Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 414-421, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32880589

RESUMEN

The bifunctional alcohol/aldehyde dehydrogenase (AdhE) comprises both an N-terminal aldehyde dehydrogenase (AldDH) and a C-terminal alcohol dehydrogenase (ADH). In vivo, full-length AdhE oligomerizes into long oligomers known as spirosomes. However, structural analysis of AdhE is challenging owing to the heterogeneity of the spirosomes. Therefore, the domains of AdhE are best characterized separately. Here, the structure of ADH from the pathogenic Escherichia coli O157:H7 was determined to 1.65 Šresolution. The dimeric crystal structure was confirmed in solution by small-angle X-ray scattering.


Asunto(s)
Alcohol Deshidrogenasa/química , Aldehído Oxidorreductasas/química , Escherichia coli O157/enzimología , Proteínas de Escherichia coli/química , Hierro/química , NAD/química , Subunidades de Proteína/química , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cationes Bivalentes , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hierro/metabolismo , Modelos Moleculares , NAD/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
BMC Genomics ; 20(1): 196, 2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30849935

RESUMEN

BACKGROUND: Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains. RESULTS: The chromosome of NADC 6564 contained 5466 kb compared to reference strains Sakai (5498 kb) and EDL933 (5547 kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32-33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains. CONCLUSIONS: These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors.


Asunto(s)
Escherichia coli O157/genética , Microbiología de Alimentos , Genómica , Bacteriófagos/fisiología , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN/genética , Escherichia coli O157/enzimología , Escherichia coli O157/virología , Evolución Molecular , Genoma Bacteriano/genética , Islas Genómicas/genética , Operón/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
3.
Int J Med Microbiol ; 308(8): 1113-1120, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30340996

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain EDL933 encodes the single chromosomal 9-O-acetylesterase NanS, and several copies of prophage-encoded 9-O-acetylesterases (NanS-p). These enzymes have recently been shown to cleave 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2) to yield de-O-acetylated Neu5Ac, the latter of which may serve as a carbon and/or nitrogen source. In the current study, we investigated the NanS- and NanS-p-mediated digestion of synthetic O-acetylated neuraminic acids and bovine submaxillary glands mucin (BSM)-derived O-acetylneuraminic acids by high-performance thin-layer chromatography (HPTLC) and nano electrospray ionization mass spectrometry (nanoESI MS). Initial HPTLC analyses showed the expected activity of NanS and NanS-p variants for Neu5,9Ac2. However, all tested enzymes were unable to de-O-acetylate 5-N-acetyl-4-O-acetylneuraminic acid (Neu5,4 Ac2) in our test system. The nanoESI MS analysis of neuraminic acids after treatment of BSM with NanS-p gave evidence that NanS-p variants of EHEC O157:H7 strain EDL933 cleave off O-acetyl groups from mono-, di-, and tri-O-acetylated Neu5Ac and N-glycolylneuraminic acid (Neu5Gc), regardless of the carbon positions C7, C8 or C9 of the acetate esters. This enzyme activity leads to neuraminidase-accessible Neu5Ac and Neu5Gc on mucin glycans. Moreover, we could demonstrate by HPTLC analyses that recombinant Bacteroides thetaiotaomicron sialidase (BTSA-His) was able to cleave Neu5Ac and Neu5,9Ac2 from BSM and that the combination of BTSA-His with both NanS-His and NanS-p-His derivatives enhanced the release of de-O-acetylated core Neu5Ac and Neu5Gc from mammalian mucin O-glycans. Growth experiments with EHEC wildtype strain EDL933, its nanS and nanS/nanS-p1a-p7 mutant and exogenous BTSA-His in BSM demonstrated that the presence of BTSA-His enhanced growth of EDL933 and the nanS deletion mutant but not the nanS/nanS-p1a-p7 mutant. Thus, we hypothesize that the expression of sialic acid O-acetylesterases with a broad specificity could be an advantage in competition with the gut microbiota for nutrients and facilitate EHEC colonization in the human large intestine.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli O157/enzimología , Esterasas/metabolismo , Mucinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Acetilación , Animales , Bacteroides thetaiotaomicron/enzimología , Bovinos , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Esterasas/genética , Técnicas de Inactivación de Genes , Humanos , Neuraminidasa/genética , Neuraminidasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Glándula Submandibular/metabolismo
4.
J Biol Chem ; 293(44): 17188-17199, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30190327

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is one of several E. coli pathotypes that infect the intestinal tract and cause disease. Formation of the characteristic attaching and effacing lesion on the surface of infected cells causes significant remodeling of the host cell surface; however, limited information is available about changes at the protein level. Here we employed plasma membrane profiling, a quantitative cell-surface proteomics technique, to identify host proteins whose cell-surface levels are altered during infection. Using this method, we quantified more than 1100 proteins, 280 of which showed altered cell-surface levels after exposure to EHEC. 22 host proteins were significantly reduced on the surface of infected epithelial cells. These included both known and unknown targets of EHEC infection. The complement decay-accelerating factor cluster of differentiation 55 (CD55) exhibited the greatest reduction in cell-surface levels during infection. We showed by flow cytometry and Western blot analysis that CD55 is cleaved from the cell surface by the EHEC-specific protease StcE and found that StcE-mediated CD55 cleavage results in increased neutrophil adhesion to the apical surface of intestinal epithelial cells. This suggests that StcE alters host epithelial surfaces to depress neutrophil transepithelial migration during infection. This work is the first report of the global manipulation of the epithelial cell surface by a bacterial pathogen and illustrates the power of quantitative cell-surface proteomics in uncovering critical aspects of bacterial infection biology.


Asunto(s)
Antígenos CD55/metabolismo , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Infecciones por Escherichia coli/metabolismo , Escherichia coli O157/enzimología , Proteínas de Escherichia coli/metabolismo , Metaloendopeptidasas/metabolismo , Antígenos CD55/genética , Membrana Celular/genética , Membrana Celular/microbiología , Células Epiteliales/microbiología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Escherichia coli O157/fisiología , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Enfermedades Intestinales/genética , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/microbiología , Metaloendopeptidasas/genética , Neutrófilos/metabolismo , Neutrófilos/microbiología
5.
Biochemistry ; 56(6): 845-855, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28045510

RESUMEN

Heme catabolism is an important biochemical process that many bacterial pathogens utilize to acquire iron. However, tetrapyrrole catabolites can be reactive and often require further processing for transport out of the cell or conversion to another useful cofactor. In previous work, we presented in vitro evidence of an anaerobic heme degradation pathway in Escherichia coli O157:H7. Consistent with reactions that have been reported for other radical S-adenosyl-l-methionine methyltransferases, ChuW transfers a methyl group to heme by a radical-mediated mechanism and catalyzes the ß-scission of the porphyrin macrocycle. This facilitates iron release and the production of a new linear tetrapyrrole termed "anaerobilin". In this work, we describe the structure and function of ChuY, an enzyme expressed downstream from chuW within the same heme utilization operon. ChuY is structurally similar to biliverdin reductase and forms a dimeric complex in solution that reduces anaerobilin to the product we have termed anaerorubin. Steady state analysis of ChuY exhibits kinetic cooperativity that is best explained by a random addition mechanism with a kinetically preferred path for initial reduced nicotinamide adenine dinucleotide phosphate binding.


Asunto(s)
Escherichia coli O157/enzimología , Proteínas de Escherichia coli/metabolismo , Hemo/metabolismo , Modelos Moleculares , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Tetrapirroles/metabolismo , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Biocatálisis , Deuterio , Dimerización , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólisis , Estructura Molecular , Peso Molecular , NADP/metabolismo , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato , Tetrapirroles/química
6.
Biosens Bioelectron ; 92: 702-708, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27839734

RESUMEN

There is a critical and urgent demand for a simple, rapid and specific qualitative and quantitative colorimetric biosensor for the detection of the food contaminant Escherichia coli O157:H7 (E. coli O157:H7) in complex food products due to the recent outbreaks of food-borne diseases. Traditional detection techniques are time-consuming, require expensive instrumentation and are labour-intensive. To overcome these limitations, a novel, ultra-rapid visual biosensor was developed based on the ability of E. coli O157:H7 proteases to change the optical response of a surface-modified, magnetic nanoparticle-specific (MNP-specific) peptide probe. Upon proteolysis, a gradual increase in the golden color of the sensor surface was visually observed. The intensification of color was correlated with the E. coli O157:H7 concentration. The color change resulting from the dissociation of the self-assembled monolayer (SAM) was detected by the naked eye and analysed using an image analysis software (ImageJ) for the purpose of quantitative detection. This biosensor demonstrated high sensitivity and applicability, with lower limits of detection of 12CFUmL-1 in broth samples and 30-300CFUmL-1 in spiked complex food matrices. In conclusion, this approach permits the use of a disposable biosensor chip that can be mass-produced at low cost and can be used not only by food manufacturers but also by regulatory agencies for better control of potential health risks associated with the consumption of contaminated foods.


Asunto(s)
Técnicas Biosensibles/métodos , Escherichia coli O157/aislamiento & purificación , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Nanopartículas de Magnetita/química , Péptidos/química , Animales , Bovinos , Colorimetría/métodos , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/enzimología , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Lactuca/microbiología , Límite de Detección , Carne/análisis , Leche/microbiología , Péptido Hidrolasas/química , Turquía
7.
Protein Pept Lett ; 24(2): 181-187, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27894248

RESUMEN

Peptidoglycan (PG) is an essential component of the cell wall, and undergoes reconstruction by various PG hydrolases during cell growth, development and division. The murein- tripeptide (Mtp) amidase MpaA belongs to PG hydrolase family and is responsible for cleaving the γ-D-Glumeso- Dap amide bond in the Mtp released during PG turnover. The current paper reports the crystal structure of MpaA from Escherichia coli (E. coli) O157 at 2.6 Å resolution. The asymmetric unit consists of two protein molecules and each monomer represents the common α/ß fold of metallocarboxypeptidases (MCP). The Tyr133-Asp143 loop appears to mediate the entrance and binding of the substrate into the active groove. A structural comparison of MpaA with its homologue from Vibrio harveyi showed that MpaA has narrower active pocket entrance with a smaller surface opening, which is determined by the Val204-Thr211 loop. The reported structure provides a starting point for the molecular mechanism of MpaA in a significant human pathogen.


Asunto(s)
Clonación Molecular/métodos , Endopeptidasas/química , Endopeptidasas/genética , Escherichia coli O157/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Endopeptidasas/metabolismo , Escherichia coli O157/química , Escherichia coli O157/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Peptidoglicano , Unión Proteica , Estructura Secundaria de Proteína
8.
Proc Natl Acad Sci U S A ; 113(43): 12138-12143, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791000

RESUMEN

All of the heme-degrading enzymes that have been characterized to date require molecular oxygen as a cosubstrate. Escherichia coli O157:H7 has been shown to express heme uptake and transport proteins, as well as use heme as an iron source. This enteric pathogen colonizes the anaerobic space of the lower intestine in mammals, yet no mechanism for anaerobic heme degradation has been reported. Herein we provide evidence for an oxygen-independent heme-degradation pathway. Specifically, we demonstrate that ChuW is a radical S-adenosylmethionine methyltransferase that catalyzes a radical-mediated mechanism facilitating iron liberation and the production of the tetrapyrrole product we termed "anaerobilin." We further demonstrate that anaerobilin can be used as a substrate by ChuY, an enzyme that is coexpressed with ChuW in vivo along with the heme uptake machinery. Our findings are discussed in terms of the competitive advantage this system provides for enteric bacteria, particularly those that inhabit an anaerobic niche in the intestines.


Asunto(s)
Escherichia coli O157/enzimología , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Proteína O-Metiltransferasa/metabolismo , Tetrapirroles/biosíntesis , Anaerobiosis , Transporte Biológico , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Flavodoxina/metabolismo , Radicales Libres/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hierro/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Proteína O-Metiltransferasa/genética , Tetrapirroles/genética
9.
J Bacteriol ; 198(20): 2803-9, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27481927

RESUMEN

UNLABELLED: The sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, where N-acetyl- or N-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations to N-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria with O-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity of Escherichia coli NanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show that E. coli strain O157:H7 Stx prophage or prophage remnants invariably include paralogs of nanS often located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialate O-acetyl esterases, as shown by complementation of an E. coli strain K-12 nanS mutant and the unimpaired growth of an E. coli O157 nanS mutant on O-acetylated sialic acid. We further demonstrate that nanS homologs in Streptococcus spp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialate O-acetyl esterase. IMPORTANCE: The sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence indicates that diverse bacterial species use host sialic acids for adhesion or as sources of carbon and nitrogen. Our results show that the catabolism of the diacetylated form of host sialic acid requires a specialized esterase, NanS. Our results further show that nanS homologs exist in bacteria other than Escherichia coli, as well as part of toxigenic E. coli prophage. The unexpected diversity of these enzymes suggests new avenues for investigating host-bacterium interactions. Therefore, these original results extend our previous studies of nanS to include mucosal pathogens, prophage, and prophage remnants. This expansion of the nanS superfamily suggests important, although as-yet-unknown, functions in host-microbe interactions.


Asunto(s)
Acetilesterasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Acetilesterasa/química , Acetilesterasa/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli O157/química , Escherichia coli O157/enzimología , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Dominios Proteicos
10.
Artículo en Inglés | MEDLINE | ID: mdl-27570746

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important foodborne pathogen causing severe diseases in humans worldwide. Currently, there is no specific treatment available for EHEC infection and the use of conventional antibiotics is contraindicated. Therefore, identification of potential therapeutic targets and development of effective measures to control and treat EHEC infection are needed. Lipopolysaccharides (LPS) are surface glycolipids found on the outer membrane of gram-negative bacteria, including EHEC, and LPS biosynthesis has long been considered as potential anti-bacterial target. Here, we demonstrated that the EHEC rfaD gene that functions in the biosynthesis of the LPS inner core is required for the intestinal colonization and pathogenesis of EHEC in vivo. Disruption of the EHEC rfaD confers attenuated toxicity in Caenorhabditis elegans and less bacterial colonization in the intestine of C. elegans and mouse. Moreover, rfaD is also involved in the control of susceptibility of EHEC to antimicrobial peptides and host intestinal immunity. It is worth noting that rfaD mutation did not interfere with the growth kinetics when compared to the wild-type EHEC cells. Taken together, we demonstrated that mutations of the EHEC rfaD confer hypersusceptibility to host intestinal innate immunity in vivo, and suggested that targeting the RfaD or the core LPS synthesis pathway may provide alternative therapeutic regimens for EHEC infection.


Asunto(s)
Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Escherichia coli O157/enzimología , Escherichia coli O157/genética , Intestinos/inmunología , Lipopolisacáridos/biosíntesis , Eliminación de Secuencia , Actinas/inmunología , Actinas/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/metabolismo , Carbohidrato Epimerasas/inmunología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/terapia , Proteínas de Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Femenino , Humanos , Inmunidad Innata , Enfermedades Intestinales/inmunología , Enfermedades Intestinales/microbiología , Intestinos/microbiología , Intestinos/patología , Lipopolisacáridos/química , Ratones , Ratones Endogámicos C57BL , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Catelicidinas
11.
FEBS Lett ; 590(8): 1262-9, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27001440

RESUMEN

EcL-DER, the aspartate/glutamate racemase from the pathogen Escherichia coli O157, exhibits racemase activity for l-aspartate and l-glutamate. This study reports the crystal structures of apo-EcL-DER, the EcL-DER-l-aspartate and the EcL-DER-d-aspartate complexes. The EcL-DER structure contains two domains, forming pseudo-mirror symmetry in the active site. A unique catalytic pair consisting of Thr(83) and Cys(197) exists in the active site. The characteristic conformations of l-Asp and d-Asp in the active site provide a straight structural evidence for the racemization mechanism of EcL-DER. In addition, the diversity of catalytic pairs implies that PLP-independent amino acid racemases adopt various catalytic mechanisms and are classified into different subgroups.


Asunto(s)
Isomerasas de Aminoácido/química , Escherichia coli O157/enzimología , Isomerasas de Aminoácido/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Estereoisomerismo , Especificidad por Sustrato
12.
J Inorg Biochem ; 154: 103-13, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26598215

RESUMEN

As part of the machinery to acquire, internalize and utilize heme as a source of iron from the host, some bacteria possess a canonical heme oxygenase, where heme plays the dual role of substrate and cofactor, the later catalyzing the cleavage of the heme moiety using O2 and electrons, and resulting in biliverdin, carbon monoxide and ferrous non-heme iron. We have previously reported that the Escherichia coli O157:H7 ChuS protein, which is not homologous to heme oxygenases, can bind and degrade heme in a reaction that releases carbon monoxide. Here, we have pursued a detailed characterization of such heme degradation reaction using stopped-flow UV-visible absorption spectrometry, the characterization of the intermediate species formed in such reaction by EPR spectroscopy and the identification of reaction products by NMR spectroscopy and Mass spectrometry. We show that hydrogen peroxide (in molar equivalent) is the key player in the degradation reaction, at variance to canonical heme oxygenases. While the initial intermediates of the reaction of ChuS with hydrogen peroxide (a ferrous keto π neutral radical and ferric verdoheme, both identified by EPR spectroscopy) are in common with heme oxygenases, a further and unprecedented reaction step, involving the cleavage of the porphyrin ring at adjacent meso-carbons, results in the release of hematinic acid (a monopyrrole moiety identified by NMR spectroscopy), a tripyrrole product (identified by Mass spectrometry) and non-heme iron in the ferric oxidation state (identified by EPR spectroscopy). Overall, the unprecedented reaction of E. coli O157:H7 ChuS provides evidence for a novel heme degradation activity in a Gram-negative bacterium.


Asunto(s)
Escherichia coli O157/enzimología , Proteínas de Escherichia coli/química , Hemo Oxigenasa (Desciclizante)/química , Hemo/química , Proteínas de Escherichia coli/fisiología , Hemo Oxigenasa (Desciclizante)/fisiología , Peróxido de Hidrógeno/química , Hierro/química , Cinética , Maleimidas/química , Propionatos/química , Piridinas/química , Pirroles/química
13.
PLoS One ; 10(12): e0145098, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26658641

RESUMEN

Mesaconase catalyzes the hydration of mesaconate (methylfumarate) to (S)-citramalate. The enzyme participates in the methylaspartate pathway of glutamate fermentation as well as in the metabolism of various C5-dicarboxylic acids such as mesaconate or L-threo-ß-methylmalate. We have recently shown that Burkholderia xenovorans uses a promiscuous class I fumarase to catalyze this reaction in the course of mesaconate utilization. Here we show that classical Escherichia coli class I fumarases A and B (FumA and FumB) are capable of hydrating mesaconate with 4% (FumA) and 19% (FumB) of the catalytic efficiency kcat/Km, compared to the physiological substrate fumarate. Furthermore, the genomes of 14.8% of sequenced Enterobacteriaceae (26.5% of E. coli, 90.6% of E. coli O157:H7 strains) possess an additional class I fumarase homologue which we designated as fumarase D (FumD). All these organisms are (opportunistic) pathogens. fumD is clustered with the key genes for two enzymes of the methylaspartate pathway of glutamate fermentation, glutamate mutase and methylaspartate ammonia lyase, converting glutamate to mesaconate. Heterologously produced FumD was a promiscuous mesaconase/fumarase with a 2- to 3-fold preference for mesaconate over fumarate. Therefore, these bacteria have the genetic potential to convert glutamate to (S)-citramalate, but the further fate of citramalate is still unclear. Our bioinformatic analysis identified several other putative mesaconase genes and revealed that mesaconases probably evolved several times from various class I fumarases independently. Most, if not all iron-dependent fumarases, are capable to catalyze mesaconate hydration.


Asunto(s)
Escherichia coli O157/enzimología , Proteínas de Escherichia coli/metabolismo , Fumarato Hidratasa/metabolismo , Biocatálisis , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/genética , Fumarato Hidratasa/clasificación , Fumarato Hidratasa/genética , Ácido Glutámico/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Filogenia , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
14.
Int J Food Microbiol ; 189: 132-8, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25150670

RESUMEN

This work investigated the antimicrobial activity of residual endogenous plant myrosinase in Oriental and yellow mustard powders and a deoiled meal (which contained more glucosinolate than unextracted mustard powder of each type of mustard), against Escherichia coli O15:H7 during dry-fermented sausage ripening. When small amounts of "hot" mustard powder or meal containing endogenous plant myrosinase were added to fully-deodorized powders and a meal of the same type, pathogen reduction rates were enhanced. The higher glucosinolate level in the deoiled mustard meal enabled the use of 50% less mustard in dry sausage to achieve the mandatory ≥5logCFU/g reduction of E. coli O157:H7. The myrosinase-like activity present in E. coli O157:H7 contributed to glucosinolate hydrolysis in sausages with fully-deodorized, deoiled mustard meal, although the period necessary for a 5log pathogen reduction was 14d longer. Yellow mustard derivatives were more potently antimicrobial than Oriental mustard.


Asunto(s)
Escherichia coli O157/crecimiento & desarrollo , Glicósido Hidrolasas/metabolismo , Productos de la Carne/microbiología , Planta de la Mostaza/enzimología , Proteínas de Plantas/metabolismo , Animales , Antiinfecciosos/metabolismo , Recuento de Colonia Microbiana , Escherichia coli O157/enzimología , Fermentación , Manipulación de Alimentos/métodos , Glucosinolatos/biosíntesis , Planta de la Mostaza/química , Extractos Vegetales/química , Polvos , Porcinos
15.
Mol Microbiol ; 93(1): 199-211, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24846743

RESUMEN

Classical studies have focused on the role that individual regulators play in controlling virulence gene expression. An emerging theme, however, is that bacterial metabolism also plays a key role in this process. Our previous work identified a series of proteins that were implicated in the regulation of virulence. One of these proteins was AdhE, a bi-functional acetaldehyde-CoA dehydrogenase and alcohol dehydrogenase. Deletion of its gene (adhE) resulted in elevated levels of extracellular acetate and a stark pleiotropic phenotype: strong suppression of the Type Three Secretion System (T3SS) and overexpression of non-functional flagella. Correspondingly, the adhE mutant bound poorly to host cells and was unable to swim. Furthermore, the mutant was significantly less virulent than its parent when tested in vivo, which supports the hypothesis that attachment and motility are central to the colonization process. The molecular basis by which AdhE affects virulence gene regulation was found to be multifactorial, involving acetate-stimulated transcription of flagella expression and post-transcriptional regulation of the T3SS through Hfq. Our study reveals fascinating insights into the links between bacterial physiology, the expression of virulence genes, and the underlying molecular mechanism mechanisms by which these processes are regulated.


Asunto(s)
Acetatos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/patogenicidad , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Alcohol Deshidrogenasa/genética , Aldehído Oxidorreductasas/genética , Animales , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/patología , Escherichia coli O157/enzimología , Escherichia coli O157/fisiología , Proteínas de Escherichia coli/genética , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Conejos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
16.
Biochemistry ; 53(15): 2433-5, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24712300

RESUMEN

The crystal structure of a C-terminal domain of enterohemorrhagic Escherichia coli type III effector NleH2 has been determined to 2.6 Å resolution. The structure resembles those of protein kinases featuring the catalytic, activation, and glycine-rich loop motifs and ATP-binding site. The position of helix αC and the lack of a conserved arginine within an equivalent HRD motif suggested that the NleH2 kinase domain's active conformation might not require phosphorylation. The activation segment markedly contributed to the dimerization interface of NleH2, which can also accommodate the NleH1-NleH2 heterodimer. The C-terminal PDZ-binding motif of NleH2 provided bases for interaction with host proteins.


Asunto(s)
Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Quinasas/metabolismo , Escherichia coli O157/enzimología , Proteínas de Escherichia coli/química , Modelos Moleculares , Fosforilación , Estructura Secundaria de Proteína
17.
J Mol Biol ; 426(9): 1936-46, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24560694

RESUMEN

Bacterial pathogens require iron for proliferation and pathogenesis. Pseudomonas aeruginosa is a prevalent Gram-negative opportunistic human pathogen that takes advantage of immunocompromised hosts and encodes a number of proteins for uptake and utilization of iron. Here we report the crystal structures of PhuS, previously known as the cytoplasmic heme-trafficking protein from P. aeruginosa, in both the apo- and the holo-forms. In comparison to its homologue ChuS from Escherichia coli O157:H7, the heme orientation is rotated 180° across the α-γ axis, which may account for some of the unique functional properties of PhuS. In contrast to previous findings, heme binding does not result in an overall conformational change of PhuS. We employed spectroscopic analysis and CO measurement by gas chromatography to analyze heme degradation, demonstrating that PhuS is capable of degrading heme using ascorbic acid or cytochrome P450 reductase-NADPH as an electron donor and produces five times more CO than ChuS. Addition of catalase slows down but does not stop PhuS-catalyzed heme degradation. Through spectroscopic and mass spectrometry analysis, we identified the enzymatic product of heme degradation to be verdoheme. These data taken together suggest that PhuS is a potent heme-degrading enzyme, in addition to its proposed heme-trafficking function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Pseudomonas aeruginosa/enzimología , Biotransformación , Monóxido de Carbono/análisis , Cromatografía de Gases , Cristalografía por Rayos X , Escherichia coli O157/enzimología , Hemo/análogos & derivados , Modelos Moleculares , Unión Proteica , Conformación Proteica , Análisis Espectral
18.
Foodborne Pathog Dis ; 11(3): 177-85, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24328500

RESUMEN

BACKGROUND: The growth of Escherichia coli O157:H7 in contaminated dairy and other refrigerated food products due to temperature fluctuation poses a major food safety threat. Effective control or inhibition of E. coli O157:H7 growth depends on our understanding of mechanisms that regulate its growth at low temperature. We hypothesized that polynucleotide phosphorylase (PNPase) plays a critical role in E. coli O157:H7 low-temperature growth. METHODS: To test this hypothesis, the pnp deletion mutant of E. coli O157:H7 was generated using the λ Red recombinase system, and the growth and survival of wild-type and pnp deletion mutant strains were compared at low temperatures. RESULTS: The growth of pnp deletion mutant strains in Luria Broth (LB) and agar plate at 37°C was similar to their corresponding wild-type strains, while the deletion of pnp impaired E. coli O157:H7 growth in LB at 10°C and 22°C; growth impairment could be partially recovered in the mutant strains by ectopic expression of the pnp complementation plasmid, demonstrating that growth impairment was PNPase-specific. During 14 days of 10°C storage in both LB and milk, wild type strain EDL933 grew and reached >8 log10 colony-forming units per milliliter after 4 days of 10°C storage, while EDL933Δpnp gradually died off with effects more pronounced in milk, which were again mitigated by pnp overexpression. In addition, pnp deletion impaired the motility of E. coli O157:H7 but did not affect its susceptibility to H2O2. CONCLUSION: PNPase is required for the growth of E. coli O157:H7 at low temperature; PNPase thus provides a molecular target to control the growth of E. coli O157:H7, which may have important practical applications in dairy and other food industry.


Asunto(s)
Escherichia coli O157/enzimología , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/microbiología , Leche/microbiología , Polirribonucleótido Nucleotidiltransferasa/genética , Animales , Frío , Recuento de Colonia Microbiana , Escherichia coli O157/genética , Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Manipulación de Alimentos , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Humanos , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Movimiento , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Eliminación de Secuencia
19.
Methods Mol Biol ; 1022: 199-214, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23765664

RESUMEN

The outer membrane of gram-negative bacteria is stabilized by lipopolysaccharides (LPS). The O-antigenic polysaccharides of LPS are composed of repeating units that are exposed to and can interact with the environment. The glycosyltransferases that assemble these repeating units are encoded by the O-antigen gene cluster and utilize undecaprenol-phosphate-linked intermediates as natural acceptor substrates, and nucleotide sugars as donor substrates on the cytoplasmic face of the inner membrane. Many of the glycosyltransferase genes are known but the enzymatic functions of most of them remain to be identified. We describe here how the function of a recombinant glucosyltransferase WbdN from Escherichia coli O157 can be determined by NMR analysis of the enzyme product, using a synthetic acceptor substrate analog. A fluorescent acceptor substrate analog can be used in highly sensitive enzyme assays that allow the characterization of enzyme activity without the use of radioactive nucleotide sugar donor substrates.


Asunto(s)
Pruebas de Enzimas/métodos , Escherichia coli O157/enzimología , Proteínas de Escherichia coli/metabolismo , Glucosiltransferasas/metabolismo , Fluorescencia , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
20.
J Proteomics ; 80: 78-90, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23313217

RESUMEN

Triclosan is a biocidal active agent commonly used in domestic and industrial formulations. Currently, there is limited understanding of the mechanisms involved in triclosan tolerance in Escherichia coli O157. The aim of this study was to identify the differences between a triclosan susceptible E. coli O157:H19 isolate (minimum inhibitory concentration; MIC 6.25 µg/ml) and its triclosan tolerant mutant (MIC>8000 µg/ml) at a proteomic and phenotypic level. Two dimensional DIGE was used to identify differences in protein expression between the reference strain and triclosan tolerant mutant in the presence and absence of triclosan. DIGE analysis indicates the proteome of the reference E. coli O157:H19 was significantly different to its triclosan tolerant mutant. Significant changes in protein expression levels in the triclosan tolerant mutant included the known triclosan target FabI which encodes enoyl reductase, outer membrane proteins and the filament structural protein of flagella, FliC. Phenotypic studies showed that the triclosan tolerant mutant MIC decreased in the presence of efflux inhibitor phenyl-arginine-ß-naphthylamide and biofilm formation was increased in the mutant strain. The data generated indicates that enhanced triclosan tolerance is a result of multiple mechanisms which act together to achieve high-level resistance, rather than mutation of FabI alone.


Asunto(s)
Escherichia coli O157/enzimología , Proteómica/métodos , Triclosán/química , Acil-CoA Deshidrogenasas/química , Adhesión Bacteriana , Biopelículas , Células CACO-2 , Carbocianinas/química , Celulosa/química , Dipéptidos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Electroforesis en Gel Bidimensional , Escherichia coli O157/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Immunoblotting , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Mutación , Oxidorreductasas/metabolismo , Fenotipo , Proteoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...