioso/patología , Glioma/genética , Glioma/patología , Glioma/terapia , Glioma/metabolismo
8.
Front Biosci (Landmark Ed) ; 29(4): 142, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38682185

RESUMEN

Innate lymphocytes, including microglial cells, astrocytes, and oligodendrocytes, play a crucial role in initiating neuroinflammatory reactions inside the central nervous system (CNS). The prime focus of this paper is on the involvement and interplay of neurons and glial cells in neurological disorders such as Alzheimer's Disease (AD), Autism Spectrum Disorder (ASD), epilepsy, and multiple sclerosis (MS). In this review, we explore the specific contributions of microglia and astrocytes and analyzes multiple pathways implicated in neuroinflammation and disturbances in excitatory and inhibitory processes. Firstly, we elucidate the mechanisms through which toxic protein accumulation in AD results in synaptic dysfunction and deregulation of the immune system and examines the roles of microglia, astrocytes, and hereditary factors in the pathogenesis of the disease. Secondly, we focus on ASD and the involvement of glial cells in the development of the nervous system and the formation of connections between neurons and investigates the genetic connections associated with these processes. Lastly, we also address the participation of glial cells in epilepsy and MS, providing insights into their pivotal functions in both conditions. We also tried to give an overview of seven different pathways like toll-like receptor signalling pathway, MyD88-dependent and independent pathway, etc and its relevance in the context with these neurological disorders. In this review, we also explore the role of activated glial cells in AD, ASD, epilepsy, and MS which lead to neuroinflammation. Even we focus on excitatory and inhibitory imbalance in all four neurological disorders as imbalance affect the proper functioning of neuronal circuits. Finally, this review concludes that there is necessity for additional investigation on glial cells and their involvement in neurological illnesses.


Asunto(s)
Enfermedades del Sistema Nervioso , Neuroglía , Neuronas , Humanos , Neuronas/metabolismo , Neuroglía/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/genética , Animales , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/fisiopatología , Transducción de Señal , Astrocitos/metabolismo , Microglía/metabolismo , Comunicación Celular , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/fisiopatología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedades Neuroinflamatorias/metabolismo , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética
9.
FEBS Lett ; 598(9): 959-977, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38644468

RESUMEN

Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.


Asunto(s)
Neoplasias , Humanos , Animales , Neoplasias/enzimología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Aciltransferasas/metabolismo , Aciltransferasas/química , Enfermedades del Sistema Nervioso/enzimología , Enfermedades del Sistema Nervioso/metabolismo , Acilación , Lipoilación , Procesamiento Proteico-Postraduccional , Enfermedades del Sistema Inmune/enzimología , Enfermedades del Sistema Inmune/metabolismo
10.
Neurosci Biobehav Rev ; 161: 105694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678735

RESUMEN

There has been a growing awareness of the need for scientific research to focus on somatic and mental comorbidities in recent years due to the emerging evidence showing their substantial overlap at numerous levels. In this special issue, initiated by members of the EU-funded PRIME consortium ("Prevention and Remediation of Insulin Multimorbidity in Europe; www.prime-study.eu), the focus is on the comorbidities of metabolic disturbances, especially related to insulin signalling dysregulation and mental and neurological disorders. Thus, while obesity, type 2 diabetes, and metabolic syndrome are commonly known to be insulin-related disorders, the last decades have shown that neurodegenerative disorders, such as Alzheimer's disease, as well as neurodevelopment disorders, such as obsessive-compulsive disorder (OCD), autism spectrum disorders (ASDs) and attention deficit / hyperactivity disorder (ADHD) also fall into this category. The special issue draws together a series of basic and clinical review articles that describe the current knowledge and future perspectives regarding insulin comorbidities across a multidisciplinary group of experts.


Asunto(s)
Insulina , Trastornos Mentales , Enfermedades del Sistema Nervioso , Transducción de Señal , Animales , Humanos , Trastornos Mentales/metabolismo , Insulina/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal/fisiología , Modelos Animales de Enfermedad
11.
Nat Rev Neurol ; 20(5): 269-287, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38609644

RESUMEN

Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.


Asunto(s)
Biomarcadores , Filamentos Intermedios , Enfermedades del Sistema Nervioso , Proteínas de Neurofilamentos , Humanos , Biomarcadores/metabolismo , Biomarcadores/sangre , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/sangre , Proteínas de Neurofilamentos/sangre , Filamentos Intermedios/metabolismo
12.
Biochem Soc Trans ; 52(2): 553-565, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563502

RESUMEN

Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.


Asunto(s)
Mitocondrias , Enfermedades Neurodegenerativas , Neuronas , Parvalbúminas , Humanos , Parvalbúminas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Animales , Neuronas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Encéfalo/metabolismo
13.
Clin Neurol Neurosurg ; 240: 108250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552364

RESUMEN

Hypoxia is a prevalent characteristic of numerous neurological disorders including stroke, Alzheimer's disease, and Parkinson's disease. Extracellular vesicles (EVs) are minute particles released by cells that contain diverse biological materials, including proteins, lipids, and nucleic acids. They have been implicated in a range of physiological and pathological processes including intercellular communication, immune responses, and disease progression. EVs are believed to play a pivotal role in modulating the microenvironment of hypoxia-associated neurological diseases. These EVs are capable of transporting hypoxia-inducible factors such as proteins and microRNAs to neighboring or remote cells, thereby influencing their behavior. Furthermore, EVs can traverse the blood-brain barrier, shielding the brain from detrimental substances in the bloodstream. This enables them to deliver their payload directly to the brain cells, potentially intensifying the effects of hypoxia. Nonetheless, the capacity of EVs to breach the blood-brain barrier presents new opportunities for drug delivery. The objective of this study was to elucidate the role of EVs as mediators of information exchange during tissue hypoxia, a pathophysiological process in ischemic stroke and malignant gliomas. We also investigated their involvement in the progression and regression of major diseases of the central nervous system, which are pertinent to the development of therapeutic interventions for neurological disorders.


Asunto(s)
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Hipoxia/metabolismo , Barrera Hematoencefálica/metabolismo , Animales
14.
Biomed Pharmacother ; 174: 116487, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518598

RESUMEN

Melatonin is a highly conserved molecule produced in the human pineal gland as a hormone. It is known for its essential biological effects, such as antioxidant activity, circadian rhythm regulator, and immunomodulatory effects. The gut is one of the primary known sources of melatonin. The gut microbiota helps produce melatonin from tryptophan, and melatonin has been shown to have a beneficial effect on gut barrier function and microbial population. Dysbiosis of the intestinal microbiota is associated with bacterial imbalance and decreased beneficial microbial metabolites, including melatonin. In this way, low melatonin levels may be related to several human diseases. Melatonin has shown both preventive and therapeutic effects against various conditions, including neurological diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This review was aimed to discuss the role of melatonin in the body, and to describe the possible relationship between gut microbiota and melatonin production, as well as the potential therapeutic effects of melatonin on neurological diseases.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Enfermedades del Sistema Nervioso , Melatonina/metabolismo , Melatonina/farmacología , Humanos , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades del Sistema Nervioso/microbiología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Animales , Disbiosis/microbiología
15.
Pharmacol Res ; 203: 107149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518830

RESUMEN

Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.


Asunto(s)
Retículo Endoplásmico , Enfermedades del Sistema Nervioso , Transducción de Señal , Humanos , Retículo Endoplásmico/metabolismo , Animales , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/metabolismo , Orgánulos/metabolismo
16.
J Headache Pain ; 25(1): 34, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462633

RESUMEN

Glymphatic system is an emerging pathway of removing metabolic waste products and toxic solutes from the brain tissue. It is made of a network of perivascular spaces, filled in cerebrospinal and interstitial fluid, encompassing penetrating and pial vessels and communicating with the subarachnoid space. It is separated from vessels by the blood brain barrier and from brain tissue by the endfeet of the astrocytes rich in aquaporin 4, a membrane protein which controls the water flow along the perivascular space. Animal models and magnetic resonance (MR) studies allowed to characterize the glymphatic system function and determine how its impairment could lead to numerous neurological disorders (e.g. Alzheimer's disease, stroke, sleep disturbances, migraine, idiopathic normal pressure hydrocephalus). This review aims to summarize the role of the glymphatic system in the pathophysiology of migraine in order to provide new ways of approaching to this disease and to its therapy.


Asunto(s)
Sistema Glinfático , Trastornos Migrañosos , Enfermedades del Sistema Nervioso , Animales , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/metabolismo , Trastornos Migrañosos/diagnóstico por imagen , Trastornos Migrañosos/metabolismo , Barrera Hematoencefálica/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Cefalea/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
17.
Peptides ; 174: 171166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38309582

RESUMEN

Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Vasopresinas , Humanos , Vasopresinas/uso terapéutico , Vasopresinas/metabolismo , Hipotálamo/metabolismo , Hipófisis/metabolismo , Encéfalo/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Receptores de Vasopresinas/metabolismo , Arginina Vasopresina/metabolismo
18.
Front Immunol ; 15: 1332776, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38304427

RESUMEN

Importance: While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation. Observations: A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson's disease, COVID, traumatic brain injury, and Alzheimer's disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them. Conclusions and relevance: Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical "psychiatric medications" are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedades Neuromusculares , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Inflamación/metabolismo , Encéfalo/metabolismo , Fatiga/metabolismo
19.
Nat Commun ; 15(1): 896, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316762

RESUMEN

Although many viral infections are linked to the development of neurological disorders, the mechanism governing virus-induced neuropathology remains poorly understood, particularly when the virus is not directly neuropathic. Using a mouse model of Zika virus (ZIKV) infection, we found that the severity of neurological disease did not correlate with brain ZIKV titers, but rather with infiltration of bystander activated NKG2D+CD8+ T cells. Antibody depletion of CD8 or blockade of NKG2D prevented ZIKV-associated paralysis, suggesting that CD8+ T cells induce neurological disease independent of TCR signaling. Furthermore, spleen and brain CD8+ T cells exhibited antigen-independent cytotoxicity that correlated with NKG2D expression. Finally, viral infection and inflammation in the brain was necessary but not sufficient to induce neurological damage. We demonstrate that CD8+ T cells mediate virus-induced neuropathology via antigen-independent, NKG2D-mediated cytotoxicity, which may serve as a therapeutic target for treatment of virus-induced neurological disease.


Asunto(s)
Enfermedades del Sistema Nervioso , Virosis , Infección por el Virus Zika , Virus Zika , Humanos , Antígenos Virales/metabolismo , Linfocitos T CD8-positivos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Enfermedades del Sistema Nervioso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...