Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Mar Drugs ; 22(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38667780

RESUMEN

Approximately 75,000 tons of different sea urchin species are globally harvested for their edible gonads. Applying a circular economy approach, we have recently demonstrated that non-edible parts of the Mediterranean Sea urchin Paracentrotus lividus can be fully valorized into high-value products: antioxidant pigments (polyhydroxynaphthoquinones-PHNQs) and fibrillar collagen can be extracted to produce innovative biomaterials for biomedical applications. Can waste from other edible sea urchin species (e.g., Sphaerechinus granularis) be similarly valorised? A comparative study on PHNQs and collagen extraction was conducted. PHNQ extraction yields were compared, pigments were quantified and identified, and antioxidant activities were assessed (by ABTS assay) and correlated to specific PHNQ presence (i.e., spinochrome E). Similarly, collagen extraction yields were evaluated, and the resulting collagen-based biomaterials were compared in terms of their ultrastructure, degradation kinetics, and resistance to compression. Results showed a partially similar PHNQ profile in both species, with significantly higher yield in P. lividus, while S. granularis exhibited better antioxidant activity. P. lividus samples showed higher collagen extraction yield, but S. granularis scaffolds showed higher stability. In conclusion, waste from different species can be successfully valorised through PHNQ and collagen extraction, offering diverse applications in the biomedical field, according to specific technical requirements.


Asunto(s)
Antioxidantes , Colágeno , Paracentrotus , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Colágeno/química , Paracentrotus/química , Naftoquinonas/química , Naftoquinonas/aislamiento & purificación , Erizos de Mar/química , Residuos , Materiales Biocompatibles/química , Alimento Perdido y Desperdiciado
2.
Food Chem ; 449: 139184, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579651

RESUMEN

Fresh sea urchin (Paracentrotus lividus) gonads are a delicacy with short seasonal availability, very often heterogeneous in size and intrinsic characteristics. This study aimed to valorise this resource through the preparation of canned products (with/without Porphyra spp.) and evaluate their physicochemical and sensory quality (3-12 months). Canning contributed to a decrease in protein, K and most carotenoids contents; and a concentration of lipids, ash, Na and Se levels. A simulated 12-month ageing led to decrease the protein and ß-carotene contents; and the Na and lutein levels concentration. The macroalgae addition resulted in an orange, darker and less soft product, with higher carbohydrates, Na, Se and carotenoids contents. A 25 g-dose contributes to significant daily intakes of protein (8-9%), EPA+DHA (47-53%), I (35-62%) and Se (30-47%). The products were commercially stable/sterile and had good sensory acceptance. Overall, canning constitutes a strategy to provide a nutritionally balanced product available all year-round.


Asunto(s)
Gónadas , Paracentrotus , Animales , Gónadas/química , Gónadas/metabolismo , Paracentrotus/química , Humanos , Conservación de Alimentos/métodos , Carotenoides/análisis , Carotenoides/química , Erizos de Mar/química , Valor Nutritivo
3.
Nature ; 623(7985): 193-201, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880360

RESUMEN

Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.


Asunto(s)
Microscopía por Crioelectrón , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Erizos de Mar , Intercambiadores de Sodio-Hidrógeno , Animales , Masculino , Adenilil Ciclasas/metabolismo , AMP Cíclico/metabolismo , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Concentración de Iones de Hidrógeno , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/ultraestructura , Potenciales de la Membrana , Multimerización de Proteína , Erizos de Mar/química , Erizos de Mar/metabolismo , Erizos de Mar/ultraestructura , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/ultraestructura , Motilidad Espermática , Espermatozoides/química , Espermatozoides/metabolismo , Espermatozoides/ultraestructura
4.
Nature ; 623(7985): 202-209, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880361

RESUMEN

The newly characterized sperm-specific Na+/H+ exchanger stands out by its unique tripartite domain composition1,2. It unites a classical solute carrier unit with regulatory domains usually found in ion channels, namely, a voltage-sensing domain and a cyclic-nucleotide binding domain1,3, which makes it a mechanistic chimera and a secondary-active transporter activated strictly by membrane voltage. Our structures of the sea urchin SpSLC9C1 in the absence and presence of ligands reveal the overall domain arrangement and new structural coupling elements. They allow us to propose a gating model, where movements in the voltage sensor indirectly cause the release of the exchanging unit from a locked state through long-distance allosteric effects transmitted by the newly characterized coupling helices. We further propose that modulation by its ligand cyclic AMP occurs by means of disruption of the cytosolic dimer interface, which lowers the energy barrier for S4 movements in the voltage-sensing domain. As SLC9C1 members have been shown to be essential for male fertility, including in mammals2,4,5, our structure represents a potential new platform for the development of new on-demand contraceptives.


Asunto(s)
AMP Cíclico , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico , Erizos de Mar , Espermatozoides , Animales , Masculino , Regulación Alostérica , AMP Cíclico/metabolismo , Fertilidad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ligandos , Dominios Proteicos , Multimerización de Proteína , Erizos de Mar/química , Erizos de Mar/metabolismo , Espermatozoides/química , Espermatozoides/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
5.
BMC Pharmacol Toxicol ; 24(1): 11, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823675

RESUMEN

Neurotoxicity is a severe side effect of platinum compounds used for cancer chemotherapy such as Cisplatin. This neurotoxicity leads to severe cognitive and nervous dysfunction, therefore, limiting the dose of Cisplatin and compromising the treatment protocol.The present study investigates the neuroprotective effect of Sea Urchins which is a marine animal known for its rich bioactive compounds. Male Sprague Dawley rats received Cisplatin (2 mg/kg body weight) for 4 weeks, two times per week, followed by Sea Urchin extracts (50 and 100 mg/kg body weight) twice weekly for 4 weeks.Results show that rats treated with Urchin's extracts showed a significant improvement in the thermal (heat and cold) sensitivity compared to untreated rats. Liver enzymes Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) and Urea levels were also significantly decreased back to normal following treatment with sea urchin extracts. Brain tissue oxidative stress marker Nitric oxide (NO) and lipid peroxidation marker Malondialdehyde (MDA) increased significantly in the cisplatin-treated rats while the reduced glutathione levels (GSH) and catalase activity (CAT) showed a significant decrease. Treatment with sea Urchin extracts reversed these changes.Histological and immunohistochemical examination of the cerebral cortex reveled degenerative changes such as karyopyknosis and shrunken necrotic ghost like neurons in the cisplatin treated groups. There was also strong positive Glial fibrillary acidic protein (GFAP) reactivity and a negative B-cell leukemia/lymphoma 2 protein (Bcl2) reaction in most apparent neurons, indicating strong apoptotic changes. Treatment with Urchin extracts reversed these changes. Quantification of cerebral cortex neurons also revealed the strong effect of the extracts. Cisplatin treated groups showed 3708 cells/ mm3 compared to 8091 cells/mm3 in the normal rats. Extract treatment increased the neuronal numbers to almost normal levels. Quantification of the Immuno-histochemical expression of GFAP showed an increase by 10-folds after cisplatin administration. A remarkable decline from the cisplatin group was seen in the extract treated groups.In Conclusion, Sea Urchins extracts possess a strong neuroprotective activity and could provide a novel therapeutic method to prevent Cisplatin-induced neurotoxicity.


Asunto(s)
Productos Biológicos , Cisplatino , Fármacos Neuroprotectores , Animales , Masculino , Ratas , Antioxidantes/farmacología , Peso Corporal , Cisplatino/efectos adversos , Glutatión/metabolismo , Peroxidación de Lípido , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo , Ratas Sprague-Dawley , Erizos de Mar/química , Productos Biológicos/farmacología
6.
Mar Drugs ; 20(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36286435

RESUMEN

This review presents literature data: the history of the discovery of quinoid compounds, their biosynthesis and biological activity. Special attention is paid to the description of the quinoid pigments of the sea urchins Scaphechinus mirabilis (from the family Scutellidae) and Strongylocentrotus intermedius (from the family Strongylocentrotidae). The marine environment is considered one of the most important sources of natural bioactive compounds with extremely rich biodiversity. Primary- and some secondary-mouthed animals contain very high concentrations of new biologically active substances, many of which are of significant potential interest for medical purposes. The quinone pigments are products of the secondary metabolism of marine animals, can have complex structures and become the basis for the development of new natural products in echinoids that are modulators of chemical interactions and possible active ingredients in medicinal preparations. More than 5000 chemical compounds with high pharmacological potential have been isolated and described from marine organisms. There are three well known ways of naphthoquinone biosynthesis-polyketide, shikimate and mevalonate. The polyketide pathway is the biosynthesis pathway of various quinones. The shikimate pathway is the main pathway in the biosynthesis of naphthoquinones. It should be noted that all quinoid compounds in plants and animals can be synthesized by various ways of biosynthesis.


Asunto(s)
Productos Biológicos , Mirabilis , Naftoquinonas , Policétidos , Strongylocentrotus , Animales , Strongylocentrotus/metabolismo , Mirabilis/metabolismo , Ácido Mevalónico/metabolismo , Erizos de Mar/química , Naftoquinonas/química , Policétidos/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/metabolismo
7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 1): 356-358, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35695108

RESUMEN

Using X-ray scattering, we measured detailed maps of the diffuse scattering intensity distribution and a number of phonon dispersion branches for a single crystal of inorganically formed natural calcite and for high-quality mesocrystals of biogenic calcite from a Mediterranean sea urchin spine. A comparison shows that the known differences in the mechanical properties between the `strong' biogenic and `brittle' abiotic material should be attributed to the mesoscopic architecture of the crystal rather than to a modification of the calcite crystal structure. The data are rationalized by comparing them to the results of ab initio model calculations of lattice dynamics. For the mesocrystal, they are augmented by the evaluation of the faceting of the constituent nanocrystals.


Asunto(s)
Carbonato de Calcio , Nanopartículas , Animales , Carbonato de Calcio/química , Nanopartículas/química , Erizos de Mar/química
8.
Mar Drugs ; 19(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064550

RESUMEN

Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma. EchA is used as a pharmaceutical drug. Methods: A comprehensive literature and patent search review was undertaken using PubMed, as well as Google Scholar and Espacenet search engines to review these areas. Conclusions: In the bloodstream, EchA can mediate cellular responses, act as a radical scavenger, and activate the glutathione pathway. It decreases ROS imbalance, prevents and limits lipid peroxidation, and enhances mitochondrial functions. Most importantly, EchA contributes to the modulation of the immune system. EchA can regulate the generation of regulatory T cells, inhibit pro-inflammatory IL-1ß and IL-6 cytokine production, while slightly reducing IL-8, TNF-α, INF-α, and NKT, thus correcting immune imbalance. These characteristics suggest that EchA is a candidate drug to alleviate the cytokine storm syndrome (CSS).


Asunto(s)
Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/uso terapéutico , Erizos de Mar/química , Animales , Síndrome de Liberación de Citoquinas/metabolismo , Humanos , Inmunidad/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
Food Chem ; 361: 129866, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34091399

RESUMEN

This study investigated the in vitro bioactivities of extracts obtained from viscera, spines, shells, and gonads of Stomopneustes variolaris using subcritical water extraction (SWE) at 110 °C, 150 °C, 190 °C, and 230 °C and Soxhlet extraction. The highest amounts of phenolics (22.68 ± 0.05 mg GAE/g), flavonoids (27.11 ± 0.10 mg RE/g), and proteins (40.25 ± 0.84 mg BSA/g) were recorded from gonads at 230 °C, whereas maximum sugar content (23.38 ± 1.30 mg glucose/g) was in viscera at 150 °C. Gonads at 230 °C exhibited the highest DPPH activity (78.68 ± 0.18%), whereas viscera at 150 °C exhibited the highest ABTS+ (98.92 ± 1.27%) and protein denaturation inhibition activity (37.13 ± 9.94%). Viscera at 110 °C claimed the highest amylase inhibition (42.46 ± 0.83%), and spines at 150 °C had the highest anticancer activity (IC50 = 767.47 µg/mL). SWE achieved superior results in bioactive compound recovery and detected higher levels of bioactivities (p < 0.05). Results suggest processing sea urchin extracts via SWE has potential application to the food and pharmaceutical industries.


Asunto(s)
Productos Biológicos/farmacología , Fraccionamiento Químico/métodos , Erizos de Mar/química , Animales , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Productos Biológicos/aislamiento & purificación , Evaluación Preclínica de Medicamentos , Flavonoides/análisis , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Tecnología Química Verde , Células HeLa , Humanos , Hipoglucemiantes/aislamiento & purificación , Hipoglucemiantes/farmacología , Fenoles/análisis , Fenoles/aislamiento & purificación , Fenoles/farmacología , Agua/química
10.
Asian Pac J Cancer Prev ; 22(5): 1365-1373, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34048163

RESUMEN

Cancer is an uncontrolled multiplication of cells. The desire efficacy and severe toxicity of current anticancer drugs urge exploring and investigating a better alternative to existing chemotherapeutics. Natural products of marine origin are excellent sources of potential new drugs of enhanced biological activities. OBJECTIVES: Thus, the cytotoxic effects along with investigating the mode of cell death exerted by fractions, AP-9, AP-THR, DS-8 and DS-9 fraction of Acanthaster planci, Diadema setosum sp., on the human cervical cancer cell line, HeLa. METHODS: The cytotoxicity of fractions has determined by using an MTS assay. The early and late apoptosis was studied by using the High content Screening (HCS) instrument. RESULTS: The four fractions produced effective cytotoxicity effects with IC50 values at 72hr of less than 20 µg/ml in the order of AP-9 > DS-9 > APTHR-9 > DS-8. The fraction s exhibited cytotoxicity via mediating apoptotic mode of cell death. The early apoptosis by exposure of phosphatidylserine to the outer leaflet of the plasma membrane and late apoptosis due to the presence of green stain (DNA fragmentation) in treated cells. CONCLUSION: The potent bioactive compounds might be responsible for inducing apoptosis in cancer cells and, thus, the potential to be a successful candidate for exploring upcoming chemotherapeutic drugs.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Erizos de Mar/química , Estrellas de Mar/química , Extractos de Tejidos/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Animales , Proliferación Celular , Femenino , Células HeLa , Humanos , Neoplasias del Cuello Uterino/patología
11.
Biosci Biotechnol Biochem ; 85(3): 675-686, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33589896

RESUMEN

Gangliosides (GLSs) are ubiquitously distributed in all tissues but highly enriched in nervous system. Currently, it is unclear how exogenous GLSs regulate neuritogenesis, although neural functions of endogenous GLSs are widely studied. Herein, we evaluated the neuritogenic activities and mechanism of sea urchin gangliosides (SU-GLSs) in vitro. These different glycosylated SU-GLSs, including GM4(1S), GD4(1S), GD4(2A), and GD4(2G), promoted differentiation of NGF-induced PC12 cells in a dose-dependent and structure-selective manner. Sulfate-type and disialo-type GLSs exhibited stronger neuritogenic effects than monosialoganglioside GM1. Furthermore, SU-GLSs might act as neurotrophic factors possessing neuritogenic effects, via targeting tyrosine-kinase receptors (TrkA and TrkB) and activating MEK1/2-ERK1/2-CREB and PI3K-Akt-CREB pathways. This activation resulted in increased expression and secretion of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). These pathways were verified by specific inhibitors. Our results confirmed the neuritogenic functions of SU-GLS in vitro and indicated their potential roles as natural nutrition for neuritogenesis.


Asunto(s)
Gangliósidos/farmacología , Neuritas/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor trkA/metabolismo , Receptor trkB/metabolismo , Erizos de Mar/química , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Neuronas/citología , Neuronas/metabolismo , Células PC12 , Proteínas Quinasas/metabolismo , Ratas
12.
Mar Drugs ; 19(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419049

RESUMEN

The high-performance liquid chromatography method coupled with diode array and mass spectrometric detector (HPLC-DAD-MS) method for quinonoid pigment identification and quantification in sea urchin samples was developed and validated. The composition and quantitative ratio of the quinonoid pigments of the shells of 16 species of sea urchins, collected in the temperate (Sea of Japan) and tropical (South-China Sea) climatic zones of the Pacific Ocean over several years, were studied. The compositions of the quinonoid pigments of sea urchins Maretia planulata, Scaphechinus griseus, Laganum decagonale and Phyllacanthus imperialis were studied for the first time. A study of the composition of the quinonoid pigments of the coelomic fluid of ten species of sea urchins was conducted. The composition of quinonoid pigments of Echinarachnius parma jelly-like egg membrane, of Scaphechinus mirabilis developing embryos and pluteus, was reported for the first time. In the case of Scaphechinus mirabilis, we have shown that the compositions of pigment granules of the shell epidermis, coelomic fluid, egg membrane, developing embryos and pluteus are different, which should enable a fuller understanding of the functions of pigments at different stages of life.


Asunto(s)
Óvulo/química , Erizos de Mar/química , Animales , Cromatografía Líquida de Alta Presión , Embrión no Mamífero , Epidermis/química , Espectrometría de Masas , Océano Pacífico , Pigmentos Biológicos , Quinonas/química , Erizos de Mar/clasificación , Erizos de Mar/crecimiento & desarrollo
13.
Food Funct ; 11(11): 9912-9923, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33094781

RESUMEN

Neurodevelopment of fetal and infant brains is an essential process not just during infancy but throughout the whole life. Previous studies have verified the neurotrophic effects of GM1 and milk gangliosides (GLSs) on brain development. However, it remains unclear whether the maternal GLS diet during the perinatal period can program the brain development of young offspring. Sea urchin, as a popular sea food, is a good resource of marine-derived GLSs. This study evaluated the effects of maternal diet with sea urchin gangliosides (SU-GLSs) on the utero and neonatal neurodevelopment and compared their efficacy with common GM1 and sialic acid (SA). Herein, SU-GLSs, as well as GM1 and SA, were orally administered to pregnant mice from pregnancy to lactation. The morphological and functional development of the brain was evaluated in postnatal 15-day (P15) mice. SU-GLSs were superior to GM1 and SA in enhancing neuritogenesis, spinous dendrite growth and synapse function in the hippocampus and cortex of P15 mice. Mechanistic studies found that SU-GLSs upregulated the expressions of NGF and BDNF more effectively than GM1 and SA. Furthermore, different glycosylated SU-GLSs promoted the neural differentiation of Neuro2a cells in a structure-selective manner. Sulfate-type and disialo-type GLSs were more effective than GM1. These findings suggested that maternal SU-GLS diet could promote the neurodevelopment of young offspring and would be a potential nutrition enriching substance for the early developing brain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Encéfalo/crecimiento & desarrollo , Gangliósidos/metabolismo , Factor de Crecimiento Nervioso/genética , Embarazo/metabolismo , Erizos de Mar/metabolismo , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dieta , Femenino , Gangliósidos/química , Regulación del Desarrollo de la Expresión Génica , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Humanos , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Factor de Crecimiento Nervioso/metabolismo , Embarazo/genética , Erizos de Mar/química
14.
Molecules ; 25(20)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33080948

RESUMEN

Echinochrome A (Ech A, 1) is one of the main pigments of several sea urchin species and is registered in the Russian pharmacopeia as an active drug substance (Histochrome®), used in the fields of cardiology and ophthalmology. In this study, Ech A degradation products formed during oxidation by O2 in air-equilibrated aqueous solutions were identified, isolated, and structurally characterized. An HPLC method coupled with diode-array detection (DAD) and mass spectrometry (MS) was developed and validated to monitor the Ech A degradation process and identify the appearing compounds. Five primary oxidation products were detected and their structures were proposed on the basis of high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as 7-ethyl-2,2,3,3,5,7,8-heptahydroxy-2,3-dihydro-1,4-naphthoquinone (2), 6-ethyl-5,7,8-trihydroxy-1,2,3,4-tetrahydronaphthalene-1,2,3,4-tetraone (3), 2,3-epoxy-7-ethyl-2,3-dihydro-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone (4), 2,3,4,5,7-pentahydroxy-6-ethylinden-1-one (5), and 2,2,4,5,7-pentahydroxy-6-ethylindane-1,3-dione (6). Three novel oxidation products were isolated, and NMR and HR-ESI-MS methods were used to establish their structures as 4-ethyl-3,5,6-trihydroxy-2-oxalobenzoic acid (7), 4-ethyl-2-formyl-3,5,6-trihydroxybenzoic acid (8), and 4-ethyl-2,3,5-trihydroxybenzoic acid (9). The known compound 3-ethyl-2,5-dihydroxy-1,4-benzoquinone (10) was isolated along with products 7-9. Compound 7 turned out to be unstable; its anhydro derivative 11 was obtained in two crystal forms, the structure of which was elucidated using X-ray crystallography as 7-ethyl-5,6-dihydroxy-2,3-dioxo-2,3-dihydrobenzofuran-4-carboxylic acid and named echinolactone. The chemical mechanism of Ech A oxidative degradation is proposed. The in silico toxicity of Ech A and its degradation products 2 and 7-10 were predicted using the ProTox-II webserver. The predicted median lethal dose (LD50) value for product 2 was 221 mg/kg, and, for products 7-10, it appeared to be much lower (≥2000 mg/kg). For Ech A, the predicted toxicity and mutagenicity differed from our experimental data.


Asunto(s)
Naftoquinonas/química , Estrés Oxidativo/efectos de los fármacos , Erizos de Mar/química , Animales , Cromatografía Líquida de Alta Presión , Humanos , Espectroscopía de Resonancia Magnética , Naftoquinonas/aislamiento & purificación , Naftoquinonas/metabolismo , Naftoquinonas/farmacología , Oxidación-Reducción/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray
15.
J Food Sci ; 85(11): 3679-3689, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32990386

RESUMEN

Sea urchin Mesocentrotus nudus, Glyptocidaris crenularis, and Strongylocentrotus intermedius gonad protein isolates (mnGPIs, gcGPIs, and siGPIs) were extracted by isoelectric solubilization/precipitation (ISP) from the defatted gonads, and their functional properties were compared. Sodium dodecyl sulfate polyacrylamide gel electrophoresis results showed the similar protein pattern between each protein isolate and defatted gonad, indicating the high efficiency of ISP processing for protein recovery. Amino acid profileconfirmed that the mnGPIs and siGPIs could be potential sources of essential amino acid in nature. As regard to functional properties, mnGPIs showed higher water- and oil- holding capacities followed bysiGPIs and gcGPIs and all protein isolates presented great foaming property. As for emulsifying activity index (EAI), mnGPIs, gcGPIs, and siGPIs showed the minimum solubility and EAI at pH 5, 3, and 4, respectively, and behaved a pH-dependent manner. The gcGPIs revealed the highest EAI from pH 6 to 8 among the samples. In addition, circular dichroism showed increased content of ß-sheet at the expense of α-helix and ß-turn, suggesting the structure denaturation of the protein isolates. Indeed, no statistical difference was observed between secondary structure of mnGPIs and siGPIs. Moreover, ISP processing increased free sulfhydryl content of sea urchin protein isolates, but no difference was observed among the samples. Furthermore, siGPIs revealed the highest amount of total sulfhydryl and disulfide bonds, whereas both defatted gonads and protein isolates from G. crenularis presented the maximum surface hydrophobicity. These results suggest that gonad protein isolates from three species of sea urchin possess various functionalities and therefore can be potentially applied in food system. PRACTICAL APPLICATION: Sea urchin M. nudus, G. crenularis, and S. intermedius gonads are edible, whereas the functional properties of protein isolates from sea urchin gonad remain unknown. In this case, the extraction and comparison of three species of sea urchin gonad protein isolates will not only confirm functional properties but also screen food ingredients with suitable functions. In this study, functionalities of protein isolates derived from M. nudus, G. crenularis, and S. intermedius gonads would provide potential application in bakery food and meat products or as emulsifier candidates in food system.


Asunto(s)
Gónadas/química , Proteínas/química , Erizos de Mar/química , Animales , Erizos de Mar/clasificación , Strongylocentrotus/química
16.
Mar Drugs ; 18(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751216

RESUMEN

In early 2018, a large easterly storm hit the East Anglian coast of the UK, colloquially known as the 'Beast from the East', which also resulted in mass strandings of benthic organisms. There were subsequent instances of dogs consuming such organisms, leading to illness and, in some cases, fatalities. Epidemiological investigations identified paralytic shellfish toxins (PSTs) as the cause, with toxins present in a range of species and concentrations exceeding 14,000 µg STX eq./kg in the sunstar Crossaster papposus. This study sought to better elucidate the geographic spread of any toxicity and identify any key organisms of concern. During the summers of 2018 and 2019, various species of benthic invertebrates were collected from demersal trawl surveys conducted across a variety of locations in the North Sea. An analysis of the benthic epifauna using two independent PST testing methods identified a 'hot spot' of toxic organisms in the Southern Bight, with a mean toxicity of 449 µg STX eq./kg. PSTs were quantified in sea chervil (Alcyonidium diaphanum), the first known detection in the phylum bryozoan, as well as eleven other new vectors (>50 µg STX eq./kg), namely the opisthobranch Scaphander lignarius, the starfish Anseropoda placenta, Asterias rubens, Luidia ciliaris, Astropecten irregularis and Stichastrella rosea, the brittlestar Ophiura ophiura, the crustaceans Atelecyclus rotundatus and Munida rugosa, the sea mouse Aphrodita aculeata, and the sea urchin Psammechinus miliaris. The two species that showed consistently high PST concentrations were C. papposus and A. diaphanum. Two toxic profiles were identified, with one dominated by dcSTX (decarbamoylsaxitoxin) associated with the majority of samples across the whole sampling region. The second profile occurred only in North-Eastern England and consisted of mostly STX (Saxitoxin) and GTX2 (gonyautoxin 2). Consequently, this study highlights widespread and variable levels of PSTs in the marine benthos, together with the first evidence for toxicity in a large number of new species. These findings highlight impacts to 'One Health', with the unexpected sources of toxins potentially creating risks to animal, human and environmental health, with further work required to assess the severity and geographical/temporal extent of these impacts.


Asunto(s)
Organismos Acuáticos/química , Saxitoxina/análogos & derivados , Intoxicación por Mariscos , Animales , Crustáceos/química , Monitoreo del Ambiente , Mar del Norte , Saxitoxina/análisis , Erizos de Mar/química , Estrellas de Mar/química
17.
Bioorg Chem ; 103: 104140, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763520

RESUMEN

Cyclooxygenase-2 is one of the prominent enzymes to cause an increased production of prostaglandins during inflammation and immune responses. Cyclooxygenase-2 expression is up-regulated in inflammatory conditions owing to the induction by different inflammatory stimuli including cytokines, and therefore, the expression studies of cyclooxygenase-2 in lipopolysaccharide-induced macrophage cells (RAW 264.7 cell line) could be used for screening of the compounds with anti-inflammatory potential. The present study evaluated the anti-inflammatory properties of four homologous stomopneulactones A-D, classified under the class of macrocyclic lactones isolated from the solvent extract of the long-spined sea urchin Stomopneustes variolaris (familyStomopneustidae) in the lipopolysaccharide-induced macrophages. The structures of these isolated compounds were assigned using detailed spectroscopic techniques. Stomopneulactone D bearing 5-butyl-4-hydroxy-12-oxo-1-oxa-5,9-cyclododecadienyl moiety exhibited relatively greater anti-inflammatory potentials against cyclooxygenase-2 (IC50 ~ 2 mM) and 5-lipoxygenase (IC50 2.6 mM) than those displayed by other macrocyclic lactones. The studied compounds displayed higher selectivity index values (anti-cyclooxygenase-1IC50/anti-cyclooxygenase-2IC50 > 1), which designated the selective anti-inflammatory potentials of the macrocyclic lactones against inducible inflammatory mediators than those exhibited by the anti-inflammatory agent ibuprofen (0.43). The in silico molecular modelling analyses of the stomopneulactones with cyclooxygenase-2/5-lipoxygenase enzymes recorded lowest binding energy (-7.71 and -9.60 kcal mol-1, respectively) and docking score (-8.82 and -11.12 kcal mol-1, respectively) for stomopneulactone D along with its higher electronic parameter (topological polar surface area of 72.83), which further confirmed its greater anti-inflammatory potential than other compounds in the series. Stomopneulactone D also inhibited the generation of inducible nitric oxide synthase, intracellular reactive oxygen species, along with 5-lipoxygenase and cyclooxygenase-2 in the lipopolysaccharide-stimulated macrophage cells. Additionally, the studied macrocyclic lactone decreased the mRNA expression of cyclooxygenase-2 in the inflammatory cells in dose-dependent manner, which demonstrated the therapeutic potential of stomopneulactone D in down-regulating the inflammatory pathogenesis.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/genética , Lactonas/farmacología , Compuestos Macrocíclicos/farmacología , Erizos de Mar/química , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Lactonas/química , Lactonas/aislamiento & purificación , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/aislamiento & purificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Células RAW 264.7 , Relación Estructura-Actividad
18.
Mar Drugs ; 18(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781644

RESUMEN

Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine.


Asunto(s)
Colágenos Fibrilares/farmacología , Fibroblastos/fisiología , Medicina Regenerativa , Erizos de Mar/química , Alimentos Marinos , Piel Artificial , Andamios del Tejido , Residuos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Supervivencia Celular , Cricetinae , Colágenos Fibrilares/química , Colágenos Fibrilares/aislamiento & purificación , Fibroblastos/metabolismo , Manipulación de Alimentos
19.
Mar Drugs ; 18(7)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707634

RESUMEN

Polyhydroxylated naphthoquinones (PHNQs), known as spinochromes that can be extracted from sea urchins, are bioactive compounds reported to have medicinal properties and antioxidant activity. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that pure echinochrome A exhibited a cytotoxic effect on Saos-2 cells in a dose-dependent manner within the test concentration range (15.625-65.5 µg/mL). The PHNQ extract from New Zealand sea urchin Evechinus chloroticus did not induce any cytotoxicity within the same concentration range after 21 days of incubation. Adding calcium chloride (CaCl2) with echinochrome A increased the number of viable cells, but when CaCl2 was added with the PHNQs, cell viability decreased. The effect of PHNQs extracted on mineralized nodule formation in Saos-2 cells was investigated using xylenol orange and von Kossa staining methods. Echinochrome A decreased the mineralized nodule formation significantly (p < 0.05), while nodule formation was not affected in the PHNQ treatment group. A significant (p < 0.05) increase in mineralization was observed in the presence of PHNQs (62.5 µg/mL) supplemented with 1.5 mM CaCl2. In conclusion, the results indicate that PHNQs have the potential to improve the formation of bone mineral phase in vitro, and future research in an animal model is warranted.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Huesos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Naftoquinonas/farmacología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Erizos de Mar/química , Animales , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/aislamiento & purificación , Conservadores de la Densidad Ósea/toxicidad , Huesos/metabolismo , Huesos/patología , Línea Celular Tumoral , Humanos , Hidroxilación , Naftoquinonas/química , Naftoquinonas/aislamiento & purificación , Naftoquinonas/toxicidad , Osteoblastos/metabolismo , Osteoblastos/patología , Factores de Tiempo
20.
EBioMedicine ; 55: 102775, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32403086

RESUMEN

BACKGROUND: The antibiotic resistance and biofilm formation of pathogenic microbes exacerbate the difficulties of anti-infection therapy in the clinic. The structural modification of antimicrobial peptides (AMP) is an effective strategy to develop novel anti-infective agents. METHOD: Seventeen amino acids (AA) in the longer chain of EeCentrocin 1 (from the edible sea-urchin Echinus esculentus) were truncated and underwent further modification. To produce lead peptides with low toxicity and high efficacy, the antimicrobial activity or cytotoxicity of peptides was evaluated against various multidrug-resistant bacteria/fungi or mammalian cells in vivo/ in vitro. In addition, the stability and modes of action of the lead peptide were investigated. FINDINGS: EC1-17KV displayed potent activity and an expanded antimicrobial spectrum, especially against drug-resistant gram-negative bacteria and fungi, attributable to its enhanced amphiphilicity and net charge. In addition, it exhibits bactericidal/fungicidal activity and effectively increased the animal survival rate and mitigated the histopathological damage induced by multidrug-resistant P. aeruginosa or C. albicans in infected mice or G. mellonella. Moreover, EC1-17KV had a poor ability to induce resistance in bacteria and fungi and exhibited desirable high-salt/high-temperature tolerance properties. In bacteria, EC1-17KV promoted divalent cation release to damage bacterial membrane integrity. In fungi, it changed C. albicans membrane fluidity to increase membrane permeabilization or reduced hyphal formation to suppress biofilm formation. INTERPRETATION: EC1-17KV is a promising lead peptide for the development of antimicrobial agents against antibiotic resistant bacteria and fungi. FUNDING: This work was funded by the National Natural Science Foundation of China (No. 81673483, 81803591); National Science and Technology Major Project Foundation of China (2019ZX09721001-004-005); National Key Research and Development Program of China (2018YFA0902000); "Double First-Class" University project (CPU2018GF/GY16); Natural Science Foundation of Jiangsu Province of China (No. BK20180563); and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Tensoactivos/farmacología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/síntesis química , Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Ingeniería de Proteínas/métodos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Erizos de Mar/química , Erizos de Mar/fisiología , Relación Estructura-Actividad , Tensoactivos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...