Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.612
Filtrar
1.
BMC Res Notes ; 17(1): 143, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773625

RESUMEN

OBJECTIVES: The G72 mouse model of schizophrenia represents a well-known model that was generated to meet the main translational criteria of isomorphism, homology and predictability of schizophrenia to a maximum extent. In order to get a more detailed view of the complex etiopathogenesis of schizophrenia, whole genome transcriptome studies turn out to be indispensable. Here we carried out microarray data collection based on RNA extracted from the retrosplenial cortex, hippocampus and thalamus of G72 transgenic and wild-type control mice. Experimental animals were age-matched and importantly, both sexes were considered separately. DATA DESCRIPTION: The isolated RNA from all three brain regions was purified, quantified und quality controlled before initiation of the hybridization procedure with SurePrint G3 Mouse Gene Expression v2 8  ×  60 K microarrays. Following immunofluorescent measurement und preprocessing of image data, raw transcriptome data from G72 mice and control animals were extracted and uploaded in a public database. Our data allow insight into significant alterations in gene transcript levels in G72 mice and enable the reader/user to perform further complex analyses to identify potential age-, sex- and brain-region-specific alterations in transcription profiles and related pathways. The latter could facilitate biomarker identification and drug research and development in schizophrenia research.


Asunto(s)
Corteza Cerebral , Modelos Animales de Enfermedad , Hipocampo , Esquizofrenia , Tálamo , Transcriptoma , Animales , Esquizofrenia/genética , Esquizofrenia/metabolismo , Hipocampo/metabolismo , Masculino , Femenino , Ratones , Transcriptoma/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Tálamo/metabolismo , Ratones Transgénicos , Perfilación de la Expresión Génica/métodos , Factores Sexuales
2.
Artículo en Inglés | MEDLINE | ID: mdl-38723257

RESUMEN

BACKGROUND AND AIM: This study evaluated the association between rs1396409 and rs9883258 and the risk of schizophrenia (SCZ) and treatment outcomes in Egyptian patients. METHODS: This study included 88 patients with SCZ and 88 healthy controls. Lipid profile was assayed. Genotyping of rs1396409 and rs9883258 polymorphisms was analyzed using real-time PCR. RESULTS: The rs1396409 AG genotype frequency was significantly associated with SCZ risk (p = 0.002). Also, significant increased risk of SCZ was observed under allelic (p = 0.001), dominant (p = 0.001) and overdominant (p = 0.001) genetic model of rs1396409. However, rs9883258 AA genotype revealed nonsignificant association with SCZ. Cases with the rs1396409AG genotype exhibited hypertriglyceridemia (p < 0.001) and hypercholesterolemia (p = 0.001). In total, 72.3% and 74.5% of the cases presented with rs1396409 AG have negative symptoms (p = 0.022) and exhibited poor drug response (p = 0.023), respectively; all cases with rs1396409 GG genotype attempted suicide (p = 0.002) and are drug-free (p = 0.003). SCZ patients with negative symptoms had hypercholesterolemia (p = 0.008) mainly low-density lipoproteins (LDLc) (p = 0.016), and those with cognitive symptoms presented with low level of high-density lipoprotein (HDLc) (p = 0.023). Moreover, the multivariate regression analysis revealed that both rs1396409 G allele and HDLc were predictors of SCZ (p = 0.003 and 0.001, resp.). CONCLUSION: The current study concluded that metabotropic glutamate receptor 7 (GRM7) rs1396409 AG could be a potential biomarker for SCZ diagnosis. It also revealed an independent association between the GRM7 rs1396409 G allele, HDLc and SCZ development.


Asunto(s)
Polimorfismo de Nucleótido Simple , Receptores de Glutamato Metabotrópico , Esquizofrenia , Humanos , Esquizofrenia/genética , Masculino , Femenino , Egipto , Adulto , Receptores de Glutamato Metabotrópico/genética , Resultado del Tratamiento , Predisposición Genética a la Enfermedad , Persona de Mediana Edad , Genotipo , Estudios de Casos y Controles , Alelos , Estudios de Asociación Genética
3.
Nat Commun ; 15(1): 3980, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730231

RESUMEN

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.


Asunto(s)
Núcleo Caudado , Corteza Prefontal Dorsolateral , Hipocampo , Sitios de Carácter Cuantitativo , Esquizofrenia , Caracteres Sexuales , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Femenino , Masculino , Hipocampo/metabolismo , Núcleo Caudado/metabolismo , Corteza Prefontal Dorsolateral/metabolismo , Adulto , Transcriptoma , Perfilación de la Expresión Génica , Factores Sexuales , Cromosomas Humanos X/genética , Corteza Prefrontal/metabolismo
4.
BMC Immunol ; 25(1): 26, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702611

RESUMEN

BACKGROUND: Early-onset schizophrenia (EOS) is a type of schizophrenia (SCZ) with an age of onset of < 18 years. An abnormal inflammatory immune system may be involved in the occurrence and development of SCZ. We aimed to identify the immune characteristic genes and cells involved in EOS and to further explore the pathogenesis of EOS from the perspective of immunology. METHODS: We obtained microarray data from a whole-genome mRNA expression in peripheral blood mononuclear cells (PBMCs); 19 patients with EOS (age range: 14.79 ± 1.90) and 18 healthy controls (HC) (age range: 15.67 ± 2.40) were involved. We screened for differentially expressed genes (DEGs) using the Limma software package and modular genes using weighted gene co-expression network analysis (WGCNA). In addition, to identify immune characteristic genes and cells, we performed enrichment analysis, immune infiltration analysis, and receiver operating characteristic (ROC) curve analysis; we also used a random forest (RF), a support vector machine (SVM), and the LASSO-Cox algorithm. RESULTS: We selected the following immune characteristic genes: CCL8, PSMD1, AVPR1B and SEMG1. We employed a RF, a SVM, and the LASSO-Cox algorithm. We identified the following immune characteristic cells: activated mast cells, CD4+ memory resting T cells, resting mast cells, neutrophils and CD4+ memory activated T cells. In addition, the AUC values of the immune characteristic genes and cells were all > 0.7. CONCLUSION: Our results indicate that immune system function is altered in SCZ. In addition, CCL8, PSMD1, AVPR1B and SEMG1 may regulate peripheral immune cells in EOS. Further, immune characteristic genes and cells are expected to be diagnostic markers and therapeutic targets of SCZ.


Asunto(s)
Leucocitos Mononucleares , Esquizofrenia , Humanos , Esquizofrenia/inmunología , Esquizofrenia/genética , Masculino , Femenino , Adolescente , Leucocitos Mononucleares/inmunología , Perfilación de la Expresión Génica , Edad de Inicio , Redes Reguladoras de Genes , Quimiocina CCL8/genética , Sistema Inmunológico , Curva ROC , Máquina de Vectores de Soporte
5.
Mol Biol Rep ; 51(1): 617, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705955

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are epigenetic factors regulating many genes involved in brain development. Dysregulation of miRNA could result in dysregulation of genes which may contribute to diseases affecting the brain and behavior (e.g., schizophrenia). miR-29 family is a miRNA family contributing to brain maturation. miR-29 knockout in animal studies is reported to correlate with psychiatric disorders very similar to those seen in schizophrenia. In this study, we aimed to evaluate the miR-29a level in patients with schizophrenia and its potential value in the diagnosis of schizophrenia. MATERIALS AND METHODS: The serum sample of 42 patients with schizophrenia and 40 healthy subjects were obtained from the Azeri Recent onset/Acute phase psychosis Survey (ARAS) Cohort study. After preparations, the expression level of miR-29a was investigated by real-time PCR. The SPSS and GraphPad prism software were used to analyze the relation between miR-29a level and clinical parameters and its potential as a biomarker for the diagnosis of schizophrenia. RESULTS: Our study showed a significantly lower miR-29a level in patients compared to healthy controls (p = 0.0012). Furthermore, miR-29a level was significantly lower in some types of schizophrenia (p = 0.024). miR-29a level was not related to sex, age, or heredity (p > 0.05). miR-29a also showed 80% specificity and 71.43% sensitivity in the diagnosis of schizophrenia. CONCLUSION: Downregulation of miR-29a in schizophrenia is significantly related to the development of this illness. It might have the potential as a biomarker for schizophrenia.


Asunto(s)
Biomarcadores , Regulación hacia Abajo , MicroARNs , Esquizofrenia , Humanos , MicroARNs/genética , MicroARNs/sangre , Esquizofrenia/genética , Esquizofrenia/diagnóstico , Esquizofrenia/sangre , Masculino , Femenino , Adulto , Biomarcadores/sangre , Regulación hacia Abajo/genética , Estudios de Casos y Controles , Adulto Joven , Persona de Mediana Edad
6.
BMC Psychiatry ; 24(1): 261, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594691

RESUMEN

BACKGROUND: Major depressive disease (MDD), schizophrenia (SCZ), and bipolar disorder (BD) are common psychiatric disorders, and their relationship with thyroid cancer has been of great interest. This study aimed to investigate the potential causal effects of MDD, SCZ, BD, and thyroid cancer. METHODS: We used publicly available summary statistics from large-scale genome-wide association studies to select genetic variant loci associated with MDD, SCZ, BD, and thyroid cancer as instrumental variables (IVs), which were quality controlled and clustered. Additionally, we used three Mendelian randomization (MR) methods, inverse variance weighted (IVW), MR-Egger regression and weighted median estimator (WME) methods, to estimate the bidirectional causal relationship between psychiatric disorders and thyroid cancer. In addition, we performed heterogeneity and multivariate tests to verify the validity of the IVs. RESULTS: We used two-sample bidirectional MR analysis to determine whether there was a positive causal association between MDD and thyroid cancer risk. The results of the IVW analysis (OR = 3.956 95% CI = 1.177-13.299; P = 0.026) and the WME method (OR = 5.563 95% CI = 0.998-31.008; P = 0.050) confirmed that MDD may increase the risk of thyroid cancer. Additionally, our study revealed a correlation between genetic susceptibility to SCZ and thyroid cancer (OR = 1.532 95% CI = 1.123-2.088; P = 0.007). The results of the WME method analysis based on the median estimate (OR = 1.599 95% CI = 1.014-2.521; P = 0.043) also suggested that SCZ may increase the risk of thyroid cancer. Furthermore, our study did not find a causal relationship between BD and thyroid cancer incidence. In addition, the results of reverse MR analysis showed no significant causal relationships between thyroid cancer and MDD, SCZ, or BD (P > 0.05), ruling out the possibility of reverse causality. CONCLUSIONS: This MR method analysis provides new evidence that MDD and SCZ may be positively associated with thyroid cancer risk while also revealing a correlation between BD and thyroid cancer. These results may have important implications for public health policy and clinical practice. Future studies will help elucidate the biological mechanisms of these associations and potential confounders.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Esquizofrenia , Neoplasias de la Tiroides , Humanos , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/genética , Trastorno Bipolar/complicaciones , Trastorno Bipolar/genética , Esquizofrenia/genética , Depresión , Estudio de Asociación del Genoma Completo , Neoplasias de la Tiroides/epidemiología , Neoplasias de la Tiroides/genética
7.
Neurologia (Engl Ed) ; 39(4): 361-371, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38616064

RESUMEN

INTRODUCTION: Genetic polymorphism in the BDNF gene has been found to cause neuronal alterations and has been identified as a causal factor for many neuropsychiatric disorders. Therefore, various neurological case-control studies and meta-analyses have been conducted to find the possible link between BDNF and susceptibility to schizophrenia. METHOD: This meta-analysis gathered data from 25 case-control studies including a total of 8384 patients with schizophrenia and 8821 controls in order to identify the relationship between the rs6265 single nucleotide polymorphism and the disease, evaluating the combined odds ratio and 95% confidence intervals under 5 different genetic models. Validation followed the "Leave one out" method, and we used the Egger test and Begg's funnel plot to identify publication bias. RESULTS: Research into the rs6265 (G/A) polymorphism revealed a non-significant association with schizophrenia in all 5 genetic models; in the subgroup analysis, no association was found between white and Asian populations, with a p value>.05. CONCLUSIONS: Overall, the updated meta-analysis revealed that rs6265 exonic polymorphisms do not increase susceptibility to this disease. However, to better understand the pathogenesis of the disease, there is a need for further case-control studies into the BDNF polymorphism including larger sample sizes and different ethnic groups.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Esquizofrenia , Humanos , Estudios Prospectivos , Factor Neurotrófico Derivado del Encéfalo/genética , Esquizofrenia/genética , Predisposición Genética a la Enfermedad , Exones
8.
Genet Test Mol Biomarkers ; 28(4): 144-150, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38657122

RESUMEN

Objective: The purpose of this study was to evaluate the association between the single nucleotide polymorphisms (SNPs) (EGR3 rs1996147; EGR4 rs3813226, rs6747506; ERBB3 rs2292238; and ERBB4 rs707284, rs7560730) and the risk of schizophrenia (SZ) in a Chinese population. Materials and Methods: We conducted a case-control study, including 248 patients with SZ and 236 healthy controls matched for age and sex. The Mass-array platform was used to detect all the genotypes of the SNPs. Results: The results revealed that the EGR3 rs1996147 AA genotype was associated with borderline decreased SZ risk (AA vs. GG: adjusted OR = 0.43, 95% CI: 0.18-1.02, p = 0.06). However, no significant correlation was found between the other SNPs and overall SZ risk. Subgroup analysis also failed to show any significant association between all SNPs and the risk of SZ. Conclusion: In summary, this study revealed that the EGR3 rs1996147 AA genotype was associated with a borderline risk for SZ.


Asunto(s)
Pueblo Asiatico , Proteína 3 de la Respuesta de Crecimiento Precoz , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Esquizofrenia , Humanos , Esquizofrenia/genética , Polimorfismo de Nucleótido Simple/genética , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Femenino , Masculino , Predisposición Genética a la Enfermedad/genética , Estudios de Casos y Controles , Adulto , China/epidemiología , Pueblo Asiatico/genética , Persona de Mediana Edad , Genotipo , Factores de Riesgo , Frecuencia de los Genes/genética , Alelos , Receptor ErbB-4/genética , Pueblos del Este de Asia
9.
Clin Epigenetics ; 16(1): 53, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589929

RESUMEN

BACKGROUND: The study of biological age acceleration may help identify at-risk individuals and reduce the rising global burden of age-related diseases. Using DNA methylation (DNAm) clocks, we investigated biological aging in schizophrenia (SCZ), a mental illness that is associated with an increased prevalence of age-related disabilities and morbidities. In a whole blood DNAm sample of 1090 SCZ cases and 1206 controls across four European cohorts, we performed a meta-analysis of differential aging using three DNAm clocks (i.e., Hannum, Horvath, and Levine). To dissect how DNAm aging contributes to SCZ, we integrated information on duration of illness and SCZ polygenic risk, as well as stratified our analyses by chronological age and biological sex. RESULTS: We found that blood-based DNAm aging is significantly altered in SCZ independent from duration of the illness since onset. We observed sex-specific and nonlinear age effects that differed between clocks and point to possible distinct age windows of altered aging in SCZ. Most notably, intrinsic cellular age (Horvath clock) is decelerated in SCZ cases in young adulthood, while phenotypic age (Levine clock) is accelerated in later adulthood compared to controls. Accelerated phenotypic aging was most pronounced in women with SCZ carrying a high polygenic burden with an age acceleration of + 3.82 years (CI 2.02-5.61, P = 1.1E-03). Phenotypic aging and SCZ polygenic risk contributed additively to the illness and together explained up to 14.38% of the variance in disease status. CONCLUSIONS: Our study contributes to the growing body of evidence of altered DNAm aging in SCZ and points to intrinsic age deceleration in younger adulthood and phenotypic age acceleration in later adulthood in SCZ. Since increased phenotypic age is associated with increased risk of all-cause mortality, our findings indicate that specific and identifiable patient groups are at increased mortality risk as measured by the Levine clock. Our study did not find that DNAm aging could be explained by the duration of illness of patients, but we did observe age- and sex-specific effects that warrant further investigation. Finally, our results show that combining genetic and epigenetic predictors can improve predictions of disease outcomes and may help with disease management in schizophrenia.


Asunto(s)
Metilación de ADN , Esquizofrenia , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Envejecimiento/genética , Senescencia Celular , Epigénesis Genética , Esquizofrenia/genética
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 128-134, 2024 Jan 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38615174

RESUMEN

Mitochondria are the main site of energy metabolism within cells, generating a substantial amount of ATP to supply energy to the human body. Research has shown that alterations in mitochondrial structure and function exist in individuals with schizophrenia, suggesting their potential impact on the onset of psychiatric disorders and clinical treatment efficacy. Therefore, understanding the research progress on the genetic mechanisms, pathological processes, image manifestations of schizophrenia and mitochondrial quality control, and summarizing the relevant evidence of mitochondrial-related targets as potential therapeutic targets for schizophrenia, can provide references for further research.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Mitocondrias , Metabolismo Energético
11.
BMC Psychiatry ; 24(1): 299, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641826

RESUMEN

BACKGROUND: Despite ongoing research, the underlying causes of schizophrenia remain unclear. Aspartate and asparagine, essential amino acids, have been linked to schizophrenia in recent studies, but their causal relationship is still unclear. This study used a bidirectional two-sample Mendelian randomization (MR) method to explore the causal relationship between aspartate and asparagine with schizophrenia. METHODS: This study employed summary data from genome-wide association studies (GWAS) conducted on European populations to examine the correlation between aspartate and asparagine with schizophrenia. In order to investigate the causal effects of aspartate and asparagine on schizophrenia, this study conducted a two-sample bidirectional MR analysis using genetic factors as instrumental variables. RESULTS: No causal relationship was found between aspartate and schizophrenia, with an odds ratio (OR) of 1.221 (95%CI: 0.483-3.088, P-value = 0.674). Reverse MR analysis also indicated that no causal effects were found between schizophrenia and aspartate, with an OR of 0.999 (95%CI: 0.987-1.010, P-value = 0.841). There is a negative causal relationship between asparagine and schizophrenia, with an OR of 0.485 (95%CI: 0.262-0.900, P-value = 0.020). Reverse MR analysis indicates that there is no causal effect between schizophrenia and asparagine, with an OR of 1.005(95%CI: 0.999-1.011, P-value = 0.132). CONCLUSION: This study suggests that there may be a potential risk reduction for schizophrenia with increased levels of asparagine, while also indicating the absence of a causal link between elevated or diminished levels of asparagine in individuals diagnosed with schizophrenia. There is no potential causal relationship between aspartate and schizophrenia, whether prospective or reverse MR. However, it is important to note that these associations necessitate additional research for further validation.


Asunto(s)
Asparagina , Esquizofrenia , Humanos , Asparagina/genética , Ácido Aspártico/genética , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Estudios Prospectivos
12.
PLoS One ; 19(4): e0300511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598465

RESUMEN

OBJECTIVES: The response to antipsychotic therapy is highly variable. Pharmacogenomic (PGx) factors play a major role in deciding the effectiveness and safety of antipsychotic drugs. A hybrid type 2 effectiveness-implementation research will be conducted to evaluate the clinical utility (safety and efficacy), cost-effectiveness, and facilitators and barriers in implementing PGx-assisted management compared to standard of care in patients with schizophrenia attending a tertiary care hospital in eastern India. METHODS: In part 1, a randomized controlled trial will be conducted. Adult patients with schizophrenia will be randomized (2: 1) to receive PGx-assisted treatment (drug and regimen selection depending on the results of single-nucleotide polymorphisms in genes DRD2, HTR1A, HTR2C, ABCB1, CYP2D6, CYP3A5, and CYP1A2) or the standard of care. Serum drug levels will be measured. The patients will be followed up for 12 weeks. The primary endpoint is the difference in the Udvalg for Kliniske Undersøgelser Side-Effect Rating Scale score between the two arms. In part 2, the cost-effectiveness of PGx-assisted treatment will be evaluated. In part 3, the facilitators and barriers to implementing PGx-assisted treatment for schizophrenia will be explored using a qualitative design. EXPECTED OUTCOME: The study findings will help in understanding whether PGx-assisted management has a clinical utility, whether it is cost-effective, and what are the facilitators and barriers to implementing it in the management of schizophrenia. TRIAL REGISTRATION: The study has been registered with the Clinical Trials Registry-India (CTRI/2023/08/056210).


Asunto(s)
Antipsicóticos , Esquizofrenia , Adulto , Humanos , Antipsicóticos/efectos adversos , Antipsicóticos/uso terapéutico , Análisis Costo-Beneficio , India , Farmacogenética , Ensayos Clínicos Controlados Aleatorios como Asunto , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética
13.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673876

RESUMEN

Schizophrenia is a complex and heterogenous psychiatric disorder. This study aimed to demonstrate the potential of circulating microRNAs (miRNAs) as a clinical biomarker to stratify schizophrenia patients and to enhance understandings of their heterogenous pathophysiology. We measured levels of 179 miRNA and 378 proteins in plasma samples of schizophrenia patients experiencing acute psychosis and obtained their Positive and Negative Syndrome Scale (PANSS) scores. The plasma miRNA profile revealed three subgroups of schizophrenia patients, where one subgroup tended to have higher scores of all the PANSS subscales compared to the other subgroups. The subgroup with high PANSS scores had four distinctively downregulated miRNAs, which enriched 'Immune Response' according to miRNA set enrichment analysis and were reported to negatively regulate IL-1ß, IL-6, and TNFα. The same subgroup had 22 distinctively upregulated proteins, which enriched 'Cytokine-cytokine receptor interaction' according to protein set enrichment analysis, and all the mapped proteins were pro-inflammatory cytokines. Hence, the subgroup is inferred to have comparatively high inflammation within schizophrenia. In conclusion, miRNAs are a potential biomarker that reflects both disease symptoms and molecular pathophysiology, and identify a patient subgroup with high inflammation. These findings provide insights for the precision medicinal strategies for anti-inflammatory treatments in the high-inflammation subgroup of schizophrenia.


Asunto(s)
Biomarcadores , MicroARN Circulante , Inflamación , Trastornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/sangre , Esquizofrenia/genética , Masculino , Inflamación/sangre , Inflamación/genética , Femenino , Biomarcadores/sangre , Adulto , Trastornos Psicóticos/sangre , MicroARN Circulante/sangre , MicroARN Circulante/genética , Citocinas/sangre , Persona de Mediana Edad , Perfilación de la Expresión Génica , MicroARNs/sangre , MicroARNs/genética
14.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674063

RESUMEN

Plasma levels of glial cell line-derived neurotrophic factor (GDNF), a pivotal regulator of differentiation and survival of dopaminergic neurons, are reportedly decreased in schizophrenia. To explore the involvement of GDNF in the pathogenesis of the disease, a case-control association analysis was performed between five non-coding single nucleotide polymorphisms (SNP) across the GDNF gene and schizophrenia. Of them, the 'G' allele of the rs11111 SNP located in the 3' untranslated region (3'-UTR) of the gene was found to associate with schizophrenia. In silico analysis revealed that the rs11111 'G' allele might create binding sites for three microRNA (miRNA) species. To explore the significance of this polymorphism, transient co-transfection assays were performed in human embryonic kidney 293T (HEK293T) cells with a luciferase reporter construct harboring either the 'A' or 'G' allele of the 3'-UTR of GDNF in combination with the hsa-miR-1185-1-3p pre-miRNA. It was demonstrated that in the presence of the rs11111 'G' (but not the 'A') allele, hsa-miR-1185-2-3p repressed luciferase activity in a dose-dependent manner. Deletion of the miRNA binding site or its substitution with the complementary sequence abrogated the modulatory effect. Our results imply that the rs11111 'G' allele occurring more frequently in patients with schizophrenia might downregulate GDNF expression in a miRNA-dependent fashion.


Asunto(s)
Regiones no Traducidas 3' , Factor Neurotrófico Derivado de la Línea Celular Glial , MicroARNs , Polimorfismo de Nucleótido Simple , Esquizofrenia , Humanos , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , MicroARNs/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Células HEK293 , Masculino , Femenino , Alelos , Sitios de Unión , Estudios de Casos y Controles , Adulto , Regulación de la Expresión Génica , Persona de Mediana Edad , Predisposición Genética a la Enfermedad
15.
J Transl Med ; 22(1): 373, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637810

RESUMEN

BACKGROUND: Numerous studies highlight the genetic underpinnings of mental disorders comorbidity, particularly in anxiety, depression, and schizophrenia. However, their shared genetic loci are not well understood. Our study employs Mendelian randomization (MR) and colocalization analyses, alongside multi-omics data, to uncover potential genetic targets for these conditions, thereby informing therapeutic and drug development strategies. METHODS: We utilized the Consortium for Linkage Disequilibrium Score Regression (LDSC) and Mendelian Randomization (MR) analysis to investigate genetic correlations among anxiety, depression, and schizophrenia. Utilizing GTEx V8 eQTL and deCODE Genetics pQTL data, we performed a three-step summary-data-based Mendelian randomization (SMR) and protein-protein interaction analysis. This helped assess causal and comorbid loci for these disorders and determine if identified loci share coincidental variations with psychiatric diseases. Additionally, phenome-wide association studies, drug prediction, and molecular docking validated potential drug targets. RESULTS: We found genetic correlations between anxiety, depression, and schizophrenia, and under a meta-analysis of MR from multiple databases, the causal relationships among these disorders are supported. Based on this, three-step SMR and colocalization analyses identified ITIH3 and CCS as being related to the risk of developing depression, while CTSS and DNPH1 are related to the onset of schizophrenia. BTN3A1, PSMB4, and TIMP4 were identified as comorbidity loci for both disorders. Molecules that could not be determined through colocalization analysis were also presented. Drug prediction and molecular docking showed that some drugs and proteins have good binding affinity and available structural data. CONCLUSIONS: Our study indicates genetic correlations and shared risk loci between anxiety, depression, and schizophrenia. These findings offer insights into the underlying mechanisms of their comorbidities and aid in drug development.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Depresión/genética , Simulación del Acoplamiento Molecular , Ansiedad/genética , Trastornos de Ansiedad/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Complejo de la Endopetidasa Proteasomal , Butirofilinas , Antígenos CD
16.
Nat Commun ; 15(1): 3342, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688917

RESUMEN

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.


Asunto(s)
Cuerpo Estriado , Dopamina , Esquizofrenia , Humanos , Dopamina/metabolismo , Dopamina/biosíntesis , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Femenino , Cuerpo Estriado/metabolismo , Adulto , Núcleo Caudado/metabolismo , Transducción de Señal , Persona de Mediana Edad , Hipocampo/metabolismo , Herencia Multifactorial , Predisposición Genética a la Enfermedad , Corteza Prefontal Dorsolateral/metabolismo , Recompensa
17.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38592583

RESUMEN

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neoplasias Pulmonares , Ratones Noqueados , Receptor trkB , Receptores Tipo II del Factor de Necrosis Tumoral , Esquizofrenia , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Humanos , Ratones , Esquizofrenia/metabolismo , Esquizofrenia/genética , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Receptor trkB/metabolismo , Receptor trkB/genética , Células A549 , Masculino , Conducta Animal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
18.
Elife ; 122024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648100

RESUMEN

Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.


Asunto(s)
Antipsicóticos , Epigénesis Genética , Lóbulo Frontal , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Lóbulo Frontal/metabolismo , Lóbulo Frontal/efectos de los fármacos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Epigenómica , Anciano , Histonas/metabolismo
19.
Transl Psychiatry ; 14(1): 194, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649377

RESUMEN

Recent research has highlighted the role of complement genes in shaping the microstructure of the brain during early development, and in contributing to common allele risk for Schizophrenia. We hypothesised that common risk variants for schizophrenia within complement genes will associate with structural changes in white matter microstructure within tracts innervating the frontal lobe. Results showed that risk alleles within the complement gene set, but also intergenic alleles, significantly predict axonal density in white matter tracts connecting frontal cortex with parietal, temporal and occipital cortices. Specifically, risk alleles within the Major Histocompatibility Complex region in chromosome 6 appeared to drive these associations. No significant associations were found for the orientation dispersion index. These results suggest that changes in axonal packing - but not in axonal coherence - determined by common risk alleles within the MHC genomic region - including variants related to the Complement system - appear as a potential neurobiological mechanism for schizophrenia.


Asunto(s)
Alelos , Predisposición Genética a la Enfermedad , Complejo Mayor de Histocompatibilidad , Esquizofrenia , Sustancia Blanca , Humanos , Esquizofrenia/genética , Esquizofrenia/patología , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Femenino , Masculino , Adulto , Complejo Mayor de Histocompatibilidad/genética , Adulto Joven , Lóbulo Frontal/patología , Lóbulo Frontal/diagnóstico por imagen , Persona de Mediana Edad , Imagen de Difusión Tensora , Cromosomas Humanos Par 6/genética , Axones/patología , Polimorfismo de Nucleótido Simple
20.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674040

RESUMEN

Schizophrenia is a significant worldwide health concern, affecting over 20 million individuals and contributing to a potential reduction in life expectancy by up to 14.5 years. Despite its profound impact, the precise pathological mechanisms underlying schizophrenia continue to remain enigmatic, with previous research yielding diverse and occasionally conflicting findings. Nonetheless, one consistently observed phenomenon in brain imaging studies of schizophrenia patients is the disruption of white matter, the bundles of myelinated axons that provide connectivity and rapid signalling between brain regions. Myelin is produced by specialised glial cells known as oligodendrocytes, which have been shown to be disrupted in post-mortem analyses of schizophrenia patients. Oligodendrocytes are generated throughout life by a major population of oligodendrocyte progenitor cells (OPC), which are essential for white matter health and plasticity. Notably, a decline in a specific subpopulation of OPC has been identified as a principal factor in oligodendrocyte disruption and white matter loss in the aging brain, suggesting this may also be a factor in schizophrenia. In this review, we analysed genomic databases to pinpoint intersections between aging and schizophrenia and identify shared mechanisms of white matter disruption and cognitive dysfunction.


Asunto(s)
Envejecimiento , Oligodendroglía , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Esquizofrenia/patología , Esquizofrenia/genética , Oligodendroglía/metabolismo , Oligodendroglía/patología , Envejecimiento/metabolismo , Animales , Genómica/métodos , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Vaina de Mielina/metabolismo , Encéfalo/metabolismo , Encéfalo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...