Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Development ; 148(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34913465

RESUMEN

Spermatogonial differentiation and meiotic initiation during spermatogenesis are tightly regulated by a number of genes, including those encoding enzymes for miRNA biogenesis. However, whether and how single miRNAs regulate these processes remain unclear. Here, we report that miR-202, a member of the let-7 family, prevents precocious spermatogonial differentiation and meiotic initiation in spermatogenesis by regulating the timely expression of many genes, including those for key regulators such as STRA8 and DMRT6. In miR-202 knockout (KO) mice, the undifferentiated spermatogonial pool is reduced, accompanied by age-dependent decline of fertility. In KO mice, SYCP3, STRA8 and DMRT6 are expressed earlier than in wild-type littermates, and Dmrt6 mRNA is a direct target of miR-202-5p. Moreover, the precocious spermatogonial differentiation and meiotic initiation were also observed in KO spermatogonial stem cells when cultured and induced in vitro, and could be partially rescued by the knockdown of Dmrt6. Therefore, we have not only shown that miR-202 is a regulator of meiotic initiation but also identified a previously unknown module in the underlying regulatory network.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , MicroARNs/genética , Espermatogénesis/genética , Espermatogonias/crecimiento & desarrollo , Testículo/crecimiento & desarrollo , Células Madre Germinales Adultas/citología , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Fertilidad/genética , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Meiosis/genética , Ratones , Ratones Noqueados , Espermatogonias/metabolismo , Testículo/metabolismo , Factores de Transcripción/genética
2.
Biol Reprod ; 105(3): 761-766, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34250539

RESUMEN

More than a decade ago, the ENCODE and NIH Epigenomics Roadmap consortia organized large multilaboratory efforts to profile the epigenomes of >110 different mammalian somatic cell types. This generated valuable publicly accessible datasets that are being mined to reveal genome-wide patterns of a variety of different epigenetic parameters. This consortia approach facilitated the powerful and comprehensive multiparametric integrative analysis of the epigenomes in each cell type. However, no germ cell types were included among the cell types characterized by either of these consortia. Thus, comprehensive epigenetic profiling data are not generally available for the most evolutionarily important cells, male and female germ cells. We discuss the need for reproductive biologists to generate similar multiparametric epigenomic profiling datasets for both male and female germ cells at different developmental stages and summarize our recent effort to derive such data for mammalian spermatogonial stem cells and progenitor spermatogonia.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , Epigenoma , Epigenómica , Óvulo/crecimiento & desarrollo , Espermatozoides/crecimiento & desarrollo , Animales , Diferenciación Celular , Epigénesis Genética , Femenino , Masculino , Mamíferos , Espermatogonias/crecimiento & desarrollo
3.
Acta Histochem ; 123(5): 151741, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34197981

RESUMEN

The Vietnamese pot-bellied pig is a breed with high investigation potential. However, at the reproductive level, its testicular characteristics are still unknown, as well as the different stages of its development. Therefore, the objective of this work is to describe the postnatal testicular development of Vietnamese pot-bellied pigs. In this study, we used pigs grouped into the neonatal stage, animals at zero weeks; prepubertal stage, animals at three and eight weeks; pubertal stage, animals at twelve and sixteen weeks; and postpubertal stage animals at twenty, twenty-four, twenty-eight and thirty-two weeks of age. The neonatal stage is characterized by gonocytes at different migration phases. In the prepubertal stage, gonocytes were differentiated into spermatogonia at 3 weeks of age, and the first spermatocytes were observed at 7 weeks of age. Puberty was determined to start at 12 weeks because seminiferous tubules are found with complete spermatogenesis and the highest peaks in positive cell counting of androgen receptors (AR) and proliferating cell nuclear antigen (PCNA) factor that later decreased and further stabilized in the following weeks. In the postpubertal stage, an increase in seminiferous tubule areas was observed. The number of apoptotic cells ranged from low to null at all ages. Testosterone (T) and gonadotropin levels had two important peaks at 3 and 24 weeks. The seminiferous epithelium cycle was found to have 11 stages according to acrosome development. These characteristics of Vietnamese pot-bellied pig testes, which are different from rat testes and more similar to human testicles, make them a viable model to study human male reproductive biology. The postnatal testicular development of pot-bellied pigs is different from the postnatal testicular development of other breeds. Therefore, due to this difference in size and easy manipulation, the Vietnamese pig is an alternative for investigation compared to other pig breeds.


Asunto(s)
Escroto/crecimiento & desarrollo , Epitelio Seminífero/crecimiento & desarrollo , Espermatogonias/crecimiento & desarrollo , Testículo/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Proliferación Celular , Humanos , Masculino , Modelos Animales , Antígeno Nuclear de Célula en Proliferación/metabolismo , Receptores Androgénicos , Túbulos Seminíferos/crecimiento & desarrollo , Espermatogénesis/fisiología , Porcinos , Factores de Tiempo
4.
PLoS One ; 16(5): e0251911, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34015032

RESUMEN

Spermatogenesis requires that a careful balance be maintained between the self-renewal of spermatogonial stem cells (SSCs) and their commitment to the developmental pathway through which they will differentiate into spermatozoa. Recently, a series of studies employing various in vivo and in vitro models have suggested a role of the wingless-related MMTV integration site gene family/beta-catenin (WNT/CTNNB1) pathway in determining the fate of SSCs. However, conflicting data have suggested that CTNNB1 signaling may either promote SSC self-renewal or differentiation. Here, we studied the effects of sustained CTNNB1 signaling in SSCs using the Ctnnb1tm1Mmt/+; Ddx4-CreTr/+ (ΔCtnnb1) mouse model, in which a stabilized form of CTNNB1 is expressed in all germ cells. ΔCtnnb1 mice were found to have reduced testis weights and partial germ cell loss by 4 months of age. Germ cell transplantation assays showed a 49% reduction in total functional SSC numbers in 8 month-old transgenic mice. In vitro, Thy1-positive undifferentiated spermatogonia from ΔCtnnb1 mice formed 57% fewer clusters, which was associated with decreased cell proliferation. A reduction in mRNA levels of genes associated with SSC maintenance (Bcl6b, Gfra1, Plzf) and increased levels for markers associated with progenitor and differentiating spermatogonia (Kit, Rarg, Sohlh1) were detected in these cluster cells. Furthermore, RNAseq performed on these clusters revealed a network of more than 900 genes regulated by CTNNB1, indicating that CTNNB1 is an important regulator of spermatogonial fate. Together, our data support the notion that CTNNB1 signaling promotes the transition of SSCs to undifferentiated progenitor spermatogonia at the expense of their self-renewal.


Asunto(s)
Espermatogénesis/genética , Espermatogonias/crecimiento & desarrollo , Células Madre/metabolismo , beta Catenina/genética , Células Madre Germinales Adultas/patología , Animales , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Humanos , Masculino , Ratones , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteínas Represoras/genética , Transducción de Señal/genética , Espermatogonias/patología , Células Madre/patología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
5.
Development ; 148(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929507

RESUMEN

The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.


Asunto(s)
División Celular/fisiología , Espermatogonias/citología , Espermatogonias/crecimiento & desarrollo , Células Madre/citología , Animales , Apoptosis , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas de Unión a Retinoblastoma/genética , Análisis de Secuencia de ARN , Espermatogénesis/fisiología , Espermatogonias/metabolismo , Espermatozoides , Transcriptoma
6.
Reproduction ; 161(4): R89-R101, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33574214

RESUMEN

Delayed family planning and increased parental age increase the risk for infertility and impaired offspring health. While the impact of ageing on oogenesis is well studied, this is less understood on spermatogenesis. Assessing ageing effects on the male germline presents a challenge in differentiating between the effects of ageing-associated morbidities, infertility and 'pure' ageing. However, understanding the impact of ageing on male germ cells requires the separation of age from other factors. In this review, we therefore discuss the current knowledge on healthy ageing and spermatogenesis. Male ageing has been previously associated with declining sperm parameters, disrupted hormone secretion and increased time-to-pregnancy, among others. However, recent data show that healthy ageing does not deteriorate testicular function in terms of hormone production and spermatogenic output. In addition, intrinsic, age-dependent, highly specific processes occur in ageing germ cells that are clearly distinct from somatic ageing. Changes in spermatogonial stem cell populations indicate compensation for stem cell exhaustion. Alterations in the stem cell niche and molecular ageing signatures in sperm can be observed in ageing fertile men. DNA fragmentation rates as well as changes in DNA methylation patterns and increased telomere length are hallmarks of ageing sperm. Taken together, we propose a putative link between the re-activation of quiescent Adark spermatogonia and molecular changes in aged sperm descending from these activated spermatogonia. We suggest a baseline of 'pure' age effects in male germ cells which can be used for subsequent studies in which the impact of infertility or co-morbidities will be studied.


Asunto(s)
Fertilidad , Envejecimiento Saludable/fisiología , Espermatogénesis , Espermatogonias/crecimiento & desarrollo , Femenino , Humanos , Masculino , Embarazo
7.
Mol Reprod Dev ; 88(2): 128-140, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33400349

RESUMEN

Spermatogonial development is a key process during spermatogenesis to prepare germ cells to enter meiosis. While the initial point of spermatogonial differentiation is well-characterized, the development of spermatogonia from the onset of differentiation to the point of meiotic entry has not been well defined. Further, STRA8 is highly induced at the onset of spermatogonial development but its function in spermatogonia has not been defined. To better understand how STRA8 impacts spermatogonia, we performed RNA-sequencing in both wild-type and STRA8 knockout mice at multiple timepoints during retinoic acid (RA)-stimulated spermatogonial development. As expected, in spermatogonia from wild-type mice we found that steady-state levels of many transcripts that define undifferentiated progenitor cells were decreased while transcripts that define the differentiating spermatogonia were increased as a result of the actions of RA. However, the spermatogonia from STRA8 knockout mice displayed a muted RA response such that there were more transcripts typical of undifferentiated cells and fewer transcripts typical of differentiating cells following RA action. While spermatogonia from STRA8 knockout mice can ultimately form spermatocytes that fail to complete meiosis, it appears that the defect likely begins as a result of altered messenger RNA levels during spermatogonial differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Regulación del Desarrollo de la Expresión Génica , Espermatogénesis/fisiología , Espermatogonias/crecimiento & desarrollo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq , Espermatogénesis/efectos de los fármacos , Espermatogénesis/genética , Transcripción Genética , Tretinoina/farmacología
8.
J Cell Physiol ; 236(2): 1481-1493, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32692417

RESUMEN

Spermatogenesis is a complex process that originates from and depends on the spermatogonial stem cells (SSCs). The number of SSCs is rare, which makes the separation and enrichment of SSCs difficult and inefficient. The transcription factor PAX7 maintains fertility in normal spermatogenesis in mice. However, for large animals, much less is known about the SSCs' self-renewal regulation, especially in dairy goats. We isolated and enriched the CD49f-positive and negative dairy goat testicular cells by magnetic-activated cell sorting strategies. The RNA- sequencing and experimental data revealed that cells with a high CD49f and PAX7 expression are undifferentiated spermatogonia in goat testis. Our findings indicated that ZBTB16 (PLZF), PAX7, LIN28A, BMPR1B, FGFR1, and FOXO1 were expressed higher in CD49f-positive cells as compared to negative cells and goat fibroblasts cells. The expression and distribution of PAX7 in dairy goat also have been detected, which gradually decreased in testis tissue along with the increasing age. When the PAX7 gene was overexpressed in dairy goat immortal mGSCs-I-SB germ cell lines, the expression of PLZF, GFRα1, ID4, and OCT4 was upregulated. Together, our data demonstrated that there is a subset of spermatogonial stem cells with a high expression of PAX7 among the CD49f+ spermatogonia, and PAX7 can maintain the self-renewal of CD49f-positive SSCs.


Asunto(s)
Integrina alfa6/genética , Factor de Transcripción PAX7/genética , Espermatogénesis/genética , Testículo/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Regulación del Desarrollo de la Expresión Génica/genética , Cabras/genética , Cabras/crecimiento & desarrollo , Masculino , MicroARNs/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Espermatogonias/crecimiento & desarrollo , Células Madre/citología , Células Madre/metabolismo , Testículo/metabolismo
9.
Reprod Biol ; 20(4): 525-535, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32952085

RESUMEN

In mammals, spermatogonial stem cells (SSCs) arise from a subpopulation of prospermatogonia during neonatal testis development. Currently, molecular mechanisms directing the prospermatogonia to spermatogonial transition are not well understood. In the study, we found that reducing Sertoli cells number by Amh-cre mediated expression of diphtheria toxin (AC;DTA) in murine fetal testis caused defects in prospermatogonia fate decisions. Histological and immunohistochemical analyses confirmed that Sertoli cells loss occurred at embryonic day (E) 14.5. Prospermatogonia maintained mitotic arrest at E16.5 in control animals, in contrast, 13.4% of germ cells in AC;DTA testis reentered cell cycle and expressed gH2A.X and Sycp3, indicating the commitment to meiosis. After birth, the number of prospermatogonia resuming mitosis was significantly affected by Sertoli cell loss in AC;DTA animals. Lastly, we isolated primary Sertoli cells using a Sertoli cell specific GFP reporter line and showed dynamics of Sertoli cell transcriptomes at E12.5, E13.5, E16.5 and P1. By further analysis, we revealed unique gene expression patterns and potential candidate genes regulating Sertoli cell development and likely mediating interactions between Sertoli cells, prospermatogonia and other testicular cells.


Asunto(s)
Perfilación de la Expresión Génica/veterinaria , Células de Sertoli/fisiología , Espermatogonias/crecimiento & desarrollo , Testículo/embriología , Animales , Animales Recién Nacidos , Diferenciación Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Meiosis , Ratones , Ratones Transgénicos , Espermatogénesis/fisiología , Testículo/citología
10.
Dev Cell ; 54(4): 548-566.e7, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32795394

RESUMEN

Spermatogenesis is highly orchestrated and involves the differentiation of diploid spermatogonia into haploid sperm. The process is driven by spermatogonial stem cells (SSCs). SSCs undergo mitotic self-renewal, whereas sub-populations undergo differentiation and later gain competence to initiate meiosis. Here, we describe a high-resolution single-cell RNA-seq atlas of cells derived from Cynomolgus macaque testis. We identify gene signatures that define spermatogonial populations and explore self-renewal versus differentiation dynamics. We detail transcriptional changes occurring over the entire process of spermatogenesis and highlight the concerted activity of DNA damage response (DDR) pathway genes, which have dual roles in maintaining genomic integrity and effecting meiotic sex chromosome inactivation (MSCI). We show remarkable similarities and differences in gene expression during spermatogenesis with two other eutherian mammals, i.e., mouse and humans. Sex chromosome expression in the male germline in all three species demonstrates conserved features of MSCI but divergent multicopy and ampliconic gene content.


Asunto(s)
Secuencia Conservada/genética , Análisis de Secuencia de ARN , Espermatogénesis/genética , Transcriptoma/genética , Células Madre Germinales Adultas/citología , Células Madre Germinales Adultas/metabolismo , Animales , Diferenciación Celular/genética , Humanos , Macaca/genética , Macaca/crecimiento & desarrollo , Macaca fascicularis/genética , Masculino , Meiosis/genética , Ratones , Cromosomas Sexuales/genética , Espermatogonias/crecimiento & desarrollo , Testículo
11.
J Assist Reprod Genet ; 37(10): 2615-2630, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32821972

RESUMEN

PURPOSE: The objective of the present study was to purify sheep spermatogonial stem cells (SSCs) from testicular isolate using combined enrichment methods and to study the effect of growth factors on SSC stemness during culture. METHODS: The testicular cells from prepubertal male sheep were isolated, and SSCs were purified using Ficoll gradients (10 and 12%) followed by differential plating (laminin with BSA). SSCs were cultured with StemPro®-34 SFM, additives, and FBS for 7 days. The various doses (ng/ml) of growth factors, EGF at 10, 15, and 20, GDNF at 40, 70, and 100 and IGF-1 at 50, 100, and 150 were tested for the proliferation and stemness of SSCs in vitro. The stemness in cultured cells was assessed using SSC markers PLZF, ITGA6, and GFRα1. RESULTS: Ficoll density gradient separation significantly (p < 0.05) increased the percentage of SSCs in 12% fraction (35.1 ± 3.8 vs 11.2 ± 3.7). Subsequently, purification using laminin with BSA plating further enriched SSCs to 61.7 ± 4.7%. GDNF at 40 ng/ml, EGF at 15 and 20 ng/ml and IGF1 at 100 and 150 ng/ml significantly (p < 0.05) improved proliferation and stemness of SSCs up to 7 days in culture. GDNF at 40 ng/ml outperformed other growth factors tested and could maintain the ovine SSCs proliferation and stemness for 36 days. CONCLUSIONS: The combined enrichment method employing density gradient centrifugation and laminin with BSA plating improves the purification efficiency of ovine SSCs. GDNF at 40 ng/ml is essential for optimal proliferation and sustenance of stemness of ovine SSCs in vitro.


Asunto(s)
Factor de Crecimiento Epidérmico/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor I del Crecimiento Similar a la Insulina/genética , Espermatogonias/citología , Animales , Línea Celular , Proliferación Celular/genética , Separación Celular/métodos , Masculino , Ovinos/genética , Ovinos/crecimiento & desarrollo , Espermatogonias/crecimiento & desarrollo , Células Madre/citología , Testículo/citología , Testículo/crecimiento & desarrollo
12.
Hum Mol Genet ; 29(13): 2240-2249, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32510560

RESUMEN

Mutations in S-phase cyclin A-associated protein in the endoplasmic reticulum (SCAPER) cause a recessively inherited multisystemic disorder whose main features are retinal degeneration and intellectual disability. SCAPER, originally identified as a cell cycle regulator, was also suggested to be a ciliary protein. Because Scaper mutant males are sterile, we set up to characterize their phenotype. The testes of Scaper mutant mice are significantly smaller than those of WT mice. Histology revealed no signs of spermatogenesis, and seminiferous tubules contained mainly Sertoli cells with a few spermatogonia/spermatogonial stem cells (SSCs). In WT testes, SCAPER is expressed by SSCs and in the various stages of spermatogenesis, as well as in Sertoli cells. In WT spermatozoa SCAPER is not expressed in the flagellum but rather in the head compartment, where it is found both in the nucleus and in the perinuclear region. Scaper mutant females present reduced fertility, manifested by a significantly smaller litter size compared to WT females. Mutant ovaries are similar in size but comprised of significantly less primordial and antral follicles, compared to WT ovaries, while the number of atretic follicles is significantly higher. In WT ovarian follicles SCAPER is expressed in the somatic granulosa cells as well as in the oocyte. In conclusion, our data demonstrate that SCAPER is a crucial component in both male and female reproductive systems. We hypothesize that the reproductive phenotype observed in Scaper mutant mice is rooted in SCAPER's interaction with cyclin A/Cdk2, which play an important role, however different, in male and female gonads.


Asunto(s)
Proteínas Portadoras/genética , Infertilidad Masculina/genética , Espermatogénesis/genética , Testículo/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Infertilidad Masculina/patología , Masculino , Ratones , Túbulos Seminíferos/crecimiento & desarrollo , Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/patología , Espermatogonias/crecimiento & desarrollo , Espermatogonias/patología , Espermatozoides/crecimiento & desarrollo , Testículo/patología
13.
J Cell Physiol ; 235(12): 9895-9909, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32458486

RESUMEN

Long noncoding RNAs (lncRNAs) participate in the formation of primordial germ cells (PGCs); however, the identity of the key lncRNAs and the molecular mechanisms responsible for the formation of PGCs remain unknown. Here, we identify a key candidate lncRNA (lncRNA PGC transcript-1, LncPGCAT-1) via RNA sequencing of embryonic stem cells, PGCs, and Spermatogonial stem cells (SSCs). Functional experiments confirmed that LncPGCAT-1 positively regulated the formation of PGCs by elevating the expression of Cvh and C-kit while downregulating the pluripotency(Nanog) in vitro and in vivo; PAS staining of genital ridges in vivo also showed that interference with LncPGCAT-1 can significantly reduce the number of PGCs in genital ridges, while overexpression of LncPGCAT-1 had the opposite result. The result of luciferase reporter assay combined with CHIP-qPCR showed that the expression of LncPGCAT-1 was promoted by the transcription factor P53 and high levels of H3K4me2. Mechanistically, the luciferase reporter assay confirmed that mitogen-activated protein kinase 1 (MAPK1) was the target gene of LncPGCAT-1 and gga-mir-1591. In the ceRNA system, high levels of N6 methylation of LncPGCAT-1 enhanced the adsorption capacity of LncPGCAT-1 for gga-mir-1591. Adsorption of gga-mir-1591 activated the MAPK1/ERK signaling cascade by relieving the gga-mir-1591-dependent inhibition of MAPK1 expression. Moreover, LncPGCAT-1 interacted with interleukin enhancer binding factor 3 (ILF3) to regulate the ubiquitination of P53 and phosphorylation of JNK. Interaction with ILF3 resulted in positive self-feedback regulation of LncPGCAT-1 and activation of JNK signaling, ultimately promoting PGC formation. Altogether, the study expands our knowledge of the function and molecular mechanisms of lncRNAs in PGC development.


Asunto(s)
Células Germinativas/crecimiento & desarrollo , Histonas/genética , ARN Largo no Codificante/genética , Espermatogonias/crecimiento & desarrollo , Proteína p53 Supresora de Tumor/genética , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Huevos , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Germinativas/metabolismo , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética
14.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118708, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32240712

RESUMEN

Spermatogonia migrate to the microenvironment during the establishment from gonocytes and leave it when they differentiate. However, the mechanisms underlying the regulation of spermatogonial differentiation-associated migration remain mostly unknown. In this study, we show that spermatogonial differentiation induced by retinoic acid (RA) was accompanied with increased migration ability and elevated expression of connective tissue growth factor (CTGF), a member of the CCN family. CTGF was mainly expressed in the testicular somatic cells and committed spermatogonial progenitors. Recombinant CTGF (rCTGF) promoted the spermatogonial migration and silencing of endogenous CTGF suppressed the migration of homogenous spermatogonial cell lines. Moreover, depletion of CTGF by neutralizing antibody inhibited the elevated migration ability induced by RA, suggesting both the paracrine and autocrine roles of CTGF in spermatogonial migration associated with differentiation. Finally, CTGF interacted with ß1-integrin and regulated its level in spermatogonial cell lines. Together, our study provides novel insights into the regulation of spermatogonial migration by CTGF, which may shed light on the diagnosis and treatment of male infertility.


Asunto(s)
Movimiento Celular/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Integrina beta1/genética , Espermatogonias/crecimiento & desarrollo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Humanos , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Masculino , Ratones , Espermatogonias/metabolismo , Tretinoina/farmacología
15.
Proc Natl Acad Sci U S A ; 117(14): 7837-7844, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32229564

RESUMEN

The blood-testis barrier (BTB) is thought to be indispensable for spermatogenesis because it creates a special environment for meiosis and protects haploid cells from the immune system. The BTB divides the seminiferous tubules into the adluminal and basal compartments. Spermatogonial stem cells (SSCs) have a unique ability to transmigrate from the adluminal compartment to the basal compartment through the BTB upon transplantation into the seminiferous tubule. Here, we analyzed the role of Cldn11, a major component of the BTB, in spermatogenesis using spermatogonial transplantation. Cldn11-deficient mice are infertile due to the cessation of spermatogenesis at the spermatocyte stage. Cldn11-deficient SSCs failed to colonize wild-type testes efficiently, and Cldn11-deficient SSCs that underwent double depletion of Cldn3 and Cldn5 showed minimal colonization, suggesting that claudins on SSCs are necessary for transmigration. However, Cldn11-deficient Sertoli cells increased SSC homing efficiency by >3-fold, suggesting that CLDN11 in Sertoli cells inhibits transmigration of SSCs through the BTB. In contrast to endogenous SSCs in intact Cldn11-deficient testes, those from WT or Cldn11-deficient testes regenerated sperm in Cldn11-deficient testes. The success of this autologous transplantation appears to depend on removal of endogenous germ cells for recipient preparation, which reprogrammed claudin expression patterns in Sertoli cells. Consistent with this idea, in vivo depletion of Cldn3/5 regenerated endogenous spermatogenesis in Cldn11-deficient mice. Thus, coordinated claudin expression in both SSCs and Sertoli cells expression is necessary for SSC homing and regeneration of spermatogenesis, and autologous stem cell transplantation can rescue congenital defects of a self-renewing tissue.


Asunto(s)
Fertilidad/genética , Infertilidad/terapia , Espermatogonias/trasplante , Trasplante de Células Madre , Animales , Modelos Animales de Enfermedad , Fertilidad/fisiología , Humanos , Infertilidad/genética , Infertilidad/patología , Masculino , Ratones , Espermatogénesis/genética , Espermatogonias/crecimiento & desarrollo , Espermatozoides/crecimiento & desarrollo , Espermatozoides/trasplante , Células Madre/citología , Trasplante Autólogo/métodos
16.
Sci Rep ; 10(1): 6751, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317665

RESUMEN

SOX3 is a transcription factor expressed within the developing and adult nervous system where it mostly functions to help maintain neural precursors. Sox3 is also expressed in other locations, notably within the spermatogonial stem/progenitor cell population in postnatal testis. Independent studies have shown that Sox3 null mice exhibit a spermatogenic block as young adults, the mechanism of which remains poorly understood. Using a panel of spermatogonial cell marker genes, we demonstrate that Sox3 is expressed within the committed progenitor fraction of the undifferentiated spermatogonial pool. Additionally, we use a Sox3 null mouse model to define a potential role for this factor in progenitor cell function. We demonstrate that Sox3 expression is required for transition of undifferentiated cells from a GFRα1+ self-renewing state to the NGN3 + transit-amplifying compartment. Critically, using chromatin immunoprecipitation, we demonstrate that SOX3 binds to a highly conserved region in the Ngn3 promoter region in vivo, indicating that Ngn3 is a direct target of SOX3. Together these studies indicate that SOX3 functions as a pro-commitment factor in spermatogonial stem/progenitor cells.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1/genética , Espermatogonias/metabolismo , Testículo/metabolismo , Células Madre Germinales Adultas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Unión Proteica , Factores de Transcripción SOXB1/deficiencia , Transducción de Señal , Espermatogénesis/genética , Espermatogonias/citología , Espermatogonias/crecimiento & desarrollo , Testículo/citología , Testículo/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Asian J Androl ; 22(6): 569-577, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32217837

RESUMEN

Spermatogenesis is regulated by a complex network of posttranslation modifications. Sumoylation (a modification by small ubiquitin-like modifiers, or SUMO proteins) was identified as an important cellular event in different cell types. SUMO proteins are highly expressed in the testis, and their role during spermatogenesis has begun to be elucidated. Given the important role of sumoylation in the regulation of mitosis and cancer progression in other tissues, the aim of the current study was to identify the targets of SUMO in proliferating mouse spermatogonia and human seminoma tissues and to initially examine the level of sumoylation in relation to the proliferative activity of the tissues. Using freshly purified spermatogonia and C18-4 spermatogonia cell line, mass spectrometry analysis identified several SUMO targets implicated into the proliferation of spermatogonia (such as heat shock protein 60 [HSP60] and prohibitin). Tissue array and western blot approaches showed that SUMO expression is a prominent feature of human seminomas and that the proliferative activity of the tumor tissues was positively correlated with the level of SUMO expression. Downregulation of sumoylation with si-RNA was not sufficient to significantly affect the proliferation of C18-4 spermatogonia; however, SUMO overexpression increased the proliferation rate of the cells. These data suggest that cells are more sensitive to an elevated level of SUMO, and that this situation may lead to an upregulated cellular proliferation and, possibly, cancer. Mass spectrometry analysis identified around a hundred SUMO targets in seminoma samples. Notably, many of the identified proteins (such as proliferating cell nuclear antigen [PCNA], DNA topoisomerase 2-alpha [Top2A], prohibitin, 14-3-3 protein, and others) were implicated in oncogenic transformation and cancer progression.


Asunto(s)
Seminoma/metabolismo , Espermatogonias/crecimiento & desarrollo , Sumoilación , Neoplasias Testiculares/metabolismo , Adulto , Anciano , Animales , Western Blotting , Línea Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Seminoma/patología , Espermatogénesis , Espermatogonias/metabolismo , Neoplasias Testiculares/patología
18.
Syst Biol Reprod Med ; 66(3): 202-215, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32138551

RESUMEN

Electrospun nanofiber matrices sufficiently mimic the structural morphology of natural extracellular matrix. In this study, we aimed to examine the effects of agar/polyvinyl alcohol nanofiber (PVA) scaffold on the proliferation efficiency and differentiation potential of neonate mouse spermatogonial stem cells (SCCs). Testicular cells were isolated from testes of 40 mouse pups and were seeded in: 1) 2D cell culture plates in the absence (2D/-GF) or presence (2D/+GF) of growth factors and 2) onto agar/PVA scaffold in the absence (3D/-GF) or presence (3D/+GF) of growth factors. The cells were subsequently cultured for 4 weeks. First 2 weeks were dedicated to proliferative phase, whereas the next 2 weeks emphasized the differentiation phase. The identity of the SCCs was investigated at different time-points by flow cytometry and quantitative reverse transcription PCR (qRT-PCR) analyses against the germ cell markers, including PLZF, Id-4, Gfrα-1, Tekt-1, and Sycp-3. After 2 weeks of culture, the 3D/+GF group showed the highest percentage of PLZF-positive cells among culture systems (P < 0.05). The expression levels of pre-meiotic markers (Id-4 and Gfrα-1) decreased significantly in all groups, particularly in 3D/+GF group after 28 days of culture. Additionally, the cells in the 3D/+GF group displayed the highest expression of meiotic (Sycp-3) and post-meiotic markers (Tekt-1) 14 days after differentiation induction. Seemingly, the combination of the agar/PVA scaffold and growth factor-supplemented medium synergistically increased the differentiation rate of mouse SSCs into meiotic and post-meiotic cells. Thus, agar/PVA nanofiber scaffolds may have the potential for applications in the restoration of infertility, especially in azoospermic males. ABBREVIATIONS: 2D: two dimentional; 3D: three dimentional; bFGF: basic fibroblast growth factor; BMP-4: bone morphogenetic protein 4; DMEM: Dulbecco's modified Eagle's medium; ECM: extracellular matrix; FCS: fetal calf serum; FTIR: Fourier-transform infrared spectroscopy; GDNF: glial cell line-derived neurotrophic factor; GF: growth factors; Gfrα-1, GDNF family co-receptor α1; Id-4, Inhibitor of DNA Binding 4; MTT: methylthiazoltetrazolium; PLZF: promyelocytic leukemia zinc finger; PVA: polyvinyl alcohol; qRT-PCR: quantitative reverse transcription PCR; RA: retinoic acid; SACS: soft agar culture system; SD: standard deviation; SEM: scanning electron microscope; SSCs: spermatogonial stem cells; Sycp-3, Synaptonemal complex protein 3; Tekt-1, Tektin 1.


Asunto(s)
Nanofibras , Espermatogénesis , Espermatogonias/crecimiento & desarrollo , Andamios del Tejido , Agar , Animales , Antígenos de Diferenciación/metabolismo , Células Cultivadas , Medios de Cultivo/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , Meiosis , Ratones , Alcohol Polivinílico , Reacción en Cadena en Tiempo Real de la Polimerasa , Espermatogénesis/genética
19.
J Cell Mol Med ; 24(7): 4194-4211, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32090428

RESUMEN

STRA8 (Stimulated By Retinoic Acid Gene 8) is a retinoic acid (RA) induced gene that plays vital roles in spermatogonial proliferation, differentiation and meiosis. The SETD8 and STRA8 protein interaction was discovered using the yeast two-hybrid technique using a mouse spermatogonial stem cell (SSC) cDNA library. The interaction of these two proteins was confirmed using co-immunoprecipitation and identification of key domains governing the protein: protein complex. STRA8 and SETD8 showed a mutual transcriptional regulation pattern that provided evidence that SETD8 negatively regulated transcriptional activity of the STRA8 promoter. The SETD8 protein directly bound to the proximal promoter of the STRA8 gene. STRA8 increased the transcriptional activity of SETD8 promoter in a dose-dependent manner. For the first time, we have discovered that STRA8 and SETD8 display a cell cycle-dependent expression pattern in germline cells. Expression levels of SETD8 and H4K20me1 in S phase of STRA8 overexpression GC1 cells were different from that previously observed in tumour cell lines. In wild-type mice testis, SETD8, H4K20me1 and PCNA co-localized with STRA8 in spermatogonia. Further, our studies quantitated abnormal expression levels of cell cycle and ubiquitination-related factors in STRA8 dynamic models. STRA8 and SETD8 may regulate spermatogenesis via Cdl4-Clu4A-Ddb1 ubiquitinated degradation axis in a PCNA-dependent manner.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , N-Metiltransferasa de Histona-Lisina/genética , Meiosis/genética , Espermatogénesis/genética , Animales , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas/crecimiento & desarrollo , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Espermatogonias/crecimiento & desarrollo , Espermatogonias/metabolismo , Testículo/crecimiento & desarrollo , Testículo/metabolismo
20.
Asian J Androl ; 22(3): 258-264, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31274480

RESUMEN

Cryptorchidism is associated with infertility in adulthood. Early orchiopexy is suggested to reduce the risk. Information is lacking on the potential link between infant germ cell maturation and the risk of future infertility. The objective of the study was to evaluate age-related germ cell development in cryptorchidism. Immunostaining for markers of germ cell development (octamer-binding transcription factor 3/4 [OCT3/4], placental alkaline phosphatase [PLAP], KIT proto-oncogene [C-KIT], podoplanin [D2-40], Lin-28 homolog A [LIN28], and G antigen 7 [GAGE-7]) was performed in testicular biopsies from 40 cryptorchid boys aged 4-35 months. Germ cell numbers and distributions were evaluated in cross sections of seminiferous tubules, with and without immunostaining. OCT3/4, D2-40, and LIN28 were generally expressed in the early stages of germ cell development, as shown by positive expression in germ cells in the central region of seminiferous tubules. In contrast, PLAP and GAGE-7 were expressed in both central and peripheral parts of the tubules in the early stages of development and expressed mainly in a peripheral position with advancing age. Germ cell maturation was delayed in this study population as compared with that observed in our previous study on germ cell markers in a healthy population. The number of GAGE-7-positive germ cells per tubular cross section obtained by immunostaining was significantly higher than that obtained by standard hematoxylin and eosin staining. Double immunostaining revealed heterogeneity in germ cell development in cryptorchid testes. These results shed light on the pathophysiology of germ cell development in boys with cryptorchidism.


Asunto(s)
Criptorquidismo/patología , Túbulos Seminíferos/patología , Espermatogonias/crecimiento & desarrollo , Fosfatasa Alcalina/metabolismo , Antígenos de Neoplasias/metabolismo , Preescolar , Criptorquidismo/metabolismo , Criptorquidismo/cirugía , Proteínas Ligadas a GPI/metabolismo , Humanos , Lactante , Infertilidad Masculina , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Orquidopexia , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas de Unión al ARN/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogonias/metabolismo , Espermatogonias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...