Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(3): e109728, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34935163

RESUMEN

Human respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Here, using cryogenic electron microscopy and tomography combined with computational image analysis and three-dimensional reconstruction, we show that there is extensive helical ordering of the envelope-associated proteins and glycoproteins of RSV filamentous virions. We calculated a 16 Å resolution sub-tomogram average of the matrix protein (M) layer that forms an endoskeleton below the viral envelope. These data define a helical lattice of M-dimers, showing how M is oriented relative to the viral envelope. Glycoproteins that stud the viral envelope were also found to be helically ordered, a property that was coordinated by the M-layer. Furthermore, envelope glycoproteins clustered in pairs, a feature that may have implications for the conformation of fusion (F) glycoprotein epitopes that are the principal target for vaccine and monoclonal antibody development. We also report the presence, in authentic virus infections, of N-RNA rings packaged within RSV virions. These data provide molecular insight into the organisation of the virion and the mechanism of its assembly.


Asunto(s)
Virus Sincitial Respiratorio Humano/ultraestructura , Envoltura Viral/ultraestructura , Proteínas de la Matriz Viral/química , Células A549 , Animales , Chlorocebus aethiops , Glicoproteínas/química , Humanos , Conformación Proteica en Hélice alfa , Virus Sincitial Respiratorio Humano/química , Células Vero , Envoltura Viral/química
2.
Appl Environ Microbiol ; 87(22): e0121521, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34469200

RESUMEN

Fomites can represent a reservoir for pathogens, which may be subsequently transferred from surfaces to skin. In this study, we aim to understand how different factors (including virus type, surface type, time since last hand wash, and direction of transfer) affect virus transfer rates, defined as the fraction of virus transferred, between fingerpads and fomites. To determine this, 360 transfer events were performed with 20 volunteers using Phi6 (a surrogate for enveloped viruses), MS2 (a surrogate for nonenveloped viruses), and three clean surfaces (stainless steel, painted wood, and plastic). Considering all transfer events (all surfaces and both transfer directions combined), the mean transfer rates of Phi6 and MS2 were 0.17 and 0.26, respectively. Transfer of MS2 was significantly higher than that of Phi6 (P < 0.05). Surface type was a significant factor that affected the transfer rate of Phi6: Phi6 is more easily transferred to and from stainless steel and plastic than to and from painted wood. Direction of transfer was a significant factor affecting MS2 transfer rates: MS2 is more easily transferred from surfaces to fingerpads than from fingerpads to surfaces. Data from these virus transfer events, and subsequent transfer rate distributions, provide information that can be used to refine quantitative microbial risk assessments. This study provides a large-scale data set of transfer events with a surrogate for enveloped viruses, which extends the reach of the study to the role of fomites in the transmission of human enveloped viruses like influenza and SARS-CoV-2. IMPORTANCE This study created a large-scale data set for the transfer of enveloped viruses between skin and surfaces. The data set produced by this study provides information on modeling the distribution of enveloped and nonenveloped virus transfer rates, which can aid in the implementation of risk assessment models in the future. Additionally, enveloped and nonenveloped viruses were applied to experimental surfaces in an equivalent matrix to avoid matrix effects, so results between different viral species can be directly compared without confounding effects of different matrices. Our results indicating how virus type, surface type, time since last hand wash, and direction of transfer affect virus transfer rates can be used in decision-making processes to lower the risk of viral infection from transmission through fomites.


Asunto(s)
Dedos/virología , Fómites/virología , Fenómenos Fisiológicos de los Virus , Bacteriófago phi 6/fisiología , Bacteriófago phi 6/ultraestructura , Fómites/clasificación , Higiene de las Manos , Humanos , Levivirus/fisiología , Levivirus/ultraestructura , Envoltura Viral/ultraestructura , Virosis/transmisión , Virosis/virología , Virus/ultraestructura
3.
Science ; 373(6555): 700-704, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34353956

RESUMEN

Gag, the primary structural protein of HIV-1, is recruited to the plasma membrane for virus assembly by its matrix (MA) domain. Gag is subsequently cleaved into its component domains, causing structural maturation to repurpose the virion for cell entry. We determined the structure and arrangement of MA within immature and mature HIV-1 through cryo-electron tomography. We found that MA rearranges between two different hexameric lattices upon maturation. In mature HIV-1, a lipid extends out of the membrane to bind with a pocket in MA. Our data suggest that proteolytic maturation of HIV-1 not only assembles the viral capsid surrounding the genome but also repurposes the membrane-bound MA lattice for an entry or postentry function and results in the partial removal of up to 2500 lipids from the viral membrane.


Asunto(s)
Antígenos VIH/química , Antígenos VIH/metabolismo , VIH-1/química , VIH-1/fisiología , Envoltura Viral/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Cápside/química , Cápside/fisiología , Tomografía con Microscopio Electrónico , VIH-1/ultraestructura , Membrana Dobles de Lípidos , Lípidos de la Membrana/metabolismo , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Envoltura Viral/química , Envoltura Viral/ultraestructura , Virión/química , Virión/fisiología , Virión/ultraestructura , Ensamble de Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
4.
J Immunol ; 207(3): 888-901, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290105

RESUMEN

Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that ßγ-crystallin fused aerolysin-like protein and trefoil factor complex (ßγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. ßγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, ßγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the ßγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that ßγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the ßγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of ßγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that ßγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.


Asunto(s)
Proteínas Anfibias/metabolismo , Antivirales/metabolismo , Córnea/patología , Herpes Simple/inmunología , Herpesvirus Humano 1/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Factores Trefoil/metabolismo , Proteínas Anfibias/genética , Animales , Anuros , Toxinas Bacterianas/genética , Córnea/virología , Femenino , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Ratones , Microscopía Electrónica de Transmisión , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Envoltura Viral/metabolismo , Envoltura Viral/ultraestructura , Internalización del Virus , gamma-Cristalinas/química
5.
Curr Opin Struct Biol ; 61: 146-152, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31991326

RESUMEN

In recent years, advances in structural biology, integrative modelling, and simulation approaches have allowed us to gain unprecedented insights into viral structure and dynamics. In this article we survey recent studies utilizing this wealth of structural information to build computational models of partial or complete viruses and to elucidate mechanisms of viral function. Additionally, the close interplay of viral pathogens with host factors - such as cellular and intracellular membranes, receptors, antibodies, and other host proteins - makes accurate models of viral interactions and dynamics essential. As viruses continue to pose severe challenges in prevention and treatment, enhancing our mechanistic understanding of viral infection is vital to enable the development of novel therapeutic strategies.


Asunto(s)
Modelos Biológicos , Modelos Moleculares , Fenómenos Fisiológicos de los Virus , Virus/química , Virus/ultraestructura , Animales , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Humanos , Imagenología Tridimensional , Permeabilidad , Estabilidad Proteica , Envoltura Viral/química , Envoltura Viral/metabolismo , Envoltura Viral/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...