Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
Elife ; 132024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767331

RESUMEN

Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.


If wounds get infected, they heal much more slowly, sometimes leading to skin damage and other complications, including disseminated infections or even amputation. Infections can happen in many types of wounds, ranging from ulcers in patients with diabetes to severe burns. If infections are not cleared quickly, the wounds can become 'chronic' and are unable to heal without intervention. Enterococcus faecalis is a type of bacteria that normally lives in the gut. Within that environment, in healthy people, it is not harmful. However, if it comes into contact with wounds ­ particularly diabetic ulcers or the site of a surgery ­ it can cause persistent infections and prevent healing. Although researchers are beginning to understand how E. faecalis initially colonises wounds, the biological mechanisms that transform these infections into chronic wounds are still largely unknown. Celik et al. therefore set out to investigate exactly how E. faecalis interferes with wound healing. To do this, Celik et al. looked at E. faecalis-infected wounds in mice and compared them to uninfected ones. Using a genetic technique called single-cell RNA sequencing, Celik et al. were able to determine which genes were switched on in individual skin and immune cells at the site of the wounds. This in turn allowed the researchers to determine how those cells were behaving in both infected and uninfected conditions. The experiments revealed that when E. faecalis was present in wounds, several important cell types in the wounds did not behave normally. For example, although the infected skin cells still underwent a change in behaviour required for healing (called an epithelial-mesenchymal transition), the change was both premature and incomplete. In other words, the skin cells in infected wounds started changing too early and did not finish the healing process properly. E. faecalis also changed the way macrophages and neutrophils worked within the wounds. These are cells in our immune system that normally promote inflammation, a process involved in both uninfected wounds or during infections and is a key part of wound healing when properly controlled. In the E. faecalis-infected wounds, these cells' inflammatory properties were suppressed, making them less helpful for healing. These results shed new light on how E. faecalis interacts with skin cells and the immune system to disrupt wound healing. Celik et al. hope that this knowledge will allow us to find new ways to target E. faecalis infections, and ultimately develop treatments to help chronic wounds heal better and faster.


Asunto(s)
Enterococcus faecalis , Infecciones por Bacterias Grampositivas , Queratinocitos , Cicatrización de Heridas , Enterococcus faecalis/fisiología , Enterococcus faecalis/genética , Animales , Ratones , Infecciones por Bacterias Grampositivas/microbiología , Queratinocitos/microbiología , Queratinocitos/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Macrófagos/inmunología , Modelos Animales de Enfermedad , Infección de Heridas/microbiología , Transcriptoma , Ratones Endogámicos C57BL , Análisis de la Célula Individual , Transición Epitelial-Mesenquimal/genética , Masculino , Fibroblastos/microbiología , Fibroblastos/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 336, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761182

RESUMEN

To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.


Asunto(s)
Enterococcus faecalis , Fusobacterium nucleatum , Macrófagos , Estrés Fisiológico , Fusobacterium nucleatum/fisiología , Fusobacterium nucleatum/genética , Enterococcus faecalis/genética , Enterococcus faecalis/fisiología , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , Citocinas/metabolismo , Citocinas/genética , Adhesión Bacteriana , Técnicas de Cocultivo , Perfilación de la Expresión Génica , Transcriptoma , Línea Celular , Interleucina-6/genética , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Inflamación
3.
Protein Pept Lett ; 30(10): 795-805, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817656

RESUMEN

BACKGROUND: Brevinin2 HYba5 (Peptide 29) is a novel cationic peptide identified from an endemic frog, Hydrophylax bahuvistara. Staphylococcus aureus and Enterococcus faecalis are troublesome biofilm-forming pathogens associated with nosocomial and community-acquired infections and contribute to the severity of infections associated with implanted devices and chronic wounds. Co-existence of both pathogens in biofilm mode contributes to an increased antibiotic resistance, treatment failure and hence persistent disease burden. Identifying a novel and stable, less toxic compound targeting multispecies biofilm with a lower probability of acquiring resistance in comparison to antibiotics is highly warranted. OBJECTIVE: Evaluate the activity of Brevinin2 HYba5 against S. aureus and E. faecalis mixed biofilm. METHODS: The anti-biofilm activity of peptide 29 was tested by Crystal violet assay, Confocal laser scanning Microscopy (CLSM) and MTT Assay. Cytotoxicity of the peptide was tested in RBC and L929 fibroblast cell line. Biofilm inhibitory activity of the peptide was evaluated at different temperatures, pH, serum and plasma concentrations. The antibiofilm potential of the peptide was tested against polymicrobial biofilm by Fluorescent in situ hybridisation (FISH) and plate counting on HiCromeTM UTI Agar media. RESULTS: The peptide 29 could inhibit biofilm formation of S. aureus and E. faecalis individually as well as in polymicrobial biofilm at 75 µM concentration. The peptide maintained its antibiofilm potential at different temperatures, serum and plasma concentrations. Activity of the peptide was high at acidic and neutral pH but found to get reduced towards alkaline pH. The peptide is nonhemolytic and does not exhibit significant cytotoxicity against the L929 fibroblast cell line (92.80% cell viability). CONCLUSION: The biofilm inhibition property makes peptide 29 a promising candidate for the management of S. aureus and E. faecalis biofilm, especially in catheter-associated devices to prevent the initial colonization and thus can ease the burden of pathogenic biofilm-associated infections.


Asunto(s)
Enterococcus faecalis , Staphylococcus aureus , Enterococcus faecalis/fisiología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Biopelículas , Péptidos
4.
Beijing Da Xue Xue Bao Yi Xue Ban ; 55(1): 38-43, 2023 Feb 18.
Artículo en Chino | MEDLINE | ID: mdl-36718687

RESUMEN

OBJECTIVE: To construct a model of Enterococcus faecalis (E. faecalis) infection in dentinal tubules by gradient centrifugation and to evaluate the antibacterial effect of low-temperature plasma on E. faecalis in dentinal tubules. METHODS: Standard dentin blocks of 4 mm×4 mm×2 mm size were prepared from single root canal isolated teeth without caries, placed in the E. faecalis bacterial solution, centrifuged in gradient and incubated for 24 h to establish the model of dentinal tubule infection with E. faecalis. The twenty dentin blocks of were divided into five groups, low-temperature plasma jet treatment for 0, 5 and 10 min, calcium hydroxide paste sealing for 7 d and 2% chlorhexidine gel sealing for 7 d. Scanning electron microscopy and confocal laser scanning microscope were used to assess the infection in the dentinal tubules and the antibacterial effect of low-temperature plasma. RESULTS: The results of scanning electron microscopy and confocal laser scanning microscopy showed that after 24 h of incubation by gradient centrifugation, E. faecalis could fully enter the dentinal tubules to a depth of more than 600µm indicating that this method was time-saving and efficient and could successfully construct a model of E. faecalis infection in dentinal tubules. Low-temperature plasma could enter the dentinal tubules and play a role, the structure of E. faecalis was still intact after 5 min of low-temperature plasma treatment, with no obvious damage, and after 10 min of low-temperature plasma treatment, the surface morphology of E. faecalis was crumpled and deformed, the cell wall was seriously collapsed, and the normal physiological morphology was damaged indicating that the majority of E. faecalis was killed in the dentinal tubules. The antibacterial effect of low-temperature plasma treatment for 10 min exceeded that of the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d. These two chemicals had difficulty entering deep into the dentinal tubules, and therefore only had a few of antibacterial effect on the bacterial biofilm on the root canal wall, and there was also no significant damage to the E. faecalis bacterial structure. CONCLUSION: Gradient centrifugation could establish the model of E. faecalis dentin infection successfully. Low-temperature plasma treatment for 10 min could kill E. faecalis in dentinal tubules effectively, which is superior to the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d.


Asunto(s)
Hidróxido de Calcio , Clorhexidina , Clorhexidina/farmacología , Hidróxido de Calcio/farmacología , Enterococcus faecalis/fisiología , Temperatura , Dentina , Biopelículas , Antibacterianos/farmacología , Irrigantes del Conducto Radicular/farmacología , Cavidad Pulpar
5.
J Endod ; 49(2): 198-204, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36509168

RESUMEN

INTRODUCTION: The purpose of this study was to evaluate the antimicrobial efficacy of a novel irrigation strategy using synchronized microbubble photodynamic activation (SYMPA) in a minimally prepared single canal. METHODS: Single-canal mandibular incisors were inoculated with Enterococcus faecalis for 3 weeks and randomly allocated to 4 groups based on the irrigation protocols: (1) control (saline), (2) conventional needle irrigation (CI), (3) ultrasonic-assisted irrigation (UI), and (4) irrigation with SYMPA. The first 3 groups were instrumented to size 25.07v (WaveOne Gold Primary; Dentsply Sirona, Johnson City, TN), and the SYMPA group was minimally prepared to size 20.07v (WaveOne Gold Small, Dentsply Sirona). The apical 5 mm was resected for microbiological assessment using the culture technique (colony-forming unit), adenosine-5'-triphosphate-based viability assay (relative luminescence units), and the percentage of live bacteria using confocal laser scanning microscopy. RESULTS: Log colony-forming units from the UI (2.37 ± 0.66) and SYMPA (2.21 ± 0.86) groups showed a reduction compared with the control (5.16 ± 0.75) and CI (4.08 ± 1.19) groups. Relative luminescence unit reduction was significant for UI (619.08 ± 352.78) and SYMPA (415.25 ± 329.51) compared with the control (1213.2 ± 880.03) (P < .05). The percentage of live bacteria was significantly lower in the UI and SYMPA groups compared with the control and CI groups. Although higher microbial reduction was observed in SYMPA compared with UI, there was no statistical significance (P > .05). CONCLUSION: SYMPA in minimally prepared canals showed significant antimicrobial efficacy. The novel irrigation strategy using SYMPA could be an effective disinfection strategy for minimally prepared root canals.


Asunto(s)
Antiinfecciosos , Irrigantes del Conducto Radicular , Preparación del Conducto Radicular , Cavidad Pulpar/microbiología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/fisiología , Microburbujas , Irrigantes del Conducto Radicular/farmacología , Preparación del Conducto Radicular/métodos , Hipoclorito de Sodio , Humanos
6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-971271

RESUMEN

OBJECTIVE@#To construct a model of Enterococcus faecalis (E. faecalis) infection in dentinal tubules by gradient centrifugation and to evaluate the antibacterial effect of low-temperature plasma on E. faecalis in dentinal tubules.@*METHODS@#Standard dentin blocks of 4 mm×4 mm×2 mm size were prepared from single root canal isolated teeth without caries, placed in the E. faecalis bacterial solution, centrifuged in gradient and incubated for 24 h to establish the model of dentinal tubule infection with E. faecalis. The twenty dentin blocks of were divided into five groups, low-temperature plasma jet treatment for 0, 5 and 10 min, calcium hydroxide paste sealing for 7 d and 2% chlorhexidine gel sealing for 7 d. Scanning electron microscopy and confocal laser scanning microscope were used to assess the infection in the dentinal tubules and the antibacterial effect of low-temperature plasma.@*RESULTS@#The results of scanning electron microscopy and confocal laser scanning microscopy showed that after 24 h of incubation by gradient centrifugation, E. faecalis could fully enter the dentinal tubules to a depth of more than 600μm indicating that this method was time-saving and efficient and could successfully construct a model of E. faecalis infection in dentinal tubules. Low-temperature plasma could enter the dentinal tubules and play a role, the structure of E. faecalis was still intact after 5 min of low-temperature plasma treatment, with no obvious damage, and after 10 min of low-temperature plasma treatment, the surface morphology of E. faecalis was crumpled and deformed, the cell wall was seriously collapsed, and the normal physiological morphology was damaged indicating that the majority of E. faecalis was killed in the dentinal tubules. The antibacterial effect of low-temperature plasma treatment for 10 min exceeded that of the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d. These two chemicals had difficulty entering deep into the dentinal tubules, and therefore only had a few of antibacterial effect on the bacterial biofilm on the root canal wall, and there was also no significant damage to the E. faecalis bacterial structure.@*CONCLUSION@#Gradient centrifugation could establish the model of E. faecalis dentin infection successfully. Low-temperature plasma treatment for 10 min could kill E. faecalis in dentinal tubules effectively, which is superior to the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d.


Asunto(s)
Clorhexidina/farmacología , Hidróxido de Calcio/farmacología , Enterococcus faecalis/fisiología , Temperatura , Dentina , Biopelículas , Antibacterianos/farmacología , Irrigantes del Conducto Radicular/farmacología , Cavidad Pulpar
7.
Biofouling ; 38(9): 903-915, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36451605

RESUMEN

The biofilm lifestyle plays a major role in the resistance and virulence of Pseudomonas aeruginosa and Enterococcus faecalis. In this study, two microencapsulated proteases (pepsin ME-PEP and trypsin ME-TRYP) were evaluated for their biofilm dispersal activity and their synergistic effect with microencapsulated carvacrol (ME-CARV). Spray-drying was used to protect enzymes and essential oil and enhance their activities. Cell count analysis proved the synergistic activity of enzymes and carvacrol treatment as biofilms were further reduced after combined treatment in comparison to ME-CARV or enzymes alone. Furthermore, results showed that sequential treatment in the order ME-TRYP - ME-PEP - ME-CARV resulted in more efficient biofilm removal with a maximum reduction of 5 log CFU mL-1 for P. aeruginosa and 4 log CFU mL-1 for E. faecalis. This study proposes that the combination of microencapsulated proteases with ME-CARV could be useful for the effective control of P. aeruginosa and E. faecalis biofilms.


Asunto(s)
Antibacterianos , Biopelículas , Enterococcus faecalis , Pseudomonas aeruginosa , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Enterococcus faecalis/fisiología , Pepsina A , Pseudomonas aeruginosa/fisiología , Tripsina , Composición de Medicamentos
8.
Mol Oral Microbiol ; 37(6): 276-291, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36102211

RESUMEN

Enterococcus faecalis, a Gram-positive bacterium, is known to be a key player in several chronic infections as well as nosocomial, heart valve, urinary tract, surgical wound, and dental root canal infections. The capability to sense different transition metal levels and tune its response accordingly endows it with the potential to thrive and cause infections in several host niches. Over the past decade, our knowledge of how transition metals play a critical role in maintaining homeostasis of E. faecalis has improved significantly. The aim of this review is to elucidate the roles of metals such as iron, manganese, zinc, and copper in the physiology, metabolism, and pathogenicity of E. faecalis. These essential micronutrients contribute to energy production, redox stress response, expression of virulence determinants, and cooperation in polymicrobial communities. The review also highlights metal homeostasis systems in E. faecalis, which respond to fluctuations in extracellular metal levels, and regulate the intracellular metal content. Regulation of intracellular metallome secures the tolerance of E. faecalis to oxidative stress and host-mediated metal sequestration strategies. Therapeutic interventions which deprive E. faecalis of its essential metal requirements or disrupt its homeostatic control have been proposed to combat E. faecalis infections.


Asunto(s)
Enterococcus faecalis , Manganeso , Enterococcus faecalis/fisiología , Virulencia , Homeostasis , Manganeso/metabolismo , Hierro/metabolismo , Metales
9.
Nat Genet ; 54(2): 134-142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115689

RESUMEN

Human genetic variation affects the gut microbiota through a complex combination of environmental and host factors. Here we characterize genetic variations associated with microbial abundances in a single large-scale population-based cohort of 5,959 genotyped individuals with matched gut microbial metagenomes, and dietary and health records (prevalent and follow-up). We identified 567 independent SNP-taxon associations. Variants at the LCT locus associated with Bifidobacterium and other taxa, but they differed according to dairy intake. Furthermore, levels of Faecalicatena lactaris associated with ABO, and suggested preferential utilization of secreted blood antigens as energy source in the gut. Enterococcus faecalis levels associated with variants in the MED13L locus, which has been linked to colorectal cancer. Mendelian randomization analysis indicated a potential causal effect of Morganella on major depressive disorder, consistent with observational incident disease analysis. Overall, we identify and characterize the intricate nature of host-microbiota interactions and their association with disease.


Asunto(s)
Dieta , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Variación Genética , Interacciones Microbiota-Huesped , Polimorfismo de Nucleótido Simple , Sistema del Grupo Sanguíneo ABO/genética , Bifidobacterium/fisiología , Clostridiales/fisiología , Estudios de Cohortes , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/microbiología , Fibras de la Dieta , Enterococcus faecalis/fisiología , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Humanos , Lactasa/genética , Complejo Mediador/genética , Análisis de la Aleatorización Mendeliana , Metagenoma , Morganella/fisiología
10.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163457

RESUMEN

The main aim of our research was to investigate antiadhesive and antibiofilm properties of nanocrystalline apatites doped and co-doped with noble metal ions (Ag+, Au+, and Pd2+) against selected drug-resistant strains of Enterococcus faecalis and Staphylococcus aureus. The materials with the structure of apatite (hydroxyapatite, nHAp; hydroxy-chlor-apatites, OH-Cl-Ap) containing 1 mol% and 2 mol% of dopants and co-dopants were successfully obtained by the wet chemistry method. The majority of them contained an additional phase of metallic nanoparticles, in particular, AuNPs and PdNPs, which was confirmed by the XRPD, FTIR, UV-Vis, and SEM-EDS techniques. Extensive microbiological tests of the nanoapatites were carried out determining their MIC, MBC value, and FICI. The antiadhesive and antibiofilm properties of the tested nanoapatites were determined in detail with the use of fluorescence microscopy and computer image analysis. The results showed that almost all tested nanoapatites strongly inhibit adhesion and biofilm production of the tested bacterial strains. Biomaterials have not shown any significant cytotoxic effect on fibroblasts and even increased their survival when co-incubated with bacterial biofilms. Performed analyses confirmed that the nanoapatites doped and co-doped with noble metal ions are safe and excellent antiadhesive and antibiofilm biomaterials with potential use in the future in medical sectors.


Asunto(s)
Apatitas/farmacología , Enterococcus faecalis/fisiología , Oro/química , Staphylococcus aureus Resistente a Meticilina/fisiología , Paladio/química , Plata/química , Animales , Apatitas/química , Células 3T3 BALB , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Nanopartículas del Metal/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula
11.
Bull Exp Biol Med ; 172(2): 164-168, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34855091

RESUMEN

We studied the effect of bacterial wall peptidoglycan of 7 bacterial species on the competitive properties of human-associated microorganisms. Addition of peptidoglycan to the culture medium did not change the growth characteristics of the test cultures; however, an increase in the antagonism and hydrophobicity of Bifidobacterium sp. and Enterococcus sp. was observed, while the effect on enterobacteria was predominantly indifferent or inhibitory. The effect did not depend much on the source of peptidoglycan and was equally manifested on both indigenous and probiotic strains. The observed new property of peptidoglycan indicates its participation in the formation and functioning of microbiota. The obtained data on the regulation of the properties of microorganisms provide new possibilities for the correction and maintenance of host homeostasis through host-associated microbiota.


Asunto(s)
Antibiosis/fisiología , Pared Celular/fisiología , Peptidoglicano/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Bifidobacterium/fisiología , Candida/fisiología , Pared Celular/química , Pared Celular/metabolismo , Enterobacter/fisiología , Enterococcus faecalis/fisiología , Escherichia coli/fisiología , Femenino , Humanos , Lacticaseibacillus casei/fisiología , Técnicas Microbiológicas , Peptidoglicano/análisis , Staphylococcus aureus/fisiología
12.
Nat Commun ; 12(1): 7172, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887405

RESUMEN

Complement receptor of immunoglobulin superfamily (CRIg) is expressed on liver macrophages and directly binds complement component C3b or Gram-positive bacteria to mediate phagocytosis. CRIg plays important roles in several immune-mediated diseases, but it is not clear how its pathogen recognition and phagocytic functions maintain homeostasis and prevent disease. We previously associated cytolysin-positive Enterococcus faecalis with severity of alcohol-related liver disease. Here, we demonstrate that CRIg is reduced in liver tissues from patients with alcohol-related liver disease. CRIg-deficient mice developed more severe ethanol-induced liver disease than wild-type mice; disease severity was reduced with loss of toll-like receptor 2. CRIg-deficient mice were less efficient than wild-type mice at clearing Gram-positive bacteria such as Enterococcus faecalis that had translocated from gut to liver. Administration of the soluble extracellular domain CRIg-Ig protein protected mice from ethanol-induced steatohepatitis. Our findings indicate that ethanol impairs hepatic clearance of translocated pathobionts, via decreased hepatic CRIg, which facilitates progression of liver disease.


Asunto(s)
Enterococcus faecalis/inmunología , Infecciones por Bacterias Grampositivas/inmunología , Hepatopatías Alcohólicas/inmunología , Macrófagos/inmunología , Receptores de Complemento 3b/inmunología , Receptores de Complemento/inmunología , Animales , Traslocación Bacteriana , Complemento C3b/inmunología , Enterococcus faecalis/fisiología , Etanol/efectos adversos , Femenino , Tracto Gastrointestinal/microbiología , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/microbiología , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Complemento/deficiencia , Receptores de Complemento/genética , Receptores de Complemento 3b/genética
13.
Microbiol Spectr ; 9(3): e0080421, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935415

RESUMEN

Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.


Asunto(s)
Biopelículas , Medios de Cultivo/metabolismo , Enterococcus faecalis/fisiología , Purinas/biosíntesis , Staphylococcus aureus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Medios de Cultivo/química , Enterococcus faecalis/genética , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética
14.
J Ethnopharmacol ; 281: 114566, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450163

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tea tree essential oil (TTO) is extracted from the leaves of Melaleuca alternifolia by steam distillation. It is well known for its traditional medicinal uses, particularly for the treatment of bruises, insect bites, skin infections, vertigo, convulsions, toothache, and rheumatism. Earlier research has shown that TTO can effectively inhibit oral microorganisms in the root canals. Enterococcus faecalis (E. faecalis) has been considered to be associated with persistent root canal infections and root canal treatment failure. The biofilm of E. faecalis makes it more vigorous, toxic, and resistant to antibiotics. AIM OF THE STUDY: In this study, our aim was to evaluate the antimicrobial effects of TTO on planktonic E. faecalis and biofilms compared with 0.2% CHX. MATERIALS AND METHODS: We explored the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), the bacteriostatic rate by MTT assay, the antimicrobial time by time-kill assay, and the effects on cell integrity, the biomass, and bacterial activity of E. faecalis biofilms. Finally, we investigated the microstructure changes of E. faecalis biofilms using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). RESULTS: The MIC and MBC values were 0.25% and 0.5%, the bacterial inhibition rate, time-kill was dosage dependent, and TTO can effectively destroy membrane integrity. SEM CLSM images revealed that TTO could reduce bacterial aggregation, biofilm thickness and inhibited biofilm formation. The effect of TTO was the same as that of 0.2% CHX at some specific concentrations. In summary, TTO has the potential to be effective against E. faecalis infections. CONCLUSIONS: TTO was able to inhibit E. faecalis by destroying cell membrane, inhibiting the formation of E. faecalis biofilms, and eliminating mature formed biofilms. In this study, TTO has the potential to be further developed as a novel antibacterial drug.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Aceite de Árbol de Té/farmacología , Biopelículas/crecimiento & desarrollo , Enterococcus faecalis/fisiología , Pruebas de Sensibilidad Microbiana , Hojas de la Planta/química
15.
ACS Appl Mater Interfaces ; 13(36): 43755-43768, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464080

RESUMEN

Biomaterial-associated infections are a major cause of biomaterial implant failure. To prevent the initial attachment of bacteria to the implant surface, researchers have investigated various surface modification methods. However, most of these approaches also prevent the attachment, spread, and growth of mammalian cells, resulting in tissue integration failure. Therefore, the success of biomaterial implants requires an optimal balance between tissue integration (cell adhesion to biomaterial implants) and inhibition of bacterial colonization. In this regard, we synthesize bifunctional nanomaterials by functionalizing the pores and outer surfaces of periodic mesoporous organosilica (PMO) with antibacterial tetracycline (Tet) and antibacterial and cell-adhesive bipolymer poly-d-lysine (PDL), respectively. Then, the fabricated TetPMO-PDL nanomaterials are incorporated into alginate-based hydrogels to create injectable and 3D-printable nanocomposite (NC) hydrogels (AlgL-TetPMO-PDL). These bifunctional nanomaterial and 3D-printable NC hydrogel show pH-dependent release of Tet over 7 days. They also enhance the proliferation of eukaryotic cells (fibroblasts). TetPMO-PDL is inactive in reducing Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis biofilms. However, AlgL-TetPMO-PDL shows significant antibiofilm activity against P. aeruginosa. These results suggest that the incorporation of TetPMO-PDL into AlgL may have a synergistic effect on the inhibition of the Gram-negative bacterial (P. aeruginosa) biofilm, while this has no effect on the reduction of the Gram-positive bacterial (S. aureus and E. faecalis) biofilm.


Asunto(s)
Antibacterianos/farmacología , Portadores de Fármacos/química , Hidrogeles/química , Nanopartículas Multifuncionales/química , Tetraciclina/farmacología , Alginatos/química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/síntesis química , Liberación de Fármacos , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/fisiología , Humanos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Nanocompuestos/química , Polilisina/química , Porosidad , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Dióxido de Silicio/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Tetraciclina/química
16.
Molecules ; 26(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34443670

RESUMEN

Enterococci and methicillin-resistant S. aureus (MRSA) are among the menacing bacterial pathogens. Novel antibiotics are urgently needed to tackle these antibiotic-resistant bacterial infections. This article reports the design, synthesis, and antimicrobial studies of 30 novel pyrazole derivatives. Most of the synthesized compounds are potent growth inhibitors of planktonic Gram-positive bacteria with minimum inhibitory concertation (MIC) values as low as 0.25 µg/mL. Further studies led to the discovery of several lead compounds, which are bactericidal and potent against MRSA persisters. Compounds 11, 28, and 29 are potent against S. aureus biofilms with minimum biofilm eradication concentration (MBEC) values as low as 1 µg/mL.


Asunto(s)
Bacterias/crecimiento & desarrollo , Farmacorresistencia Bacteriana/efectos de los fármacos , Inhibidores de Crecimiento/síntesis química , Inhibidores de Crecimiento/farmacología , Pirazoles/síntesis química , Pirazoles/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/fisiología , Inhibidores de Crecimiento/química , Células HEK293 , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/fisiología , Pruebas de Sensibilidad Microbiana , Pirazoles/química
17.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34445089

RESUMEN

Apical periodontitis, an inflammatory lesion causing bone resorption around the apex of teeth, is treated by eradicating infectious bacteria from the root canal. However, it has a high recurrence rate and often requires retreatment. We investigated the bactericidal effect of antimicrobial photodynamic therapy (aPDT)/photodynamic antimicrobial chemotherapy (PACT) using indocyanine green (ICG)-loaded nanospheres coated with chitosan and a diode laser on a biofilm of Enterococcus faecalis, a pathogen of refractory apical periodontitis. Biofilm of E. faecalis was cultured in a porcine infected root canal model. ICG solution was injected into the root canal, which was then irradiated with a laser (810 nm wavelength) from outside the root canal. The bactericidal effect was evaluated by colony counts and scanning electron microscopy. The result of the colony counts showed a maximum 1.89 log reduction after irradiation at 2.1 W for 5 min. The temperature rise during aPDT/PACT was confirmed to be within a safe range. Furthermore, the light energy transmittance through the root was at a peak approximately 1 min after the start of irradiation, indicating that most of the ICG in the root canal was consumed. This study shows that aPDT/PACT can suppress E. faecalis in infected root canals with high efficiency.


Asunto(s)
Biopelículas/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Verde de Indocianina/administración & dosificación , Nanosferas , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Enterococcus faecalis/fisiología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Humanos , Verde de Indocianina/farmacología , Láseres de Semiconductores , Nanosferas/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Porcinos
18.
J Mater Chem B ; 9(37): 7686-7697, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323245

RESUMEN

The validity and biocompatibility of irrigating agents are imperative for the success of root canal therapy. The imperfections in the currently available irrigants highlight the fact that more advanced technologies and strategies are required for complete disinfection in endodontic treatments. In the present study, a Fenton reaction-enhanced antimicrobial sonodynamic therapy (SDT) platform was fabricated for root canal disinfection. Firstly, mesoporous silica nanoparticles (MSNs) were synthesized, grafted with an amino group and then conjugated with sonosensitizer protoporphyrin IX (PpIX). Iron ions were then anchored (M@P-Fe) to initiate a Fenton reaction. Nanoparticle characterization by size and zeta potential measurements, scanning electron microscopy, transmission electron microscopy and thermogravimetric analysis confirmed that the platform was successfully developed. Reactive oxygen species (ROS) generation assessment, methylene blue degradation and electron spin resonance assays illustrated upon ultrasound (US) irradiation, that augmented ROS, can be produced by US activated PpIX and iron mediated Fenton reactions from low concentration H2O2 (0.01%). In vitro anti-Enterococcus faecalis efficacy was demonstrated by growth curve and colony forming unit measurements. Confocal laser scanning microscopy and scanning electron microscopy observations illustrated the effectiveness of the platform on in situ biofilm eradication in root canal. Owing to the stronger oxidizing capability and short lifetime of ROS, the Fenton reaction-enhanced SDT can induce detrimental oxidative damage to bacteria upon activation of US while avoiding nonspecific toxicity to cells, which was verified by cytotoxicity evaluations using CCK-8 assay and morphology observation of MC3T3-E1 cells. Compared to commonly used NaClO, this nanoplatform displayed desirable anti-bacterial, anti-biofilm abilities and better biocompatibility. These results highlight that the integrated M@P-Fe + US + H2O2 platform is a promising candidate for US enhanced root canal irrigation and disinfection.


Asunto(s)
Antibacterianos/química , Materiales Biocompatibles/química , Peróxido de Hidrógeno/química , Hierro/química , Nanopartículas/química , Dióxido de Silicio/química , Animales , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cavidad Pulpar/microbiología , Enterococcus faecalis/fisiología , Peróxido de Hidrógeno/farmacología , Azul de Metileno/química , Ratones , Porosidad , Protoporfirinas/química , Especies Reactivas de Oxígeno/metabolismo , Tratamiento del Conducto Radicular/métodos , Staphylococcus aureus/efectos de los fármacos , Ultrasonografía
19.
mBio ; 12(3): e0101121, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34126766

RESUMEN

Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar discs, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants. We quantified biofilm cells and used fluorescence microscopy to visualize biofilms formed by six Tn mutants identified using TnSeq and found that disrupting these genes (OG1RF_10350, prsA, tig, OG1RF_10576, OG1RF_11288, and OG1RF_11456) leads to significant time- and medium-dependent changes in biofilm architecture. Structural predictions revealed potential roles in cell wall homeostasis for OG1RF_10350 and OG1RF_11288 and signaling for OG1RF_11456. Additionally, we identified growth medium-specific hallmarks of OG1RF biofilm morphology. This study demonstrates how E. faecalis biofilm architecture is modulated by growth medium and experimental conditions and identifies multiple new genetic determinants of biofilm formation. IMPORTANCE E. faecalis is an opportunistic pathogen and a leading cause of hospital-acquired infections, in part due to its ability to form biofilms. A complete understanding of the genes required for E. faecalis biofilm formation as well as specific features of biofilm morphology related to nutrient availability and growth conditions is crucial for understanding how E. faecalis biofilm-associated infections develop and resist treatment in patients. We employed a comprehensive approach to analysis of biofilm determinants by combining TnSeq primary screens with secondary phenotypic validation using diverse biofilm assays. This enabled identification of numerous core (important under many conditions) and accessory (important under specific conditions) biofilm determinants in E. faecalis OG1RF. We found multiple genes whose disruption results in drastic changes to OG1RF biofilm morphology. These results expand our understanding of the genetic requirements for biofilm formation in E. faecalis that affect the time course of biofilm development as well as the response to specific nutritional conditions.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Enterococcus faecalis/genética , Enterococcus faecalis/fisiología , Mutación
20.
J Gen Appl Microbiol ; 67(4): 162-169, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34120995

RESUMEN

Probiotics have been shown to improve microbial compositions in animal intestine and feces, but the effects of probiotic administration on airborne microbial composition in animal houses remain unclear. In this study, we investigated the effects of dietary Enterococcus faecalis on the bacterial community structure in the air of piglet and layer hen houses. Indoor air and feces from piglet and layer hen houses were sampled after supplementing E. faecalis in feed for 60 days, and bacterial community structures were analyzed using Illumina high-throughput sequencing technology. Results showed that Chao1, ACE, Shannon, and Simpson indices of bacterial diversity did not significantly change in feces or indoor air of piglet or layer hen after supplementation with E. faecalis (P > 0.05). However, E. faecalis administration resulted in a decrease in the relative abundance of Proteobacteria (P < 0.05). In addition, E. faecalis significantly reduced the relative abundance of opportunistic pathogens such as Acinetobacter, Escherichia, and Shigella (P < 0.05), and beneficial bacterial genus such as Lactobacillus was significantly enriched in both feces and indoor air (P < 0.05). These changes should be of benefit to livestock, farm workers, and the surrounding environment.


Asunto(s)
Microbiología del Aire , Pollos , Enterococcus faecalis/fisiología , Vivienda para Animales , Microbiota , Probióticos/administración & dosificación , Sus scrofa , Animales , Fenómenos Fisiológicos Bacterianos , Femenino , Probióticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...