Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.243
Filtrar
1.
Prion ; 18(1): 89-93, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38734978

RESUMEN

Although the development of aggregation assays has noticeably improved the accuracy of the clinical diagnosis of prion diseases, research on biomarkers remains vital. The major challenges to overcome are non-invasive sampling and the exploration of new biomarkers that may predict the onset or reflect disease progression. This will become extremely important in the near future, when new therapeutics are clinically evaluated and eventually become available for treatment. This article aims to provide an overview of the achievements of biomarker research in human prion diseases, addresses unmet needs in the field, and points out future perspectives.


Asunto(s)
Biomarcadores , Enfermedades por Prión , Humanos , Biomarcadores/metabolismo , Biomarcadores/análisis , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/metabolismo , Animales
2.
Carbohydr Polym ; 337: 122163, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710557

RESUMEN

Prion diseases are fatal transmissible neurodegenerative disorders. Among known anti-prions, hydroxypropyl methylcellulose compounds (HPMCs) are unique in their chemical structure and action. They have several excellent anti-prion properties but the effectiveness depends on the prion-infected mouse model. In the present study, we investigated the effects of stearoxy-modified HPMCs on prion-infected cells and mice. Stearoxy modification improved the anti-prion efficacy of HPMCs in prion-infected cells and significantly prolonged the incubation period in a lower HPMC-responding mouse model. However, stearoxy modification showed no improvement over nonmodified HPMCs in an HPMC-responding mouse model. These results offer a new line of inquiry for use with prion-infected mice that do not respond well to HPMCs.


Asunto(s)
Derivados de la Hipromelosa , Enfermedades por Prión , Animales , Derivados de la Hipromelosa/química , Ratones , Enfermedades por Prión/tratamiento farmacológico , Modelos Animales de Enfermedad
3.
Prion ; 18(1): 40-53, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38627365

RESUMEN

Prion disease is an infectious and fatal neurodegenerative disease. Western blotting (WB)-based identification of proteinase K (PK)-resistant prion protein (PrPres) is considered a definitive diagnosis of prion diseases. In this study, we aimed to detect PrPres using formalin-fixed paraffin-embedded (FFPE) specimens from cases of sporadic Creutzfeldt-Jakob disease (sCJD), Gerstmann-Sträussler-Scheinker disease (GSS), glycosylphosphatidylinositol-anchorless prion disease (GPIALP), and V180I CJD. FFPE samples were prepared after formic acid treatment to inactivate infectivity. After deparaffinization, PK digestion was performed, and the protein was extracted. In sCJD, a pronounced PrPres signal was observed, with antibodies specific for type 1 and type 2 PrPres exhibited a strong or weak signals depending on the case. Histological examination of serial sections revealed that the histological changes were compatible with the biochemical characteristics. In GSS and GPIALP, prion protein core-specific antibodies presented as PrPres bands at 8-9 kDa and smear bands, respectively. However, an antibody specific for the C-terminus presented as smears in GSS, with no PrPres detected in GPIALP. It was difficult to detect PrPres in V180I CJD. Collectively, our findings demonstrate the possibility of detecting PrPres in FFPE and classifying the prion disease types. This approach facilitates histopathological and biochemical evaluation in the same sample and is safe owing to the inactivation of infectivity. Therefore, it may be valuable for the diagnosis and research of prion diseases.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedad de Gerstmann-Straussler-Scheinker , Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Humanos , Proteínas Priónicas , Proteínas PrPSc/metabolismo , Adhesión en Parafina , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Priones/metabolismo , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Endopeptidasa K , Anticuerpos , Formaldehído
4.
PLoS Pathog ; 20(4): e1012087, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557815

RESUMEN

Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrPSc propagation in vitro. None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrPSc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions, as well as anti-prion strategies that are not strain-dependent.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Animales , Ratones , Priones/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Síndrome de Creutzfeldt-Jakob/tratamiento farmacológico , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Encéfalo/patología , Arvicolinae/metabolismo
5.
Prion ; 18(1): 68-71, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38651736

RESUMEN

The history of human prion diseases began with the original description, by Hans Gerhard Creutzfeldt and by Alfons Maria Jakob, of patients with a severe brain disease that included speech abnormalities, confusion, and myoclonus, in a disease that was then named Creutzfeldt Jakob disease (CJD). Later, in Papua New Guinea, a disease characterized by trembling was identified, and given the name "Kuru". Neuropathological examination of the brains from CJD and Kuru patients, and of brains of sheep with scrapie disease revealed significant similarities and suggested a possible common mode of infection that, at the time, was thought to derive from an unknown virus that caused slow infections. John Stanley Griffith hypothesized that the agent causing these diseases was "probably a protein without nucleic acid" and, in 1982, Stanley Prusiner reported the identification of a proteinaceous infectious particle (coining the term prion) that was resistant to inactivation methods that were at the time standard for nucleic acids, and identified PrP as the major protein component of the infectious agent in scrapie and in Creutzfeldt-Jakob disease, classifying this also as a prion disease. Interestingly, the prion concept had been previously expanded to yeast proteins capable of replicating their conformation, seeding their own aggregation and transmitting phenotypic information. The prion concept has been more recently expanded to refer to misfolded proteins that are capable of converting a normal form of a protein into an abnormal form. The quest to understand and treat prion diseases has united a specific research community around the topic, and regular meetings (Prion Meetings) have taken place over the years to enable discussions, train junior researchers, and inspire research in the field.


Asunto(s)
Enfermedades por Prión , Priones , Humanos , Enfermedades por Prión/patología , Enfermedades por Prión/metabolismo , Animales , Priones/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Síndrome de Creutzfeldt-Jakob/metabolismo , Kuru/patología
6.
Redox Biol ; 72: 103133, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38565068

RESUMEN

Prion diseases, also known as Transmissible Spongiform Encephalopathies (TSEs), are protein-based neurodegenerative disorders (NDs) affecting humans and animals. They are characterized by the conformational conversion of the normal cellular prion protein, PrPC, into the pathogenic isoform, PrPSc. Prion diseases are invariably fatal and despite ongoing research, no effective prophylactic or therapeutic avenues are currently available. Anthocyanins (ACNs) are unique flavonoid compounds and interest in their use as potential neuroprotective and/or therapeutic agents against NDs, has increased significantly in recent years. Therefore, we investigated the potential anti-oxidant and anti-prion effects of Oenin and Myrtillin, two of the most common anthocyanins, using the most accepted in the field overexpressing PrPScin vitro model and a cell free protein aggregation model. Our results, indicate both anthocyanins as strong anti-oxidant compounds, upregulating the expression of genes involved in the anti-oxidant response, and reducing the levels of Reactive Oxygen Species (ROS), produced due to pathogenic prion infection, through the activation of the Keap1-Nrf2 pathway. Importantly, they showcased remarkable anti-prion potential, as they not only caused the clearance of pathogenic PrPSc aggregates, but also completely inhibited the formation of PrPSc fibrils in the Cerebrospinal Fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD). Therefore, Oenin and Myrtillin possess pleiotropic effects, suggesting their potential use as promising preventive and/or therapeutic agents in prion diseases and possibly in the spectrum of neurodegenerative proteinopathies.


Asunto(s)
Antocianinas , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Antocianinas/farmacología , Antocianinas/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Proteínas PrPSc/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Science ; 383(6689): 1284-1289, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513035

RESUMEN

Can the course of fatal prion diseases be changed by removing the protein before it goes bad?


Asunto(s)
Enfermedades por Prión , Priones , Humanos , Enfermedades por Prión/genética , Enfermedades por Prión/prevención & control , Priones/antagonistas & inhibidores , Priones/genética , Mutación , Dedos de Zinc
8.
Magn Reson Imaging Clin N Am ; 32(2): 347-361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555145

RESUMEN

Atypical infections of the brain and spine caused by parasites occur in immunocompetent and immunosuppressed hosts, related to exposure and more prevalently in endemic regions. In the United States, the most common parasitic infections that lead to central nervous system manifestations include cysticercosis, echinococcosis, and toxoplasmosis, with toxoplasmosis being the most common opportunistic infection affecting patients with advanced HIV/AIDS. Another rare but devastating transmittable disease is prion disease, which causes rapidly progressive spongiform encephalopathies. Familiarity and understanding of various infectious agents are a crucial aspect of diagnostic neuroradiology, and recognition of unique features can aid timely diagnosis and treatment.


Asunto(s)
Enfermedades Transmisibles , Encefalopatía Espongiforme Bovina , Parásitos , Enfermedades por Prión , Toxoplasmosis , Animales , Bovinos , Humanos , Encefalopatía Espongiforme Bovina/diagnóstico , Imagen por Resonancia Magnética/métodos , Enfermedades por Prión/diagnóstico , Encéfalo/diagnóstico por imagen
9.
Sci Rep ; 14(1): 6294, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491063

RESUMEN

Real-time quaking-induced conversion assay (RT-QuIC) exploits templating activity of pathogenic prion protein for ultrasensitive detection of prions. We have utilized second generation RT-QuIC assay to analyze matching post-mortem cerebrospinal fluid and skin samples of 38 prion disease patients and of 30 deceased neurological controls. The analysis of cerebrospinal fluid samples led to 100% sensitivity and 100% specificity, but some samples had to be diluted before the analysis to alleviate the effect of present RT-QuIC inhibitors. The analysis of the corresponding skin samples provided 89.5% sensitivity and 100% specificity. The median seeding dose present in the skin was one order of magnitude higher than in the cerebrospinal fluid, despite the overall fluorescent signal of the skin samples was comparatively lower. Our data support the use of post-mortem cerebrospinal fluid for confirmation of prion disease diagnosis and encourage further studies of the potential of skin biopsy samples for intra-vitam prion diseases´ diagnostics.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Humanos , Priones/metabolismo , Enfermedades por Prión/diagnóstico , Piel/metabolismo , Proteínas Priónicas , Bioensayo , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquídeo
10.
Nervenarzt ; 95(4): 376-384, 2024 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-38503894

RESUMEN

Human spongiform encephalopathies are rare transmissible neurodegenerative diseases of the brain and the nervous system that are caused by misfolding of the physiological prion protein into a pathological form and its deposition in the central nervous system (CNS). Prion diseases include Creutzfeldt-Jakob disease (CJD, sporadic or familial), Gerstmann-Straussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI). Prion diseases can be differentiated into three etiological categories: spontaneous (sporadic CJD), inherited (familial CJD, FFI, and GSS) and acquired (variant CJD and iatrogenic CJD). Most cases occur sporadically. Prion diseases can lead to a variety of neurological symptoms and always have an inevitably fatal course. Cerebrospinal fluid analysis and magnetic resonance imaging (MRI) play a crucial role in the diagnostics of prion diseases and may facilitate an early and reliable clinical diagnosis. A causal treatment or specific therapeutic agents are not yet available. In general, a palliative therapeutic concept is indicated.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Encefalopatía Espongiforme Bovina , Enfermedad de Gerstmann-Straussler-Scheinker , Enfermedades por Prión , Animales , Bovinos , Humanos , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/patología , Enfermedad de Gerstmann-Straussler-Scheinker/diagnóstico , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Encéfalo/patología , Encefalopatía Espongiforme Bovina/patología
11.
ACS Chem Neurosci ; 15(7): 1533-1547, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507813

RESUMEN

Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedades por Prión , Priones , Deficiencias en la Proteostasis , Humanos , Ratones , Animales , Enfermedades Neurodegenerativas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedades Neuroinflamatorias , Regulación hacia Abajo , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Priones/metabolismo , Inflamación/metabolismo , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/metabolismo
12.
Top Companion Anim Med ; 59: 100859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38508487

RESUMEN

Prion diseases are fatal neurodegenerative diseases affecting humans and animals. A relationship between variations in the prion gene of some species and susceptibility to prion diseases has been detected. However, variations in the prion protein of cats that have close contact with humans and their effect on prion protein are not well-known. Therefore, this study aimed to investigate the variations of prion protein-encoding gene (PRNP gene) in stray cats and to evaluate variants detected in terms of genetic factors associated with susceptibility or resistance to feline spongiform encephalopathy using bioinformatics tools. For this, cat DNA samples were amplified by a PCR targeting PRNP gene and then sequenced to reveal the variations. Finally, the effects of variants on prion protein were predicted by bioinformatics tools. According to the obtained results, a novel 108 bp deletion and nine SNPs were detected. Among SNPs, five (c314A>G, c.454T>A, c.579G>C, c.642G>C and c.672G>C) were detected for the first time in this study. Bioinformatics findings showed that c.579G>C (Q193H), c.454T>A (Y152N) and c.457G>A (E153K) variants have deleterious effects on prion protein and c.579G>C (Q193H) has high amyloid propensities. This study demonstrates prion protein variants of stray cats and their deleterious effects on prion protein for the first time.


Asunto(s)
Encefalopatías , Enfermedades de los Gatos , Enfermedades por Prión , Priones , Animales , Gatos/genética , Humanos , Encefalopatías/veterinaria , Enfermedades de los Gatos/genética , Polimorfismo de Nucleótido Simple , Enfermedades por Prión/genética , Enfermedades por Prión/veterinaria , Proteínas Priónicas/genética , Priones/genética
14.
Nat Commun ; 15(1): 2112, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459071

RESUMEN

Prion diseases are a group of rapidly progressing neurodegenerative disorders caused by the misfolding of the endogenous prion protein (PrPC) into a pathogenic form (PrPSc). This process, despite being the central event underlying these disorders, remains largely unknown at a molecular level, precluding the prediction of new potential outbreaks or interspecies transmission incidents. In this work, we present a method to generate bona fide recombinant prions de novo, allowing a comprehensive analysis of protein misfolding across a wide range of prion proteins from mammalian species. We study more than 380 different prion proteins from mammals and classify them according to their spontaneous misfolding propensity and their conformational variability. This study aims to address fundamental questions in the prion research field such as defining infectivity determinants, interspecies transmission barriers or the structural influence of specific amino acids and provide invaluable information for future diagnosis and therapy applications.


Asunto(s)
Enfermedades por Prión , Priones , Animales , Priones/metabolismo , Proteínas Priónicas/genética , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Mamíferos/metabolismo , Pliegue de Proteína
15.
BMC Neurol ; 24(1): 92, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468258

RESUMEN

BACKGROUND: Human prion diseases (HPDs) are fatal neurodegenerative disorders characterized by abnormal prion proteins (PrPSc). However, the detection of prion seeding activity in patients with high sensitivity remains challenging. Even though real-time quaking-induced conversion (RT-QuIC) assay is suitable for detecting prion seeding activity in a variety of specimens, it shows lower accuracy when whole blood, blood plasma, and blood-contaminated tissue samples are used. In this study, we developed a novel technology for the in vitro amplification of abnormal prion proteins in HPD to the end of enabling their detection with high sensitivity known as the enhanced quaking-induced conversion (eQuIC) assay. METHODS: Three antibodies were used to develop the novel eQUIC method. Thereafter, SD50 seed activity was analyzed using brain tissue samples from patients with prion disease using the conventional RT-QUIC assay and the novel eQUIC assay. In addition, blood samples from six patients with solitary prion disease were analyzed using the novel eQuIC assay. RESULTS: The eQuIC assay, involving the use of three types of human monoclonal antibodies, showed approximately 1000-fold higher sensitivity than the original RT-QuIC assay. However, when this assay was used to analyze blood samples from six patients with sporadic human prion disease, no prion activity was detected. CONCLUSION: The detection of prion seeding activity in blood samples from patients with sporadic prion disease remains challenging. Thus, the development of alternative methods other than RT-QuIC and eQuIC will be necessary for future research.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Humanos , Priones/metabolismo , Proteínas Priónicas , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Síndrome de Creutzfeldt-Jakob/diagnóstico
16.
PLoS One ; 19(2): e0298095, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394123

RESUMEN

The PINK1/Parkin pathway of mitophagy has been implicated in the pathogenesis of Parkinson's disease. In prion diseases, a transmissible neurodegenerative disease caused by the misfolded and infectious prion protein (PrPSc), expression of both PINK1 and Parkin are elevated, suggesting that PINK1/Parkin mediated mitophagy may also play a role in prion pathogenesis. Using mice in which expression of either PINK1 (PINK1KO) or Parkin (ParkinKO) has been ablated, we analyzed the potential role of PINK1 and Parkin in prion pathogenesis. Prion infected PINK1KO and ParkinKO mice succumbed to disease more rapidly (153 and 150 days, respectively) than wild-type control C57Bl/6 mice (161 days). Faster incubation times in PINK1KO and ParkinKO mice did not correlate with altered prion pathology in the brain, altered expression of proteins associated with mitochondrial dynamics, or prion-related changes in mitochondrial respiration. However, the expression level of mitochondrial respiration Complex I, a major site for the formation of reactive oxygen species (ROS), was higher in prion infected PINK1KO and ParkinKO mice when compared to prion infected control mice. Our results demonstrate a protective role for PINK1/Parkin mitophagy during prion disease, likely by helping to minimize ROS formation via Complex I, leading to slower prion disease progression.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades por Prión , Priones , Ratones , Animales , Mitofagia , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedades por Prión/genética
17.
Nat Rev Dis Primers ; 10(1): 14, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424082

RESUMEN

Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Animales , Bovinos , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Proteínas Priónicas/metabolismo , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Encéfalo/patología
19.
J Phys Chem Lett ; 15(8): 2117-2122, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38363235

RESUMEN

The misfolding of the α-helical cellular prion protein into a self-propagating ß-rich aggregated form is a key pathogenic event in fatal and transmissible neurodegenerative diseases collectively known as prion diseases. Herein, we utilize the interfacial properties of liquid crystals (LCs) to monitor the lipid-membrane-induced conformational switching of prion protein (PrP) into ß-rich amyloid fibrils. The lipid-induced conformational switching resulting in aggregation occurs at the nanomolar protein concentration and is primarily mediated by electrostatic interactions between PrP and lipid headgroups. Our LC-based methodology offers a potent and sensitive tool to detect and delineate molecular mechanisms of PrP misfolding mediated by lipid-protein interactions at the aqueous interface under physiological conditions.


Asunto(s)
Cristales Líquidos , Enfermedades por Prión , Priones , Humanos , Proteínas Priónicas/química , Priones/química , Priones/metabolismo , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Péptidos beta-Amiloides , Amiloide/química , Lípidos , Pliegue de Proteína
20.
Mol Imaging Biol ; 26(2): 195-212, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38302686

RESUMEN

Prion diseases are rare, rapidly progressive, and fatal incurable degenerative brain disorders caused by the misfolding of a normal protein called PrPC into an abnormal protein called PrPSc. Their highly variable clinical presentation mimics various degenerative and non-degenerative brain disorders, making diagnosis a significant challenge for neurologists. Currently, definitive diagnosis relies on post-mortem examination of nervous tissue to detect the pathogenic prion protein. The current diagnostic criteria are limited. While structural magnetic resonance imaging (MRI) remains the gold standard imaging modality for Creutzfeldt-Jakob disease (CJD) diagnosis, positron emission tomography (PET) using 18fluorine-fluorodeoxyglucose (18F-FDG) and other radiotracers have demonstrated promising potential in the diagnostic assessment of prion disease. In this context, a comprehensive and updated review exclusively focused on PET imaging in prion diseases is still lacking. We review the current value of PET imaging with 18F-FDG and non-FDG tracers in the diagnostic management of prion diseases. From the collected data, 18F-FDG PET mainly reveals cortical and subcortical hypometabolic areas in prion disease, although fails to identify typical pattern or laterality abnormalities to differentiate between genetic and sporadic prion diseases. Although the rarity of prion diseases limits the establishment of a definitive hypometabolism pattern, this review reveals some more prevalent 18F-FDG patterns associated with each disease subtype. Interestingly, in both sporadic and genetic prion diseases, the hippocampus does not show significant glucose metabolism alterations, appearing as a useful sign in the differential diagnosis with other neurodegenerative disease. In genetic prion disease forms, PET abnormality precedes clinical manifestation. Discordant diagnostic value for amyloid tracers among different prion disease subtypes was observed, needing further investigation. PET has emerged as a potential valuable tool in the diagnostic armamentarium for CJD. Its ability to visualize functional and metabolic brain changes provides complementary information to structural MRI, aiding in the early detection and confirmation of CJD.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades Neurodegenerativas , Enfermedades por Prión , Humanos , Fluorodesoxiglucosa F18/metabolismo , Radiofármacos/metabolismo , Tomografía de Emisión de Positrones/métodos , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...