Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.655
Filtrar
1.
Elife ; 122024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722314

RESUMEN

Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.


The backs of our eyes are lined with retinal pigment epithelial cells (or RPE cells for short). These cells provide nutrition to surrounding cells and contain a pigment called melanin that absorbs excess light that might interfere with vision. By doing so, they support the cells that receive light to enable vision. However, with age, RPE cells can become damaged and less able to support other cells. This can lead to a disease called age-related macular degeneration, which can cause blindness. One potential way to treat this disease is to transplant healthy RPE cells into eyes that have lost them. These healthy cells can be grown in the laboratory from human pluripotent stem cells, which have the capacity to turn into various specialist cells. Stem cell-derived RPE cells growing in a dish contain varying amounts of melanin, resulting in some being darker than others. This raised the question of whether pigment levels affect the function of RPE cells. However, it was difficult to compare single cells containing various amounts of pigment as most previous studies only analyzed large numbers of RPE cells mixed together. Nakai-Futatsugi et al. overcame this hurdle using a technique called Automated Live imaging and cell Picking System (also known as ALPS). More than 2300 stem cell-derived RPE cells were photographed individually and the color of each cell was recorded. The gene expression of each cell was then measured to investigate whether certain genes being switched on or off affects pigment levels and cell function. Analysis did not find a consistent pattern of gene expression underlying the pigmentation of RPE cells. Even gene expression related to the production of melanin was only slightly linked to the color of the cells. These findings suggests that the RPE cell color fluctuates and is not primarily determined by which genes are switched on or off. Future experiments are required to determine whether the findings are the same for RPE cells grown naturally in the eyes and whether different pigment levels affect their capacity to protect the rest of the eye.


Asunto(s)
Células Madre Pluripotentes Inducidas , Pigmentación , Epitelio Pigmentado de la Retina , Transcriptoma , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Pigmentación/genética , Perfilación de la Expresión Génica , Células Cultivadas , Diferenciación Celular/genética
2.
Sci Rep ; 14(1): 10044, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698112

RESUMEN

Clinical studies using suspensions or sheets of human pluripotent cell-derived retinal pigment epithelial cells (hiPSC-RPE) have been conducted globally for diseases such as age-related macular degeneration. Despite being minimally invasive, cell suspension transplantation faces challenges in targeted cell delivery and frequent cell leakage. Conversely, although the RPE sheet ensures targeted delivery with correct cell polarity, it requires invasive surgery, and graft preparation is time-consuming. We previously reported hiPSC-RPE strips as a form of quick cell aggregate that allows for reliable cell delivery to the target area with minimal invasiveness. In this study, we used a microsecond pulse laser to create a local RPE ablation model in cynomolgus monkey eyes. The hiPSC-RPE strips were transplanted into the RPE-ablated and intact sites. The hiPSC-RPE strip stably survived in all transplanted monkey eyes. The expansion area of the RPE from the engrafted strip was larger at the RPE injury site than at the intact site with no tumorigenic growth. Histological observation showed a monolayer expansion of the transplanted RPE cells with the expression of MERTK apically and collagen type 4 basally. The hiPSC-RPE strip is considered a beneficial transplantation option for RPE cell therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Macaca fascicularis , Epitelio Pigmentado de la Retina , Animales , Epitelio Pigmentado de la Retina/trasplante , Epitelio Pigmentado de la Retina/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Degeneración Macular/patología
3.
Mitochondrion ; 76: 101882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599302

RESUMEN

Mitochondria are dynamic organelles that alter their morphological characteristics in response to functional needs. Therefore, mitochondrial morphology is an important indicator of mitochondrial function and cellular health. Reliable segmentation of mitochondrial networks in microscopy images is a crucial initial step for further quantitative evaluation of their morphology. However, 3D mitochondrial segmentation, especially in cells with complex network morphology, such as in highly polarized cells, remains challenging. To improve the quality of 3D segmentation of mitochondria in super-resolution microscopy images, we took a machine learning approach, using 3D Trainable Weka, an ImageJ plugin. We demonstrated that, compared with other commonly used methods, our approach segmented mitochondrial networks effectively, with improved accuracy in different polarized epithelial cell models, including differentiated human retinal pigment epithelial (RPE) cells. Furthermore, using several tools for quantitative analysis following segmentation, we revealed mitochondrial fragmentation in bafilomycin-treated RPE cells.


Asunto(s)
Células Epiteliales , Imagenología Tridimensional , Aprendizaje Automático , Mitocondrias , Humanos , Mitocondrias/metabolismo , Células Epiteliales/metabolismo , Imagenología Tridimensional/métodos , Epitelio Pigmentado de la Retina/citología , Procesamiento de Imagen Asistido por Computador/métodos , Línea Celular
4.
Molecules ; 29(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675608

RESUMEN

Increased oxidative stress is one of the critical pathologies inducing age-related macular degeneration (AMD), characterized by retinal pigment epithelial (RPE) cell damage and death. The unbalanced acetylation and deacetylation of histones have been implicated in AMD pathogenesis or hydrogen peroxide (H2O2)-induced cell damage. Therefore, strategies aimed at controlling the balance between acetylation and deacetylation may effectively protect RPE cells from oxidative damage. Artemisinin is an antimalarial lactone drug derived from Artemisia annua, with antioxidant activity known to modulate histone acetylation in the brain, but its effect on the retina is unknown. In this study, we aimed to investigate whether Artemisinin exerts a cytoprotective effect on oxidative stress-induced apoptosis in RPE cells by regulating histone acetylation. We hypothesized that Artemisinin confers cytoprotection toward H2O2-induced apoptosis in RPE cells through this mechanism. In the present study, we found that Artemisinin at a sub-clinic dosage of 20 µM inhibited the H2O2-induced cell viability decrease and B-cell lymphoma 2 (Bcl-2) protein level decrease and attenuated the H2O2-induced decrease in the histone H4 lysine (Lys) 8 acetylation [Acetyl-H4 (Lys 8)] level in the retinal RPE cell line D407. As expected, histone deacetylase inhibitor Trichostatin A at the concentration of 250 nM increased the Acetyl-H4 (Lys 8) level in D407 cells and attenuated the H2O2-induced cell viability decrease and apoptosis. Similar findings were obtained using adult RPE (ARPE)19 cells, another human RPE cell line, and primary human RPE cell cultures. In conclusion, these results confirmed our hypothesis and indicated that Artemisinin attenuated H2O2-induced apoptosis in apparent correlation with the increase in the Acetyl-H4 (Lys 8) level, which is associated with gene transcription and cell survival. By modulating histone acetylation, Artemisinin may restore the balance between acetylation and deacetylation and enhance the resistance and survival of RPE cells under oxidative stress. Our study provides novel mechanistic insights into the effect of Artemisinin on histone acetylation and apoptosis in RPE cells and supports the potential application of Artemisinin in the prevention and/or treatment of AMD.


Asunto(s)
Apoptosis , Artemisininas , Supervivencia Celular , Histonas , Peróxido de Hidrógeno , Lisina , Estrés Oxidativo , Epitelio Pigmentado de la Retina , Humanos , Histonas/metabolismo , Apoptosis/efectos de los fármacos , Acetilación/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Artemisininas/farmacología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Lisina/metabolismo , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Citoprotección/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo
5.
J Clin Lab Anal ; 38(7): e25031, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514901

RESUMEN

BACKGROUND: Primary cilia are static microtubule-based structures protruding from the cell surface and present on most vertebrate cells. The appropriate localization of phospholipids is essential for cilia formation and stability. INPP5E is a cilia-localized inositol 5-phosphatase; its deletion alters the phosphoinositide composition in the ciliary membrane, disrupting ciliary function. METHODS: The EGFP-2xP4MSidM, PHPLCδ1-EGFP, and SMO-tRFP plasmids were constructed by the Gateway system to establish a stable RPE1 cell line. The INPP5E KO RPE1 cell line was constructed with the CRISPR/Cas9 system. The localization of INPP5E and the distribution of PI(4,5)P2 and PI4P were examined by immunofluorescence microscopy. The fluorescence intensity co-localized with cilia was quantified by ImageJ. RESULTS: In RPE1 cells, PI4P is localized at the ciliary membrane, whereas PI(4,5)P2 is localized at the base of cilia. Knocking down or knocking out INPP5E alters this distribution, resulting in the distribution of PI(4,5)P2 along the ciliary membrane and the disappearance of PI4P from the cilia. Meanwhile, PI(4,5)P2 is located in the ciliary membrane labeled by SMO-tRFP. CONCLUSIONS: INPP5E regulates the distribution of phosphoinositide on cilia. PI(4,5)P2 localizes at the ciliary membrane labeled with SMO-tRFP, indicating that ciliary pocket membrane contains PI(4,5)P2, and phosphoinositide composition in early membrane structures may differ from that in mature ciliary membrane.


Asunto(s)
Cilios , Monoéster Fosfórico Hidrolasas , Cilios/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Humanos , Línea Celular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas CRISPR-Cas , Fosfolípidos/metabolismo
6.
Front Biosci (Landmark Ed) ; 28(7): 148, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37525909

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) participates in diverse physiological processes and contributes to many pathological conditions. Epithelial-mesenchymal transition (EMT) of retinal pigmental epithelial (RPE) cells plays an essential role in retinal-related diseases, and transforming growth factor ß2 (TGF-ß2) is known to induce EMT in vitro. However, the effect of TGF-ß2 on m6A methylation in RPE cells is not yet known. METHODS: RNA-seq and MeRIP-seq were performed to analyze changes at the mRNA and m6A levels after TGF-ß2 treatment of human ARPE-19 cells. mRNA levels and total m6A levels were subsequently validated. RESULTS: Sequencing revealed 929 differentially expressed genes and 7328 differentially methylated genes after TGF-ß2 treatment. Conjoint analysis identified 290 genes related to microtubule cytoskeleton, focal adhesion, ECM-receptor interaction, cell division, cell cycle, AGE-RAGE, PI3K-Akt and cGMP-PKG pathways. Further analysis revealed that 12 EMT-related genes were altered at the mRNA and m6A levels after TGF-ß2 treatment (CALD1, CDH2, FN1, MMP2, SPARC, KRT7, CLDN3, ELF3, FGF1, LOXL2, SHROOM3 and TGFBI). Moreover, the total m6A level was also reduced. CONCLUSIONS: This study revealed the transcriptional profiling of m6A modification induced by TGF-ß2 in RPE cells. Novel connections were discovered between m6A modification and TGF-ß2-induced EMT, suggesting that m6A may play crucial roles in the EMT process.


Asunto(s)
Adenosina , Transición Epitelial-Mesenquimal , Epitelio Pigmentado de la Retina , Factor de Crecimiento Transformador beta2 , Humanos , Factor de Crecimiento Transformador beta2/farmacología , Epitelio Pigmentado de la Retina/citología , Línea Celular , RNA-Seq , Metilación , Adenosina/análogos & derivados
7.
Biochem Biophys Res Commun ; 658: 88-96, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37027909

RESUMEN

Renewal of retinal photoreceptor outer segments is conducted through daily shedding of distal photoreceptor outer segment tips and subsequent their phagocytosis by the adjacent retinal pigment epithelium (RPE) monolayer. Dysregulation of the diurnal clearance of photoreceptor outer segment tips has been implicated in age-related retinal degeneration, but it remains to be clarified how the circadian phagocytic activity of RPE cells is modulated by senescence. In this study, we used the human RPE cell line ARPE-19 to investigate whether hydrogen peroxide (H2O2)-induced senescence in ARPE-19 cells alters the circadian rhythm of their phagocytic activity. After synchronization of the cellular circadian clock by dexamethasone treatment, the phagocytic activity of normal ARPE-19 cells exhibited significant 24-h oscillation, but this oscillation was modulated by senescence. The phagocytic activity of senescent ARPE-19 cells increased constantly throughout the 24-h period, which still exhibited blunted circadian oscillation, accompanied by an alteration in the rhythmic expression of circadian clock genes and clock-controlled phagocytosis-related genes. The expression levels of REV-ERBα, a molecular component of the circadian clock, were constitutively increased in senescent ARPE-19 cells. Furthermore, pharmacological activation of REV-ERBα by its agonist SR9009 enhanced the phagocytic activity of normal ARPE-19 cells and increased the expression of clock-controlled phagocytosis-related genes. Our present findings extend to understand the role of circadian clock in the alteration of phagocytic activity in RPE during aging. Constitutive enhancement of phagocytic activity of senescent RPE may contribute to age-related retinal degeneration.


Asunto(s)
Senescencia Celular , Ritmo Circadiano , Fagocitosis , Epitelio Pigmentado de la Retina , Humanos , Línea Celular , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Proteínas CLOCK/genética , Dexametasona/farmacología , Peróxido de Hidrógeno/farmacología , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Factores de Tiempo
8.
Acta Ophthalmol ; 100 Suppl 273: 3-59, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36343937

RESUMEN

Age-related macular degeneration (AMD) is an eye disease, which causes impaired vision that can lead to blindness. The incidence of AMD increases with age. Retinal pigment epithelial (RPE) cells maintain retinal homeostasis and support the functionality of photoreceptors. In the pathogenesis of AMD, the degeneration of the RPE cells precedes photoreceptor cell death. RPE cells are susceptible to oxidative stress, and chronic inflammation involving nucleotide-binding domain, leucine-rich repeat and pyrin domain 3 (NLRP3) inflammasome activation and impaired autophagy are challenges faced by aged RPE cells in AMD. There are two types of AMD, dry (85-90%) and wet (10-15%) disease forms. Choroidal neovascularization is typical for wet AMD, and anti-vascular endothelial growth factor (anti-VEGF) injections are used to prevent the progression of the disease but there is no curative treatment. There is no cure for the dry disease form, but antioxidants have been proposed as a potential treatment option. Ageing is the most important risk factor of AMD, and tobacco smoke is the most important environmental risk factor that can be controlled. Hydroquinone is a cytotoxic, immunotoxic, carcinogenic and pro-oxidative component of tobacco smoke. The aim of this PhD thesis was to study hydroquinone-induced oxidative stress and NLRP3 inflammasome activation in human RPE cells (ARPE-19 cells). An age-related eye disease study (AREDS) formulation (incl. omega-3 fatty acids, vitamin C and E, copper, zinc, lutein and zeaxanthin), which is clinically investigated p.o. dosing combination of dietary supplements for AMD patients, has been evaluated as a possible treatment and restraining option for AMD. Resvega (4.1.1, Table 2) is a similar kind of product to AREDS with added resveratrol, and many of the components incorporated within Resvega can be considered as belonging to the normal antioxidative defence system of the retina. Another aim was to evaluate the effects of Resvega on hydroquinone-induced oxidative stress or NLRP3 inflammasome activation induced by impaired protein clearance. The results of this study reveal that hydroquinone elevated the activity of NADPH oxidase which subsequently mediated the production of reactive oxygen species (ROS) and predisposed RPE cells to degeneration by reducing levels of vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). Hydroquinone induced an NLRP3-independent IL-18 release and NLRP3 accumulation inside the IL-1α-primed cells. Resvega treatment reduced the extent of hydroquinone-induced ROS production and NLRP3 inflammasome activation evoked by impaired protein clearance. Thus, Resvega alleviated hydroquinone- and impaired protein clearance-induced stress in human RPE cells, but more studies are needed, for example, to reveal the most optimal route of administration for targeting the cells in the retina, since both oxidative stress and NLRP3 inflammasome activation are important contributors to the development of AMD and represent significant treatment targets.


Asunto(s)
Células Epiteliales , Estrés Oxidativo , Contaminación por Humo de Tabaco , Degeneración Macular Húmeda , Humanos , Antioxidantes/metabolismo , Factores de Crecimiento Endotelial/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Hidroquinonas , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/patología , Contaminación por Humo de Tabaco/efectos adversos , Degeneración Macular Húmeda/metabolismo
9.
Int Immunopharmacol ; 110: 108893, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35978498

RESUMEN

Diabetic retinopathy (DR) is a complication of diabetes mellitus (DM) that can cause visual impairment and blindness. Inflammation plays a critical role in its development and progression. Retinal pigment epithelium (RPE) cells secrete inflammatory factors that modulate ocular immune response. However, it is unclear how diabetes regulates the expression of inflammatory factors in RPE cells. In this study, streptozocin (STZ) was applied to induce diabetic alterations in the retinas of mice, and RPE cells were further purified to profile gene expressions. The IL-17 signaling pathway was the most significantly enriched and the only enriched inflammation pathway in the profile via KEGG analysis. IL-17A induced the expression of targeted genes, which was enhanced by high glucose levels, suggesting a synergistic effect of IL-17A and high glucose. High glucose did not affect the mRNA stability of IL-17A-targeted genes or the activity of IL-17A signaling transduction, but it boosted the histone acetylation on IL-17A-targeted genes. Curcumin, an inhibitor of histone acetyltransferase, abolished high glucose-enhanced histone acetylation of IL-17A-targeted genes and blocked the promotion of high glucose levels on gene expression induced by IL-17A. In conclusion, high glucose levels promote IL-17A-induced gene expression via histone acetylation in RPE cells.


Asunto(s)
Glucosa/metabolismo , Interleucina-17/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Acetilación , Animales , Retinopatía Diabética/metabolismo , Expresión Génica , Histonas/metabolismo , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/citología
10.
Exp Eye Res ; 222: 109158, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35780904

RESUMEN

Epithelial-mesenchymal transition (EMT) of retinal pigment epithelium (RPE) cells is critically involved in the occurrence of subretinal fibrosis. This study aimed to investigate the role of enhancer of zeste homolog 2 (EZH2) in EMT of human primary RPE cells and the underlying mechanisms of the anti-fibrotic effect of EZH2 suppression. Primary cultures of human RPE cells were treated with TGF-ß1 for EMT induction. EZH2 was silenced by siRNA to assess the expression levels of epithelial and fibrotic markers using qRT-PCR, Western blot, and immunofluorescence staining assay. Furthermore, the cellular migration, proliferation and barrier function of RPE cells were evaluated. RNA-sequencing analyses were performed to investigate the underlying mechanisms of EZH2 inhibition. Herein, EZH2 silencing up-regulated epithelial marker ZO-1 and downregulated fibrotic ones including α-SMA, fibronectin, and collagen 1, alleviating EMT induced by TGF-ß1 in RPE cells. Moreover, silencing EZH2 inhibited cellular migration and proliferation, but didn't affect cell apoptosis. Additionally, EZH2 suppression contributed to improved barrier functions after TGF-ß1 stimulation. The results from RNA sequencing suggested that the anti-fibrotic effect of EZH2 inhibition was associated with the MAPK signaling pathway, cytokine-cytokine receptor interaction, and the TGF-beta signaling pathway. Our findings provide evidence that the suppression of EZH2 might reverse EMT and maintain the functions of RPE cells. EZH2 could be a potential therapeutic avenue for subretinal fibrosis.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Células Epiteliales , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1 , Proteína Potenciadora del Homólogo Zeste 2/genética , Células Epiteliales/metabolismo , Fibrosis , Humanos , Epitelio Pigmentado de la Retina/citología , Factor de Crecimiento Transformador beta1/farmacología
11.
Clin Immunol ; 241: 109080, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35878734

RESUMEN

OBJECTIVE: Uveitis is an intraocular inflammatory disease. Epigenetics has been associated with its pathogenesis. However, the role of N6-methyladenosine (m6A) in uveitis has not been reported. We aimed to examine the role of m6A and its regulatory mechanism in experimental autoimmune uveitis (EAU). METHODS: The mRNA expression of m6A-related methylase and demethylase of retinal pigment epithelium (RPE) between mice with EAU and control mice was detected by RT-qPCR. The overall m6A level of ARPE-19 cells was detected by an m6A quantitative detection kit. Cell proliferation was observed by CCK-8 assays, and ELISA was used to test the secretion of inflammatory factors. The expression of tight junction proteins and the target genes of FTO were examined by western blotting and MeRIP-PCR. RESULTS: A decreased expression of FTO in RPE cells was found in mice with EAU. Increased overall m6A%, proliferation of cells and secretion of IL-6, IL-8 and MCP-1 were found after FTO knockdown in ARPE-19 cells. However, ZO-1 and occludin protein expression was decreased. ATF4 protein expression was decreased in the FTO knockdown (shFTO) group as compared with the control (shNC) group. In contrast, the m6A level of ATF4 was elevated, as shown by MeRIP-PCR. Functional analysis showed that p-STAT3 expression was increased in the shFTO group, and the change in occludin expression was reversed in ATF4 rescue experiment. CONCLUSION: FTO may affect the translation of ATF4 by regulating its m6A level, resulting in the increased expression of p-STAT3 and inflammatory factors, and leading to uveitis.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Epitelio Pigmentado de la Retina , Uveítis , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Citocinas/metabolismo , Ratones , Ocludina/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Uniones Estrechas/metabolismo , Uveítis/genética
12.
J Biol Chem ; 298(9): 102286, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868562

RESUMEN

In the mammalian retina, a metabolic ecosystem exists in which photoreceptors acquire glucose from the choriocapillaris with the help of the retinal pigment epithelium (RPE). While the photoreceptor cells are primarily glycolytic, exhibiting Warburg-like metabolism, the RPE is reliant on mitochondrial respiration. However, the ways in which mitochondrial metabolism affect RPE cellular functions are not clear. We first used the human RPE cell line, ARPE-19, to examine mitochondrial metabolism in the context of cellular differentiation. We show that nicotinamide induced rapid differentiation of ARPE-19 cells, which was reversed by removal of supplemental nicotinamide. During the nicotinamide-induced differentiation, we observed using quantitative PCR, Western blotting, electron microscopy, and metabolic respiration and tracing assays that (1) mitochondrial gene and protein expression increased, (2) mitochondria became larger with more tightly folded cristae, and (3) mitochondrial metabolism was enhanced. In addition, we show that primary cultures of human fetal RPE cells responded similarly in the presence of nicotinamide. Furthermore, disruption of mitochondrial oxidation of pyruvate attenuated the nicotinamide-induced differentiation of the RPE cells. Together, our results demonstrate a remarkable effect of nicotinamide on RPE metabolism. We also identify mitochondrial respiration as a key contributor to the differentiated state of the RPE and thus to many of the RPE functions that are essential for retinal health and photoreception.


Asunto(s)
Diferenciación Celular , Mitocondrias , Niacinamida , Epitelio Pigmentado de la Retina , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Glucosa/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Niacinamida/farmacología , Ácido Pirúvico/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo
13.
Biomolecules ; 12(6)2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35740973

RESUMEN

Dedifferentiation and proliferation of retinal pigment epithelial (RPE) cells are characteristics of retinal diseases. Dedifferentiation is likely associated with changes of inwardly rectifying potassium (Kir) channels. The roles of Kir4.2 channels in viability, and proliferation of cultured RPE cells were investigated. Gene expression levels were determined using qRT-PCR. RPE cells expressed Kir2.1, 2.2, 2.4, 3.2, 4.1, 4.2, 6.1, and 7.1 mRNA. Kir4.2 protein was verified by immunocytochemistry and Western blotting. Kir4.2 mRNA in cultured cells was upregulated by hypoxia (hypoxia mimetic CoCl2 or 0.2% O2) and extracellular hyperosmolarity (addition of high NaCl or sucrose). Kir4.2 mRNA was suppressed by vascular endothelial growth factor (VEGF), blood serum, and thrombin whereas platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and transforming growth factor-ß1 (TGF-ß1) increased it. Hyperosmotic Kir4.2 gene expression was mediated by TGF-ß1 receptor signaling while hypoxic gene transcription was dependent on PDGF receptor signaling. VEGF receptor-2 blockade increased Kir4.2 mRNA level under control, hyperosmotic, and hypoxic conditions. SiRNA-mediated knockdown of Kir4.2 decreased the cell viability and proliferation under control and hyperosmotic conditions. Kir4.2 channels play functional roles in maintaining the viability and proliferation of RPE cells. Downregulation of Kir4.2 by VEGF, via activation of VEGF receptor-2 and induction of blood-retinal barrier breakdown, may contribute to decreased viability of RPE cells under pathological conditions.


Asunto(s)
Células Epiteliales , Canales de Potasio de Rectificación Interna , Epitelio Pigmentado de la Retina , Factor de Crecimiento Transformador beta1 , Factor A de Crecimiento Endotelial Vascular , Hipoxia de la Célula , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Regulación hacia Abajo , Células Epiteliales/metabolismo , Humanos , Canales de Potasio de Rectificación Interna/metabolismo , ARN Mensajero/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Epitelio Pigmentado de la Retina/citología , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Clin Transl Med ; 12(3): e759, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35297555

RESUMEN

INTRODUCTION: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS: We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS: To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS: Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.


Asunto(s)
Autofagia , Proteínas del Ojo , Células Madre Pluripotentes Inducidas , Agregado de Proteínas , Retinitis Pigmentosa , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Ribonucleoproteínas Nucleares Pequeñas
15.
Oxid Med Cell Longev ; 2022: 2265725, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198094

RESUMEN

Oxidative stress plays a critical role in age-related macular degeneration (AMD), and epithelial-mesenchymal transition (EMT) is involved in this process. The aim of this study was to investigate the protective effects of luteolin, a natural flavonoid with strong antioxidant activity, on H2O2-induced EMT in ARPE-19 cells. ARPE-19 cells were incubated with H2O2 at 200 µΜ to induce oxidative stress-associated injury. Cell viability assay showed that luteolin at 20 and 40 µM significantly promoted cell survival in H2O2-treated ARPE-19 cells. Luteolin also markedly protected ARPE-19 cells from H2O2-induced apoptosis. Cell migration assay presented that luteolin significantly reduced H2O2-induced migration in APRE-19 cells. EMT in ARPE-19 cells was detected by western blotting and immunofluorescence. The results showed that H2O2 significantly upregulated the expression of α-SMA and vimentin and downregulated the expression of ZO-1 and E-cadherin, while cells pretreated with luteolin showed a reversal. Meanwhile, the assessment of effects of luteolin on the Nrf2 pathway indicated that luteolin promoted Nrf2 nuclear translocation and upregulated the expressions of HO-1 and NQO-1. In addition, luteolin significantly increased the activities of SOD and GSH-PX and decreased intracellular levels of ROS and MDA in H2O2-treated ARPE-19 cells. Meanwhile, we observed that the expression of TGF-ß2, p-AKT, and p-GSK-3ß was upregulated in H2O2-treated ARPE-19 cells and downregulated in luteolin-treated cells, revealing that luteolin inhibited the activation of the AKT/GSK-3ß pathway. However, these effects of luteolin were all annulled by transfecting ARPE-19 cells with Nrf2 siRNA. Our current data collectively indicated that inhibition of luteolin on EMT was induced by oxidative injury in ARPE-19 cell through the Nrf2 and AKT/GSK-3ß pathway, suggesting that luteolin could be a potential drug for the treatment of dry AMD.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Luteolina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antioxidantes/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Epitelio Pigmentado de la Retina/citología , Transducción de Señal/efectos de los fármacos
16.
Bioengineered ; 13(3): 4773-4785, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35139773

RESUMEN

The expression of METTL14 is significantly reduced in patients with retinitis pigmentosa (RP). To clarify the significance of the N6-methyladenosine (m6A) RNA modification in RP, we examined phagocytosis, apoptosis, and cell cycle distribution in a human RPE cell line, ARPE-19, following lentivirus-mediated knockdown of METTL14. Differentially expressed genes and changes in m6A level were evaluated by RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq), respectively. The results showed that phagocytosis and proliferation were decreased whereas apoptosis was increased in RPE cells by METTL14 silencing. We found that METTL14 directly regulated m6A level and the expression of MAP2, as determined by RNA-seq, MeRIP-seq, MeRIP quantitative PCR, and the RNA pull-down assay. Additionally, MAP2 could bind to neuronal differentiation (NEUROD)1, a pathogenic gene in RPE-associated diseases. A family member of the YTH domain, (YTHDF)2 was recognized as an m6A reader of MAP2 mRNA. MAP2 overexpression had the same effects as METTL14 knockdown in RPE cells. Thus, METTL14 regulates the expression of MAP2 via the modification of m6A, resulting in the dysregulation of NEUROD1 and pathologic changes in RPE cells. These findings suggest that therapeutic strategies targeting the m6A modification of MAP2 or the METTL14/YTHDF2/MAP2/NEUROD1 signaling axis may be effective in the treatment of RPE-associated ocular diseases.


Asunto(s)
Metiltransferasas , Proteínas Asociadas a Microtúbulos , Epitelio Pigmentado de la Retina , Adenosina/análogos & derivados , Adenosina/metabolismo , Humanos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ARN/metabolismo , Epitelio Pigmentado de la Retina/citología
17.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163068

RESUMEN

MerTK (Mer Tyrosine Kinase) is a cell surface receptor that regulates phagocytosis of photoreceptor outer segments (POS) in retinal pigment epithelial (RPE) cells. POS phagocytosis is impaired in several pathologies, including diabetes. In this study, we investigate whether hyperglycemic conditions may affect MerTK expression and activation in ARPE-19 cells, a retinal pigment epithelial cellular model. ARPE-19 cells were cultured in standard (CTR) or high-glucose (HG) medium for 24 h. Then, we analyzed: mRNA levels and protein expression of MerTK and ADAM9, a protease that cleaves the extracellular region of MerTK; the amount of cleaved Mer (sMer); and the ability of GAS6, a MerTK ligand, to induce MerTK phosphorylation. Since HG reduces miR-126 levels, and ADAM9 is a target of miR-126, ARPE-19 cells were transfected with miR-126 inhibitor or mimic; then, we evaluated ADAM9 expression, sMer, and POS phagocytosis. We found that HG reduced expression and activation of MerTK. Contextually, HG increased expression of ADAM9 and the amount of sMer. Overexpression of miR-126 reduced levels of sMer and improved phagocytosis in ARPE-19 cells cultured with HG. In this study, we demonstrate that HG compromises MerTK expression and activation in ARPE-19 cells. Our results suggest that HG up-regulates ADAM9 expression, leading to increased shedding of MerTK. The consequent rise in sMer coupled to reduced expression of MerTK impairs binding and internalization of POS in ARPE-19 cells.


Asunto(s)
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Glucosa/efectos adversos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Epitelio Pigmentado de la Retina/citología , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Regulación hacia Abajo , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , MicroARNs/genética , Fagocitosis , Fosforilación , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo
18.
Stem Cell Reports ; 17(2): 289-306, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35030321

RESUMEN

Regenerative medicine relies on basic research outcomes that are only practical when cost effective. The human eyeball requires the retinal pigment epithelium (RPE) to interface the neural retina and the choroid at large. Millions of people suffer from age-related macular degeneration (AMD), a blinding multifactor genetic disease among RPE degradation pathologies. Recently, autologous pluripotent stem-cell-derived RPE cells were prohibitively expensive due to time; therefore, we developed a faster reprogramming system. We stably induced RPE-like cells (iRPE) from human fibroblasts (Fibs) by conditional overexpression of both broad plasticity and lineage-specific transcription factors (TFs). iRPE cells displayed critical RPE benchmarks and significant in vivo integration in transplanted retinas. Herein, we detail the iRPE system with comprehensive single-cell RNA sequencing (scRNA-seq) profiling to interpret and characterize its best cells. We anticipate that our system may enable robust retinal cell induction for basic research and affordable autologous human RPE tissue for regenerative cell therapy.


Asunto(s)
Reprogramación Celular , Fibroblastos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Reprogramación Celular/efectos de los fármacos , Disulfuros/farmacología , Fibroblastos/citología , Regulación de la Expresión Génica , Humanos , Alcaloides Indólicos/farmacología , Aprendizaje Automático , Niacinamida/farmacología , Ratas , Retina/citología , Retina/metabolismo , Retina/patología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/trasplante , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
EMBO J ; 41(1): e108843, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981518

RESUMEN

Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.


Asunto(s)
Cilios/metabolismo , Septinas/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/citología , Transducción de Señal
20.
Sci Rep ; 12(1): 722, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031635

RESUMEN

Following its association with dyslexia in multiple genetic studies, the KIAA0319 gene has been extensively investigated in different animal models but its function in neurodevelopment remains poorly understood. We developed the first human cellular knockout model for KIAA0319 in RPE1 retinal pigment epithelia cells via CRISPR-Cas9n to investigate its role in processes suggested but not confirmed in previous studies, including cilia formation and cell migration. We observed in the KIAA0319 knockout increased cilia length and accelerated cell migration. Using Elastic Resonator Interference Stress Microscopy (ERISM), we detected an increase in cellular force for the knockout cells that was restored by a rescue experiment. Combining ERISM and immunostaining we show that RPE1 cells exert highly dynamic, piconewton vertical pushing forces through actin-rich protrusions that are surrounded by vinculin-rich pulling sites. This protein arrangement and force pattern has previously been associated to podosomes in other cells. KIAA0319 depletion reduces the fraction of cells forming these actin-rich protrusions. Our results suggest an involvement of KIAA0319 in cilia biology and cell-substrate force regulation.


Asunto(s)
Comunicación Celular/genética , Comunicación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Cilios/genética , Cilios/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Epitelio Pigmentado de la Retina/citología , Actinas/metabolismo , Sistemas CRISPR-Cas , Línea Celular , Humanos , Microscopía de Interferencia , Modelos Genéticos , Podosomas/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Vinculina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...