Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681703

RESUMEN

Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.


Asunto(s)
Epigénesis Genética/efectos de la radiación , Mitocondrias/metabolismo , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Transición Epitelial-Mesenquimal/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Humanos , Mitocondrias/genética , Mitocondrias/efectos de la radiación , Dinámicas Mitocondriales/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo
2.
Aging (Albany NY) ; 13(19): 22752-22771, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34644261

RESUMEN

Alterations to the epigenome are a hallmark of biological aging and age-dependent patterning of the DNA methylome ("epigenetic aging") can be modeled to produce epigenetic age predictors. Rates of epigenetic aging vary amongst individuals and correlate to the onset of age-related disease and all-cause mortality. Yet, the origins of epigenetic-to-chronological age discordance are not empirically resolved. Here, we investigate the relationship between aging, DNA methylation, and environmental exposures in Japanese medaka (Oryzias latipes). We find age-associated DNA methylation patterning enriched in genomic regions of low CpG density and that, similar to mammals, most age-related changes occur during early life. We construct an epigenetic clock capable of predicting chronological age with a mean error of 61.1 days (~8.4% of average lifespan). To test the role of environmental factors in driving epigenetic age variation, we exposed medaka to chronic, environmentally relevant doses of ionizing radiation. Because most organisms share an evolutionary history with ionizing radiation, we hypothesized that exposure would reveal fundamental insights into environment-by-epigenetic aging interactions. Radiation exposure disrupted epigenetic aging by accelerating and decelerating normal age-associated patterning and was most pronounced in cytosines that were moderately associated with age. These findings empirically demonstrate the role of DNA methylation in integrating environmental factors into aging trajectories.


Asunto(s)
Envejecimiento/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Radiación Ionizante , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Relación Dosis-Respuesta en la Radiación , Epigenoma , Oryzias
3.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34445758

RESUMEN

Radiotherapy is still a long way from personalizing cancer treatment plans, and its effectiveness depends on the radiosensitivity of tumor cells. Indeed, therapies that are efficient and successful for some patients may be relatively ineffective for others. Based on this, radiobiological research is focusing on the ability of some reagents to make cancer cells more responsive to ionizing radiation, as well as to protect the surrounding healthy tissues from possible side effects. In this scenario, zebrafish emerged as an effective model system to test for radiation modifiers that can potentially be used for radiotherapeutic purposes in humans. The adoption of this experimental organism is fully justified and supported by the high similarity between fish and humans in both their genome sequences and the effects provoked in them by ionizing radiation. This review aims to provide the literature state of the art of zebrafish in vivo model for radiobiological studies, particularly focusing on the epigenetic and radiomodifying effects produced during fish embryos' and larvae's exposure to radiotherapy treatments.


Asunto(s)
Epigénesis Genética/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/efectos adversos , Radioterapia/efectos adversos , Pez Cebra , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/efectos de la radiación , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/efectos de la radiación , Modelos Animales
4.
Mutat Res ; 823: 111758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34333390

RESUMEN

Exposure to the ultraviolet (UV) radiation in sunlight creates DNA lesions, which if left unrepaired can induce mutations and contribute to skin cancer. The two most common UV-induced DNA lesions are the cis-syn cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), both of which can initiate mutations. Interestingly, mutation frequency across the genomes of many cancers is heterogenous with significant increases in heterochromatin. Corresponding increases in UV lesion susceptibility and decreases in repair are observed in heterochromatin versus euchromatin. However, the individual contributions of CPDs and 6-4PPs to mutagenesis have not been systematically examined in specific genomic and epigenomic contexts. In this study, we compared genome-wide maps of 6-4PP and CPD lesion abundances in primary cells and conducted comprehensive analyses to determine the genetic and epigenetic features associated with susceptibility. Overall, we found a high degree of similarity between 6-4PP and CPD formation, with an enrichment of both in heterochromatin regions. However, when examining the relative levels of the two UV lesions, we found that bivalent and Polycomb-repressed chromatin states were uniquely more susceptible to 6-4PPs. Interestingly, when comparing UV susceptibility and repair with melanoma mutation frequency in these regions, disparate patterns were observed in that susceptibility was not always inversely associated with repair and mutation frequency. Functional enrichment analysis hint at mechanisms of negative selection for these regions that are essential for cell viability, immune function and induce cell death when mutated. Ultimately, these results reveal both the similarities and differences between UV-induced lesions that contribute to melanoma.


Asunto(s)
Reparación del ADN , Epigénesis Genética/efectos de la radiación , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética , Rayos Ultravioleta/efectos adversos , Daño del ADN , Bases de Datos Genéticas , Eucromatina/química , Eucromatina/metabolismo , Eucromatina/efectos de la radiación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Genoma Humano/efectos de la radiación , Heterocromatina/química , Heterocromatina/metabolismo , Heterocromatina/efectos de la radiación , Histonas/genética , Histonas/metabolismo , Humanos , Melanoma/etiología , Melanoma/metabolismo , Melanoma/patología , Mutagénesis , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Cultivo Primario de Células , Dímeros de Pirimidina/agonistas , Dímeros de Pirimidina/metabolismo , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
5.
Molecules ; 26(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34443661

RESUMEN

Protein methyltransferases are vital to the epigenetic modification of gene expression. Thus, obtaining a better understanding of and control over the regulation of these crucial proteins has significant implications for the study and treatment of numerous diseases. One ideal mechanism of protein regulation is the specific installation of a photolabile-protecting group through the use of photocaged non-canonical amino acids. Consequently, PRMT1 was caged at a key tyrosine residue with a nitrobenzyl-protected Schultz amino acid to modulate protein function. Subsequent irradiation with UV light removes the caging group and restores normal methyltransferase activity, facilitating the spatial and temporal control of PRMT1 activity. Ultimately, this caged PRMT1 affords the ability to better understand the protein's mechanism of action and potentially regulate the epigenetic impacts of this vital protein.


Asunto(s)
Epigénesis Genética/efectos de la radiación , Proteína Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos/genética , Aminoácidos , Epigénesis Genética/genética , Expresión Génica/efectos de la radiación , Humanos , Metilación/efectos de la radiación , Proteína Metiltransferasas/efectos de la radiación , Proteína-Arginina N-Metiltransferasas/efectos de la radiación , Proteínas Represoras/efectos de la radiación , Factores de Transcripción/genética , Tirosina/química , Rayos Ultravioleta
6.
Genes (Basel) ; 12(2)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557416

RESUMEN

The phenotypic plasticity of plants in response to change in their light environment, and in particularly, to shade is a schoolbook example of ecologically relevant phenotypic plasticity with evolutionary adaptive implications. Epigenetic variation is known to potentially underlie plant phenotypic plasticity. Yet, little is known about its role in ecologically and evolutionary relevant mechanisms shaping the diversity of plant populations in nature. Here we used a reference-free reduced representation bisulfite sequencing method for non-model organisms (epiGBS) to investigate changes in DNA methylation patterns across the genome in snapdragon plants (Antirrhinum majus L.). We exposed plants to sunlight versus artificially induced shade in four highly inbred lines to exclude genetic confounding effects. Our results showed that phenotypic plasticity in response to light versus shade shaped vegetative traits. They also showed that DNA methylation patterns were modified under light versus shade, with a trend towards global effects over the genome but with large effects found on a restricted portion. We also detected the existence of a correlation between phenotypic and epigenetic variation that neither supported nor rejected its potential role in plasticity. While our findings imply epigenetic changes in response to light versus shade environments in snapdragon plants, whether these changes are directly involved in the phenotypic plastic response of plants remains to be investigated. Our approach contributed to this new finding but illustrates the limits in terms of sample size and statistical power of population epigenetic approaches in non-model organisms. Pushing this boundary will be necessary before the relationship between environmentally induced epigenetic changes and phenotypic plasticity is clarified for ecologically relevant mechanisms with evolutionary implications.


Asunto(s)
Adaptación Fisiológica/genética , Antirrhinum/genética , Metilación de ADN/genética , Epigénesis Genética/genética , Adaptación Fisiológica/efectos de la radiación , Antirrhinum/efectos de la radiación , Metilación de ADN/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Variación Genética/efectos de la radiación , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Luz Solar
7.
Cell Rep ; 33(10): 108406, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33242403

RESUMEN

Astronauts undertaking long-duration space missions may be vulnerable to unique stressors that can impact human aging. Nevertheless, few studies have examined the relationship of mission duration with DNA-methylation-based biomarkers of aging in astronauts. Using data from the six participants of the Mars-500 mission, a high-fidelity 520-day ground simulation experiment, we tested relationships of mission duration with five longitudinally measured blood DNA-methylation-based metrics: DNAmGrimAge, DNAmPhenoAge, DNA-methylation-based estimator of telomere length (DNAmTL), mitotic divisions (epigenetic mitotic clock [epiTOC2]), and pace of aging (PoA). We provide evidence that, relative to baseline, mission duration was associated with significant decreases in epigenetic aging. However, only decreases in DNAmPhenoAge remained significant 7 days post-mission. We also observed significant changes in estimated proportions of plasmablasts, CD4T, CD8 naive, and natural killer (NK) cells. Only decreases in NK cells remained significant post-mission. If confirmed more broadly, these findings contribute insights to improve the understanding of the biological aging implications for individuals experiencing long-duration space travel.


Asunto(s)
Envejecimiento/genética , Vuelo Espacial , Ingravidez , Adulto , Envejecimiento/efectos de la radiación , Astronautas , Metilación de ADN , Epigénesis Genética/efectos de la radiación , Epigenómica/métodos , Humanos , Recuento de Leucocitos/métodos , Leucocitos/metabolismo , Estudios Longitudinales , Masculino , Factores de Tiempo
8.
Int J Mol Sci ; 21(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825382

RESUMEN

The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.


Asunto(s)
Epigénesis Genética/efectos de la radiación , Traumatismos por Radiación/genética , Radiación Ionizante , Animales , Metilación de ADN/efectos de los fármacos , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica/efectos de la radiación , Histonas/genética , Histonas/metabolismo , Histonas/efectos de la radiación , Humanos , Neoplasias/etiología , ARN no Traducido , Traumatismos por Radiación/complicaciones , Traumatismos por Radiación/etiología , Protección Radiológica
9.
Sci Rep ; 10(1): 12918, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737342

RESUMEN

The simultaneous analysis of different regulatory levels of biological phenomena by means of multi-omics data integration has proven an invaluable tool in modern precision medicine, yet many processes ultimately paving the way towards disease manifestation remain elusive and have not been studied in this regard. Here we investigated the early molecular events following repetitive UV irradiation of in vivo healthy human skin in depth on transcriptomic and epigenetic level. Our results provide first hints towards an immediate acquisition of epigenetic memories related to aging and cancer and demonstrate significantly correlated epigenetic and transcriptomic responses to irradiation stress. The data allowed the precise prediction of inter-individual UV sensitivity, and molecular subtyping on the integrated post-irradiation multi-omics data established the existence of three latent molecular phototypes. Importantly, further analysis suggested a form of melanin-independent DNA damage protection in subjects with higher innate UV resilience. This work establishes a high-resolution molecular landscape of the acute epidermal UV response and demonstrates the potential of integrative analyses to untangle complex and heterogeneous biological responses.


Asunto(s)
Metilación de ADN/efectos de la radiación , Epidermis/metabolismo , Epigénesis Genética/efectos de la radiación , Luz Solar/efectos adversos , Transcriptoma/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Adulto , Anciano , Epidermis/patología , Femenino , Humanos , Persona de Mediana Edad
10.
Life Sci ; 256: 117974, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32553924

RESUMEN

The brain tumor is the abnormal growth of heterogeneous cells around the central nervous system and spinal cord. Most clinically prominent brain tumors affecting both adult and pediatric are glioblastoma, medulloblastoma, and ependymoma and they are classified according to their origin of tissue. Chemotherapy, radiotherapy, and surgery are important treatments available to date. However, these treatments fail due to multiple reasons, including chemoresistance and radiation resistance of cancer cells. Thus, there is a need of new therapeutic designs to target cell signaling and molecular events which are responsible for this resistance. Recently epigenetic changes received increased attention because it helps in understanding chromatin-mediated disease mechanism. The epigenetic modification alters chromatin structure that affects the docking site of many drugs which cause chemo-resistance of cancer therapy. This review centers the mechanism of how epigenetic changes affect the transcription repression and activation of various genes including Polycomb gene, V-Myc avian myelocytomatosis viral oncogene (MYCN). This review also put forth the pathway of radiation-induced reactive oxygen species generation and its role in epigenetic changes in the cellular level and its impact on tissue physiology. Additionally, there is a strong relationship between the behavior of an individual and environment-induced epigenetic regulation of gene expression. The review also discusses Transcriptome heterogeneity and role of tumor microenvironment in glioblastoma. Overall, this review emphasis important and novel epigenetic targets that could be of therapeutic benefit, which helps in overcoming the unsolved chromatin alteration in brain cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Epigénesis Genética/genética , Animales , Neoplasias Encefálicas/metabolismo , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/efectos de la radiación , Humanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Transcriptoma/efectos de la radiación , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/efectos de la radiación
11.
Nat Commun ; 11(1): 2798, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493925

RESUMEN

Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Represoras/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Genes Supresores , Sitios Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Luz , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
12.
Int J Radiat Biol ; 96(8): 999-1007, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32396015

RESUMEN

Purpose: Studying the relationship between epigenetic variability with different individual radiosensitivity and adaptive capacity.Material and method: Using a simple and convenient experimental model - maize seedlings with different germination terms and epigenetic patterns - the hypothesis was tested that homogeneous genetically but epigenetic different organisms have different radiosensitivity and radioadaptive capacity. Differences in the DNA methylation profiles of individual subpopulations of seedlings were used as a marker of epigenetic differences and the yield of chromosomal aberration was used as an indicator of DNA vulnerability and its changes under different UV-C irradiation modes. In two series of experiments involving а UV-C acute single and exposure according to the scheme 'adaptive - challenging', the investigation of possible biological importance of epigenetic polymorphism has been performed. The study used a cytogenetic analysis of the yield of chromosomal aberrations and restriction analysis followed by ITS-ISSR- PCR.Results: Significant differences have been established in chromosome aberration yield and DNA methylation profile in control and under UV-C exposure for seedlings of subpopulations differing in time of germination. The differences in the DNA methylation profiles and the yield of chromosomal aberrations in the control subpopulations of seedlings of different germination term indicate the influence of the DNA methylation profile on DNA damage by regular metabolic factors, such as thermal vibrations or reactive oxygen species (ROS). This phenomenon can be explained with different chromatin conformation determining structural or 'passive' resistance, which provides different DNA availability to damage. Methylation switching into de novo under different mode radiation exposure could become a marker of gene expression changes due to induced repair and protecting.Conclusions: The obtained data indicate the importance of epigenetic factors in determining the radio-resistance and adaptive capacity of organisms. It points out that the epigenetic mechanisms that determine the choice of the metabolic pattern also contribute to the individual radiosensitivity and adaptive capacity of the organisms. This contribution is determined by two ways. First, the DNA methylation profile affects the initial damage processes and secondly, the type of methylation switching into de novo is associated with the further development of protection and repair processes.


Asunto(s)
Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Tolerancia a Radiación/genética , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/efectos de la radiación , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Germinación/genética , Germinación/efectos de la radiación , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Zea mays/genética , Zea mays/crecimiento & desarrollo , Zea mays/efectos de la radiación
13.
Clin Epigenetics ; 12(1): 26, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32046773

RESUMEN

BACKGROUND: Radiation is an important therapeutic tool. However, radiotherapy has the potential to promote co-evolution of genetic and epigenetic changes that can drive tumour heterogeneity, formation of radioresistant cells and tumour relapse. There is a clinical need for a better understanding of DNA methylation alterations that may follow radiotherapy to be able to prevent the development of radiation-resistant cells. METHODS: We examined radiation-induced changes in DNA methylation profiles of paediatric glioma stem cells (GSCs) in vitro. Five GSC cultures were irradiated in vitro with repeated doses of 2 or 4 Gy. Radiation was given in 3 or 15 fractions. DNA methylation profiling using Illumina DNA methylation arrays was performed at 14 days post-radiation. The cellular characteristics were studied in parallel. RESULTS: Few fractions of radiation did not result in significant accumulation of DNA methylation alterations. However, extended dose fractionations changed DNA methylation profiles and induced thousands of differentially methylated positions, specifically in enhancer regions, sites involved in alternative splicing and in repetitive regions. Radiation induced dose-dependent morphological and proliferative alterations of the cells as a consequence of the radiation exposure. CONCLUSIONS: DNA methylation alterations of sites with regulatory functions in proliferation and differentiation were identified, which may reflect cellular response to radiation stress through epigenetic reprogramming and differentiation cues.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Metilación de ADN/genética , Epigénesis Genética/genética , Glioma/genética , Células Madre Neoplásicas/metabolismo , Diferenciación Celular , Niño , Preescolar , Daño del ADN/efectos de la radiación , Metilación de ADN/efectos de la radiación , Fraccionamiento de la Dosis de Radiación , Epigénesis Genética/efectos de la radiación , Femenino , Glioma/radioterapia , Humanos , Masculino , Recurrencia Local de Neoplasia/genética , Células Madre Neoplásicas/efectos de la radiación
14.
Clin Epigenetics ; 12(1): 4, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900196

RESUMEN

BACKGROUND: Poor-responsiveness of tumors to radiotherapy is a major clinical problem. Owing to the dynamic nature of the epigenome, the identification and targeting of potential epigenetic modifiers may be helpful to curb radio-resistance. This requires a detailed exploration of the epigenetic changes that occur during the acquirement of radio-resistance. Such an understanding can be applied for effective utilization of treatment adjuncts to enhance the efficacy of radiotherapy and reduce the incidence of tumor recurrence. RESULTS: This study explored the epigenetic alterations that occur during the acquirement of radio-resistance. Sequential irradiation of MCF7 breast cancer cell line up to 20 Gy generated a radio-resistant model. Micrococcal nuclease digestion demonstrated the presence of compact chromatin architecture coupled with decreased levels of histone PTMs H3K9ac, H3K27 ac, and H3S10pK14ac in the G0/G1 and mitotic cell cycle phases of the radio-resistant cells. Further investigation revealed that the radio-resistant population possessed high HDAC and low HAT activity, thus making them suitable candidates for HDAC inhibitor-based radio-sensitization. Treatment of radio-resistant cells with HDAC inhibitor valproic acid led to the retention of γH2AX and decreased H3S10p after irradiation. Additionally, an analysis of 38 human patient samples obtained from 8 different tumor types showed variable tumor HDAC activity, thus demonstrating inter-tumoral epigenetic heterogeneity in a patient population. CONCLUSION: The study revealed that an imbalance of HAT and HDAC activities led to the loss of site-specific histone acetylation and chromatin compaction as breast cancer cells acquired radio-resistance. Due to variation in the tumor HDAC activity among patients, our report suggests performing a prior assessment of the tumor epigenome to maximize the benefit of HDAC inhibitor-based radio-sensitization.


Asunto(s)
Neoplasias de la Mama/radioterapia , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Ácido Valproico/farmacología , Acetilación/efectos de la radiación , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral/efectos de la radiación , Cromatina/efectos de la radiación , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Epigénesis Genética/genética , Epigénesis Genética/efectos de la radiación , Femenino , Inhibidores de Histona Desacetilasas/metabolismo , Histonas/efectos de la radiación , Humanos , Incidencia , Recurrencia Local de Neoplasia/epidemiología , Fenotipo , Radioterapia/efectos adversos , Ácido Valproico/metabolismo
15.
Lasers Med Sci ; 35(2): 299-306, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31494789

RESUMEN

Differentiation potential of stem cells into various lineages makes these cells as promising sources to treat multiple diseases. In this regard, the use of different strategies and protocols to increase differentiation capacity is highly demanded. Low-level laser therapy, a relatively noninvasive technique, has the capacity to accelerate the healing of numerous injuries and a portion of restorative capacity could be correlated with the stem cell activation and differentiation. Several mechanisms have been diagnosed to participate in orientation of stem cells to functional mature cells. Among them, the status of DNA methylation orchestrates the maintenance of tissue-specific gene expression during the differentiation procedure. DNA methylation is a momentous event in embryogenesis and functional maturation. This review article highlighted the potency of laser irradiation (low-level intensities) in the differentiation of stem cells by modulation of methylation. The analysis of these modalities could help us to understand the underlying mechanisms participating in the therapeutic effects of photobiomodulation.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Terapia por Luz de Baja Intensidad , Células Madre/citología , Células Madre/efectos de la radiación , Animales , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Desmetilación/efectos de la radiación , Humanos , Células Madre/metabolismo
16.
Environ Mol Mutagen ; 61(1): 176-192, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31177562

RESUMEN

The genetic material of every organism exists within the context of regulatory networks that govern gene expression, collectively called the epigenome. Epigenetics has taken center stage in the study of diseases such as cancer and diabetes, but its integration into the field of environmental health is still emerging. As the Environmental Mutagenesis and Genomics Society (EMGS) celebrates its 50th Anniversary this year, we have come together to review and summarize the seminal advances in the field of environmental epigenomics. Specifically, we focus on the role epigenetics may play in multigenerational and transgenerational transmission of environmentally induced health effects. We also summarize state of the art techniques for evaluating the epigenome, environmental epigenetic analysis, and the emerging field of epigenome editing. Finally, we evaluate transposon epigenetics as they relate to environmental exposures and explore the role of noncoding RNA as biomarkers of environmental exposures. Although the field has advanced over the past several decades, including being recognized by EMGS with its own Special Interest Group, recently renamed Epigenomics, we are excited about the opportunities for environmental epigenetic science in the next 50 years. Environ. Mol. Mutagen. 61:176-192, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Exposición a Riesgos Ambientales , Epigenoma , Animales , Metilación de ADN/efectos de los fármacos , Metilación de ADN/efectos de la radiación , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Salud Ambiental , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/efectos de la radiación , Epigenoma/efectos de los fármacos , Epigenoma/efectos de la radiación , Epigenómica/métodos , Humanos , Neoplasias/etiología , Neoplasias/genética , ARN no Traducido/genética
17.
Genes (Basel) ; 10(11)2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31739546

RESUMEN

Esophageal cancer (EC) is the seventh most common cancer worldwide and the sixth leading cause of death, according to Globocan 2018. Despite efforts made for therapeutic advances, EC remains highly lethal, portending a five-year overall survival of just 15-20%. Hence, the discovery of new molecular targets that might improve therapeutic efficacy is urgently needed. Due to high proliferative rates and also the limited oxygen and nutrient diffusion in tumors, the development of hypoxic regions and consequent activation of hypoxia-inducible factors (HIFs) are a common characteristic of solid tumors, including EC. Accordingly, HIF-1α, involved in cell cycle deregulation, apoptosis, angiogenesis induction and proliferation in cancer, constitutes a predictive marker of resistance to radiotherapy (RT). Deregulation of epigenetic mechanisms, including aberrant DNA methylation and histone modifications, have emerged as critical factors in cancer development and progression. Recently, interactions between epigenetic enzymes and HIF-1α transcription factors have been reported. Thus, further insight into hypoxia-induced epigenetic alterations in EC may allow the identification of novel therapeutic targets and predictive biomarkers, impacting on patient survival and quality of life.


Asunto(s)
Hipoxia de la Célula/genética , Neoplasias Esofágicas/radioterapia , Regulación Neoplásica de la Expresión Génica , Tolerancia a Radiación/genética , Microambiente Tumoral/efectos de la radiación , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética/efectos de la radiación , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Código de Histonas , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pronóstico , Calidad de Vida , Resultado del Tratamiento , Microambiente Tumoral/genética
18.
Oxid Med Cell Longev ; 2019: 3010342, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781332

RESUMEN

Radiotherapy (RT) is currently one of the leading treatments for various cancers; however, it may cause damage to healthy tissue, with both short-term and long-term side effects. Severe radiation-induced normal tissue damage (RINTD) frequently has a significant influence on the progress of RT and the survival and prognosis of patients. The redox system has been shown to play an important role in the early and late effects of RINTD. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the main sources of RINTD. The free radicals produced by irradiation can upregulate several enzymes including nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), lipoxygenases (LOXs), nitric oxide synthase (NOS), and cyclooxygenases (COXs). These enzymes are expressed in distinct ways in various cells, tissues, and organs and participate in the RINTD process through different regulatory mechanisms. In recent years, several studies have demonstrated that epigenetic modulators play an important role in the RINTD process. Epigenetic modifications primarily contain noncoding RNA regulation, histone modifications, and DNA methylation. In this article, we will review the role of oxidative stress and epigenetic mechanisms in radiation damage, and explore possible prophylactic and therapeutic strategies for RINTD.


Asunto(s)
Epigénesis Genética/efectos de la radiación , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias/enzimología , Estrés Oxidativo/efectos de la radiación , Oxidorreductasas/biosíntesis , Traumatismos por Radiación/enzimología , Radioterapia/efectos adversos , Animales , Humanos , Neoplasias/patología , Neoplasias/radioterapia , Traumatismos por Radiación/patología , Especies Reactivas de Oxígeno/metabolismo
19.
C R Biol ; 342(5-6): 175-185, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31471143

RESUMEN

There is increasing evidence that environmental exposures early in fetal development influence phenotype and give rise to disease risk in the next generations. We previously found that lifelong exposure to uranium, an environmental contaminant, induced subtle testicular and hormonal defects; however, its impact on the reproductive system of multiple subsequent generations was unexplored. Herein, rats were exposed to a supra-environmental and non-nephrotoxic concentration of natural uranium (U, 40 mg·L-1 of drinking water) from postnatal life to adulthood (F0), during fetal life (F1), and only as the germ cells from the F1 generation (F2). General parameters (reproductive indices, epididymal weight) and sperm morphology were assessed in the three generations. In order to identify the epigenetic effects of U, we analyzed also the global DNA methylation profile and described for the first time the mRNA expression levels of markers involved in the (de)methylation system in rat epididymal spermatozoa. Our results showed that the F1 generation had a reduced pregnancy rate. Despite the sperm number being unmodified, sperm morphology was affected in the F0, F1 and F2 generations. Morphometric analysis for ten parameters was detailed for each generation. No common parameter was detected between the three generations, but the head and the middle-piece were always modified in the abnormal sperms. In the F1 U-exposed generation, the total number of abnormal sperm was significantly higher than in the F0 and F2 generations, suggesting that fetal exposure to uranium was more deleterious. This effect could be associated with the pregnancy rate to produce the F2 generation. Interestingly, global DNA methylation analysis showed also hypomethylation in the sperm DNA of the last F2 generation. In conclusion, our study demonstrates that uranium can induce morphological sperm defects and changes in the DNA methylation level after multigenerational exposure. The epigenetic transgenerational inheritance of U-induced reproductive defects should be assessed in further experiments.


Asunto(s)
Metilación de ADN/efectos de la radiación , Espermatozoides/efectos de la radiación , Espermatozoides/ultraestructura , Uranio/toxicidad , Animales , ADN/efectos de la radiación , Contaminación Ambiental , Epidídimo/patología , Epidídimo/efectos de la radiación , Epigénesis Genética/efectos de la radiación , Femenino , Feto/efectos de la radiación , Células Germinativas/efectos de la radiación , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Reproducción/efectos de la radiación
20.
Mol Cells ; 42(7): 530-545, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31362469

RESUMEN

Tumor cells can vary epigenetically during ionizing irradiation (IR) treatment. These epigenetic variegations can influence IR response and shape tumor aggressiveness. However, epigenetic disturbance of histones after IR, implicating in IR responsiveness, has been elusive. Here, we investigate whether altered histone modification after IR can influence radiation responsiveness. The oncogenic CXCL12 mRNA and protein were more highly expressed in residual cancer cells from a hepatoma heterotopic murine tumor microenvironment and coculture of human hepatoma Huh7 and normal IMR90 cells after radiation. H3K4 methylation was also enriched and H3K9 methylation was decreased at its promoter region. Accordingly, invasiveness and the subpopulation of aggressive CD133+/CD24- cells increased after IR. Histone demethylase inhibitor IOX1 attenuated CXCL12 expression and the malignant subpopulation, suggesting that responses to IR can be partially mediated via histone modifications. Taken together, radiation-induced histone alterations at the CXCL12 promoter in hepatoma cells are linked to CXCL12 upregulation and increased aggressiveness in the tumor microenvironment.


Asunto(s)
Carcinoma Hepatocelular/genética , Quimiocina CXCL12/genética , Histonas/metabolismo , Neoplasias Hepáticas/genética , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Microambiente Tumoral/genética , Regulación hacia Arriba/genética , Animales , Bencilaminas , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Quimiocina CXCL12/metabolismo , Ciclamas , Epigénesis Genética/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Compuestos Heterocíclicos/farmacología , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Desnudos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Procesamiento Proteico-Postraduccional/efectos de la radiación , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Proteínas Recombinantes/farmacología , Transcripción Genética/efectos de la radiación , Microambiente Tumoral/efectos de la radiación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...