Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol (Mosk) ; 46(2): 195-203, 2012.
Artículo en Ruso | MEDLINE | ID: mdl-22670515

RESUMEN

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a newly identified prokaryotic immunity system against foreign genetic elements. In contrast to other cellular defense mechanisms (e.g. restriction-modification) CRISPR-mediated immunity is adaptive and can be programmed to protect cells against a particular bacteriophage or conjugative plasmid. In this review we describe general principles of CRISPR systems action and summarize known details of CRISPR systems from different microorganisms.


Asunto(s)
Archaea/genética , Bacterias/genética , Bacteriófagos/genética , Enzimas de Restricción-Modificación del ADN/fisiología , Secuencias Repetitivas Esparcidas/fisiología , Plásmidos/genética , Archaea/virología , Bacterias/virología
2.
Nat Rev Microbiol ; 8(5): 317-27, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20348932

RESUMEN

Phages are now acknowledged as the most abundant microorganisms on the planet and are also possibly the most diversified. This diversity is mostly driven by their dynamic adaptation when facing selective pressure such as phage resistance mechanisms, which are widespread in bacterial hosts. When infecting bacterial cells, phages face a range of antiviral mechanisms, and they have evolved multiple tactics to avoid, circumvent or subvert these mechanisms in order to thrive in most environments. In this Review, we highlight the most important antiviral mechanisms of bacteria as well as the counter-attacks used by phages to evade these systems.


Asunto(s)
Bacterias/virología , Fenómenos Fisiológicos Bacterianos , Bacteriófagos/patogenicidad , Adsorción , Bacteriófagos/fisiología , Enzimas de Restricción-Modificación del ADN/fisiología , ADN Viral/fisiología , Matriz Extracelular/fisiología , Matriz Extracelular/virología , Modelos Biológicos , Receptores Virales/antagonistas & inhibidores , Receptores Virales/fisiología , Acoplamiento Viral , Internalización del Virus
3.
Microbiol Mol Biol Rev ; 72(2): 365-77, table of contents, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18535150

RESUMEN

SUMMARY: Plasmid R124 was first described in 1972 as being a new member of incompatibility group IncFIV, yet early physical investigations of plasmid DNA showed that this type of classification was more complex than first imagined. Throughout the history of the study of this plasmid, there have been many unexpected observations. Therefore, in this review, we describe the history of our understanding of this plasmid and the type I restriction-modification (R-M) system that it encodes, which will allow an opportunity to correct errors, or misunderstandings, that have arisen in the literature. We also describe the characterization of the R-M enzyme EcoR124I and describe the unusual properties of both type I R-M enzymes and EcoR124I in particular. As we approached the 21st century, we began to see the potential of the EcoR124I R-M enzyme as a useful molecular motor, and this leads to a description of recent work that has shown that the R-M enzyme can be used as a nanoactuator. Therefore, this is a history that takes us from a plasmid isolated from (presumably) an infected source to the potential use of the plasmid-encoded R-M enzyme in bionanotechnology.


Asunto(s)
Enzimas de Restricción-Modificación del ADN/fisiología , Desoxirribonucleasas de Localización Especificada Tipo I/fisiología , Plásmidos/fisiología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/fisiología , Enzimas de Restricción-Modificación del ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/fisiología , Desoxirribonucleasas de Localización Especificada Tipo I/genética , Desoxirribonucleasas de Localización Especificada Tipo I/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Nanoestructuras/química , Plásmidos/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo
4.
Biol Direct ; 3: 8, 2008 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-18346280

RESUMEN

The provenance and biochemical roles of eukaryotic MORC proteins have remained poorly understood since the discovery of their prototype MORC1, which is required for meiotic nuclear division in animals. The MORC family contains a combination of a gyrase, histidine kinase, and MutL (GHKL) and S5 domains that together constitute a catalytically active ATPase module. We identify the prokaryotic MORCs and establish that the MORC family belongs to a larger radiation of several families of GHKL proteins (paraMORCs) in prokaryotes. Using contextual information from conserved gene neighborhoods we show that these proteins primarily function in restriction-modification systems, in conjunction with diverse superfamily II DNA helicases and endonucleases. The common ancestor of these GHKL proteins, MutL and topoisomerase ATPase modules appears to have catalyzed structural reorganization of protein complexes and concomitant DNA-superstructure manipulations along with fused or standalone nuclease domains. Furthermore, contextual associations of the prokaryotic MORCs and their relatives suggest that their eukaryotic counterparts are likely to carry out chromatin remodeling by DNA superstructure manipulation in response to epigenetic signals such as histone and DNA methylation.


Asunto(s)
Adenosina Trifosfatasas/química , Enzimas de Restricción-Modificación del ADN/química , Proteínas de Escherichia coli/química , Células Eucariotas/enzimología , Evolución Molecular , Proteínas Nucleares/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/fisiología , Adenosina Trifosfatasas/provisión & distribución , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Humanos , Datos de Secuencia Molecular , Proteínas MutL , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología
5.
FEMS Microbiol Lett ; 262(1): 72-6, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16907741

RESUMEN

The human respiratory tract pathogen Moraxella catarrhalis is a naturally competent microorganism. However, electrotransformation has long been used to introduce foreign DNA into this organism. This study demonstrated that electrotransformants obtained with linear or circular nonreplicating plasmid DNA originated exclusively from natural transformation processes taking place during the recovery phase after the application of current. Only replicating plasmid DNA could be introduced into M. catarrhalis by electrotransformation, in a type IV pilus-independent manner. Electrotransformation with homologous genomic DNA indicated that restriction of double-stranded DNA was independent of type III restriction-methylation systems. Nontransformability of M. catarrhalis by electrotransformation was observed using double- as well as single-stranded DNA. In addition, the study showed that natural competence is a very constant feature of M. catarrhalis.


Asunto(s)
Electroporación , Moraxella catarrhalis/genética , Transformación Bacteriana , ADN/genética , ADN/metabolismo , Enzimas de Restricción-Modificación del ADN/fisiología , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Fimbrias Bacterianas/fisiología , Plásmidos/genética , Plásmidos/metabolismo
6.
Biochemistry (Mosc) ; 70(5): 584-95, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15948712

RESUMEN

Background studies have shown that 6-methylaminopurine (m6A) and 5-methylcytosine (m5C), detected in DNA, are products of its post-synthetic modification. At variance with bacterial genomes exhibiting both, eukaryotic genomes essentially carry only m5C in m5CpG doublets. This served to establish that, although a slight extra-S phase asymmetric methylation occurs de novo on 5'-CpC-3'/3'GpG-5', 5'-CpT-3'/3'-GpA-5', and 5'-CpA-3'/3'-GpT-5' dinucleotide pairs, a heavy methylation during S involves Okazaki fragments and thus semiconservatively newly made chains to guarantee genetic maintenance of -CH3 patterns in symmetrically dimethylated 5'-m5CpG-3'/3'-Gpm5C-5' dinucleotide pairs. On the other hand, whilst inverse correlation was observed between bulk DNA methylation, in S, and bulk RNA transcription, in G1 and G2, probes of methylated DNA helped to discover the presence of coding (exon) and uncoding (intron) sequences in the eukaryotic gene. These achievements led to the search for a language that genes regulated by methylation should have in common. Such a deciphering, initially providing restriction minimaps of hypermethylatable promoters and introns vs. hypomethylable exons, became feasible when bisulfite methodology allowed the direct sequencing of m5C. It emerged that, while in lymphocytes, where the transglutaminase gene (hTGc) is inactive, the promoter shows two fully methylated CpG-rich domains at 5 and one fully unmethylated CpG-rich domain at 3' (including the site +1 and a 5'-UTR), in HUVEC cells, where hTGc is active, in the first CpG-rich domain of its promoter four CpGs lack -CH3: a result suggesting new hypotheses on the mechanism of transcription, particularly in connection with radio-induced DNA demethylation.


Asunto(s)
Metilación de ADN , Células Eucariotas/metabolismo , Genómica , Secuencia de Bases , Ciclo Celular/fisiología , ADN/biosíntesis , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Enzimas de Restricción-Modificación del ADN/fisiología , Regulación de la Expresión Génica , Código Genético , Humanos , Modelos Genéticos
7.
J Bacteriol ; 187(2): 488-97, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15629920

RESUMEN

A widely distributed family of small regulators, called C proteins, controls a subset of restriction-modification systems. The C proteins studied to date activate transcription of their own genes and that of downstream endonuclease genes; this arrangement appears to delay endonuclease expression relative to that of the protective methyltransferase when the genes enter a new cell. C proteins bind to conserved sequences called C boxes. In the PvuII system, the C boxes have been reported to extend from -23 to +3 relative to the transcription start for the gene for the C protein, an unexpected starting position relative to a bound activator. This study suggests that transcript initiation within the C boxes represents initial, C-independent transcription of pvuIICR. The major C protein-dependent transcript appears to be a leaderless mRNA starting farther downstream, at the initiation codon for the pvuIIC gene. This conclusion is based on nuclease S1 transcript mapping and the effects of a series of nested deletions in the promoter region. Furthermore, replacing the region upstream of the pvuIIC initiation codon with a library of random oligonucleotides, followed by selection for C-dependent transcription, yielded clones having sequences that resemble -10 promoter hexamers. The -35 hexamer of this promoter would lie within the C boxes. However, the spacing between C boxes/-35 and the apparent -10 hexamer can be varied by +/-4 bp with little effect. This suggests that, like some other activator-dependent promoters, PpvuIICR may not require a -35 hexamer. Features of this transcription activation system suggest explanations for its broad host range.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Regiones Promotoras Genéticas , Proteus vulgaris/enzimología , Activación Transcripcional , Enzimas de Restricción-Modificación del ADN/genética , Enzimas de Restricción-Modificación del ADN/fisiología , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Proteus vulgaris/genética , Eliminación de Secuencia , Endonucleasas Específicas del ADN y ARN con un Solo Filamento/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
8.
Mol Biotechnol ; 4(3): 297-314, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8680935

RESUMEN

Lactic acid bacteria are industrial microorganisms used in many food fermentations. Lactococcus species are susceptible to bacteriophage infections that may result in slowed or failed fermentations. A substantial amount of research has focused on characterizing natural mechanisms by which bacterial cells defend themselves against phage. Numerous natural phage defense mechanisms have been identified and studied, and recent efforts have improved phage resistance by using molecular techniques. The study of how phages overcome these resistance mechanisms is also an important objective. New strategies to minimize the presence, virulence, and evolution of phage are being developed and are likely to be applied industrially.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/patogenicidad , Lactococcus/virología , Sitios de Ligazón Microbiológica/fisiología , Enzimas de Restricción-Modificación del ADN/fisiología , ADN Viral/metabolismo , Industria Lechera , Ingeniería Genética , Mutagénesis Sitio-Dirigida , Recombinación Genética
9.
J Bacteriol ; 177(12): 3451-4, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7768854

RESUMEN

Two plasmid-carried restriction-modification (R-M) systems, EcoRI (from pMB1 of Escherichia coli) and Bsp6I (from pXH13 of Bacillus sp. strain RFL6), enhance plasmid segregational stability in E. coli and Bacillus subtilis, respectively. Inactivation of the endonuclease or the presence of the methylase in trans abolish the stabilizing activity of the R-M systems. We propose that R-M systems mediate plasmid segregational stability by postsegregational killing of plasmid-free cells. Plasmid-encoded methyltransferase modifies host DNA and thus prevents its digestion by the restriction endonuclease. Plasmid loss entails degradation and/or dilution of the methylase during cell growth and appearance of unmethylated sites in the chromosome. Double-strand breaks, introduced at these sites by the endonuclease, eventually cause the death of the plasmid-free cells. Contribution to plasmid stability is a previously unrecognized biological role of the R-M systems.


Asunto(s)
Bacterias/enzimología , Enzimas de Restricción-Modificación del ADN/fisiología , Plásmidos/metabolismo , Bacillus subtilis/enzimología , Bacterias/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas de Restricción del ADN/metabolismo , Escherichia coli/enzimología
10.
Mol Microbiol ; 15(3): 415-20, 1995 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-7540246

RESUMEN

Many parasitic DNA elements including prophages and plasmids synthesize proteins that kill the cell after infection by other phages, thereby blocking the multiplication of the infecting phages and their spread to other nearby cells. The only known function of these proteins is to exclude the infecting phage, and therefore to protect their hosts, and thereby the DNA elements themselves, against phage contagion. Many of these exclusions have been studied extensively and some have long been used in molecular genetics, but their molecular basis was unknown. The most famous of the phage exclusions are those caused by the Rex proteins of lambda prophage. The Rex exclusions are still not completely understood, but recent evidence has begun to lead to more specific models for their action. One of the Rex proteins, RexA, may be activated by a DNA-protein complex, perhaps a recombination or replication intermediate, produced after phage infection. In the activated state, RexA may activate RexB, which has been proposed to be a membrane ion channel that allows the passage of monovalent cations, destroying the cellular membrane potential, and killing the cell. We now understand two other phage exclusions at the molecular level which use strategies that are remarkably similar to each other. The parasitic DNA elements responsible for the exclusions both constitutively synthesize enzymes that are inactive as synthesized by the DNA element but are activated after phage infection by a short peptide determinant encoded by the infecting phage. In the activated state, the enzymes cleave evolutionarily conserved components of the translation apparatus, in one case EF-Tu, and in the other case tRNALys.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Proteínas Bacterianas/fisiología , Bacteriólisis , Colifagos/fisiología , Endopeptidasas/fisiología , Proteínas de Escherichia coli , Escherichia coli/virología , Regulación Viral de la Expresión Génica , Proteínas de la Membrana/fisiología , Factor Tu de Elongación Peptídica/antagonistas & inhibidores , Plásmidos/fisiología , ARN de Transferencia de Lisina/antagonistas & inhibidores , Ribonucleasas/fisiología , Proteínas no Estructurales Virales/fisiología , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Anticodón/metabolismo , Proteínas Bacterianas/genética , Colifagos/enzimología , Colifagos/genética , Enzimas de Restricción-Modificación del ADN/fisiología , Endopeptidasas/genética , Activación Enzimática , Escherichia coli/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Plásmidos/genética , Biosíntesis de Proteínas/fisiología , ARN Bacteriano/antagonistas & inhibidores , ARN Bacteriano/metabolismo , Ribonucleasas/genética , Proteínas no Estructurales Virales/genética
11.
J Bacteriol ; 176(19): 5888-96, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7928948

RESUMEN

To understand the role of restriction in regulating gene flow in bacterial populations, we would like to understand the regulation of restriction enzyme activity. Several antirestriction (restriction alleviation) systems are known that reduce the activity of type I restriction enzymes like EcoKI in vivo. Most of these do not act on type II or type III enzymes, but little information is available for the unclassified modification-dependent systems, of which there are three in E. coli K-12. Of particular interest are two physiological controls on type I enzymes: EcoKI restriction is reduced 2 to 3 orders of magnitude following DNA damage, and a similar effect is seen constitutively in Dam- cells. We used the behavior of EcoKI as a control for testing the response to UV treatment of the three endogenous modification-dependent restriction systems of K-12, McrA, McrBC, and Mrr. Two of these were also tested for response to Dam status. We find that all four resident restriction systems show reduced activity following UV treatment, but not in a unified fashion; each response was genetically and physiologically distinct. Possible mechanisms are discussed.


Asunto(s)
Daño del ADN , Enzimas de Restricción-Modificación del ADN/fisiología , ADN Bacteriano/efectos de la radiación , Proteínas de Escherichia coli , Escherichia coli/fisiología , Serina Endopeptidasas , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica) , Rayos Ultravioleta/efectos adversos , Proteínas Bacterianas/metabolismo , Cloranfenicol/farmacología , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Metiltransferasas/metabolismo , Rec A Recombinasas/metabolismo , Respuesta SOS en Genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...