Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 492
Filtrar
1.
Biochemistry ; 63(8): 1026-1037, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38564530

RESUMEN

The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11ß-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11ß-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.


Asunto(s)
Aldosterona , Esteroide 11-beta-Hidroxilasa , Esteroide 11-beta-Hidroxilasa/química , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Corticosterona/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/química , Citocromo P-450 CYP11B2/metabolismo , Catálisis , Cinética
2.
J Steroid Biochem Mol Biol ; 233: 106375, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572761

RESUMEN

Cytochrome P450 (CYP) family CYP11B2/CYP11B1 chimeric genes have been shown to arise from unequal crossing over of the genes encoding aldosterone synthase (CYP11B2) and 11ß-hydroxylase (CYP11B1) during meiosis. The activity deficiency or impaired activity of aldosterone synthase and 11ß-hydroxylase resulting from these chimeric genes are important reasons for 11ß-hydroxylase deficiency (11ß-OHD). Here,two patients with pseudoprecocious puberty and hypokalemia hypertension and three carriers in a consanguineous marriage family were studied. A single CYP11B2/CYP11B1 chimera consisting of the promoter and exons 1 through 5 of CYP11B2, exons 8 and 9 of CYP11B1, and a breakpoint consisting of part of exon 6 of CYP11B2 and part of exon 6, intron 6, and exon 7 of CYP11B1 were detected in the patients and carriers. At the breakpoint of the chimera, a c 0.1086 G > C ( p.Leu.362 =) synonymous mutation in exon 6 of CYP11B2, a c 0.1157 C>G(p. A386V) missense mutation in exon 7 of CYP11B1, and an intronic mutation in intron 6 were detected. The allele model of the CYP11B2/CYP11B1 chimera demonstrated homozygosity and heterozygosity in the patients and the carriers, respectively. Molecular docking and enzymatic activity analyses indicated that the CYP11B2/CYP11B1 chimeric protein interacted with the catalytic substrate of aldosterone synthase and had similar enzymatic activity to aldosterone synthase. Our study indicated that deletion of CYP11B1 and CYP11B2 abolished the enzymatic activity of 11 ß-hydroxylase and aldosterone synthase; however, the compensation of the enzymatic activity of aldosterone synthase by the CYP11B2/CYP11B1 chimeric protein maintained normal aldosterone levels in vitro. All of the above findings explained the 11ß-OHD phenotypes of the proband and patients in the family.


Asunto(s)
Citocromo P-450 CYP11B2 , Esteroide 11-beta-Hidroxilasa , Intercambio Genético , Citocromo P-450 CYP11B2/genética , Simulación del Acoplamiento Molecular , Proteínas Recombinantes de Fusión/genética , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Humanos , Linaje , Consanguinidad
3.
Toxicol Appl Pharmacol ; 475: 116638, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499767

RESUMEN

Several drugs were found after their market approval to unexpectedly inhibit adrenal 11ß-hydroxylase (CYP11B1)-dependent cortisol synthesis. Known side-effects of CYP11B1 inhibition include hypertension and hypokalemia, due to a feedback activation of adrenal steroidogenesis, leading to supraphysiological concentrations of 11-deoxycortisol and 11-deoxycorticosterone that can activate the mineralocorticoid receptor. This results in potassium excretion and sodium and water retention, ultimately causing hypertension. With the risk known but usually not addressed in preclinical evaluation, this study aimed to identify drugs and drug candidates inhibiting CYP11B1. Two conceptually different virtual screening methods were combined, a pharmacophore based and an induced fit docking approach. Cell-free and cell-based CYP11B1 activity measurements revealed several inhibitors with IC50 values in the nanomolar range. Inhibitors include retinoic acid metabolism blocking agents (RAMBAs), azole antifungals, α2-adrenoceptor ligands, and a farnesyltransferase inhibitor. The active compounds share a nitrogen atom embedded in an aromatic ring system. Structure activity analysis identified the free electron pair of the nitrogen atom as a prerequisite for the drug-enzyme interaction, with its pKa value as an indicator of inhibitory potency. Another important parameter is drug lipophilicity, exemplified by etomidate. Changing its ethyl ester moiety to a more hydrophilic carboxylic acid group dramatically decreased the inhibitory potential, most likely due to less efficient cellular uptake. The presented work successfully combined different in silico and in vitro methods to identify several previously unknown CYP11B1 inhibitors. This workflow facilitates the identification of compounds that inhibit CYP11B1 and therefore pose a risk for inducing hypertension and hypokalemia.


Asunto(s)
Hipertensión , Hipopotasemia , Humanos , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipopotasemia/complicaciones , Esteroide 11-beta-Hidroxilasa/metabolismo , Esteroides
4.
Allergy ; 78(9): 2428-2440, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37171450

RESUMEN

BACKGROUND: Synthetic glucocorticoids (GC) are effective in the treatment of inflammatory diseases of the lung. However, long-term use leads to severe side effects. Endogenous GC can be synthesized locally, either de novo from cholesterol in a 11ß-hydroxylase (Cyp11b1)-dependent manner, or by reactivation from 11-dehydrocorticosterone/cortisone by 11ß-hydroxysteroid dehydrogenase 1 (Hsd11b1). We aimed to define the molecular pathways of endogenous GC synthesis along the respiratory tree to provide a basis for understanding how local GC synthesis contributes to tissue homeostasis. METHODS: Expression of steroidogenic enzymes in murine lung epithelium was analyzed by macroscopic and laser capture microdissection, followed by RT-qPCR. Flow cytometry analysis was performed to identify the cellular source of steroidogenic enzymes. Additionally, the induction of steroidogenic enzyme expression in the lung was analyzed after lipopolysaccharide (LPS) injection. mRNA and protein expression of steroidogenic enzymes was confirmed in human lung tissue by RT-qPCR and immunohistochemistry. Furthermore, GC synthesis was examined in ex vivo cultures of fresh tissue from mice and human lobectomy patients. RESULTS: We observed that the murine and human lung tissue differentially expresses synthesis pathway-determining enzymes along the respiratory tree. We detected Hsd11b1 expression in bronchial, alveolar, club and basal epithelial cells, whereas Cyp11b1 expression was detectable only in tracheal epithelial cells of mice. Accordingly, de novo synthesis of bioactive GC occurred in the large conducting airways, whereas reactivation occurred everywhere along the respiratory tree. Strikingly, Cyp11b1 but not Hsd11b1 expression was enhanced in the trachea upon LPS injection in mice. CONCLUSION: We report here the differential synthesis of bioactive GC along the murine and human respiratory tree. Thus, extra-adrenal de novo GC synthesis and reactivation may differentially contribute to the regulation of immunological and inflammatory processes in the lung.


Asunto(s)
Glucocorticoides , Árboles , Humanos , Animales , Ratones , Glucocorticoides/farmacología , Esteroide 11-beta-Hidroxilasa/metabolismo , Lipopolisacáridos , Células Epiteliales/metabolismo
5.
J Steroid Biochem Mol Biol ; 231: 106316, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37098354

RESUMEN

Osilodrostat (LCI699) is a potent inhibitor of the human steroidogenic cytochromes P450 11ß-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2). LCI699 is FDA-approved for the treatment of Cushing disease, which is characterized by chronic overproduction of cortisol. While phase II and III clinical studies have proven the clinical efficacy and tolerability of LCI699 for treating Cushing disease, few studies have attempted to fully assess the effects of LCI699 on adrenal steroidogenesis. To this end, we first comprehensively analyzed LCI699-mediated inhibition of steroid synthesis in the NCI-H295R human adrenocortical cancer cell line. We then studied LCI699 inhibition using HEK-293 or V79 cells stably expressing individual human steroidogenic P450 enzymes. Our studies using intact cells confirm the potent inhibition of CYP11B1 and CYP11B2 with negligible inhibition of 17-hydroxylase/17,20-lyase (CYP17A1) and 21-hydroxylase (CYP21A2). Furthermore, partial inhibition of the cholesterol side-chain cleavage enzyme (CYP11A1) was observed. To calculate the dissociation constant (Kd) of LCI699 with the adrenal mitochondrial P450 enzymes, we successfully incorporated P450s into lipid nanodiscs and carried out spectrophotometric equilibrium and competition binding assays. Our binding experiments confirm the high affinity of LCI699 to CYP11B1 and CYP11B2 (Kd ≈ 1 nM or less) and much weaker binding for CYP11A1 (Kd = 18.8 µM). Our results confirm the selectivity of LCI699 for CYP11B1 and CYP11B2 and demonstrate partial inhibition of CYP11A1 but not CYP17A1 and CYP21A2.


Asunto(s)
Citocromo P-450 CYP11B2 , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT) , Humanos , Citocromo P-450 CYP11B2/metabolismo , Esteroide 11-beta-Hidroxilasa/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol , Células HEK293 , Aldosterona/metabolismo , Esteroide 21-Hidroxilasa/metabolismo
6.
Mol Oncol ; 17(8): 1545-1566, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36861295

RESUMEN

Control of tumour development and growth by the immune system critically defines patient fate and survival. What regulates the escape of colorectal tumours from destruction by the immune system remains currently unclear. Here, we investigated the role of intestinal synthesis of glucocorticoids in the tumour development during an inflammation-induced mouse model of colorectal cancer. We demonstrate that the local synthesis of immunoregulatory glucocorticoids has dual roles in the regulation of intestinal inflammation and tumour development. In the inflammation phase, LRH-1/Nr5A2-regulated and Cyp11b1-mediated intestinal glucocorticoid synthesis prevents tumour development and growth. In established tumours, however, tumour-autonomous Cyp11b1-mediated glucocorticoid synthesis suppresses anti-tumour immune responses and promotes immune escape. Transplantation of glucocorticoid synthesis-proficient colorectal tumour organoids into immunocompetent recipient mice resulted in rapid tumour growth, whereas transplantation of Cyp11b1-deleted and glucocorticoid synthesis-deficient tumour organoids was characterized by reduced tumour growth and increased immune cell infiltration. In human colorectal tumours, high expression of steroidogenic enzymes correlated with the expression of other immune checkpoints and suppressive cytokines, and negatively correlated with overall patients' survival. Thus, LRH-1-regulated tumour-specific glucocorticoid synthesis contributes to tumour immune escape and represents a novel potential therapeutic target.


Asunto(s)
Neoplasias Colorrectales , Glucocorticoides , Humanos , Ratones , Animales , Glucocorticoides/farmacología , Esteroide 11-beta-Hidroxilasa/metabolismo , Intestinos , Inflamación , Neoplasias Colorrectales/genética
7.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982850

RESUMEN

Aldosterone and cortisol serve important roles in the pathogenesis of cardiovascular diseases and metabolic disorders. Epigenetics is a mechanism to control enzyme expression by genes without changing the gene sequence. Steroid hormone synthase gene expression is regulated by transcription factors specific to each gene, and methylation has been reported to be involved in steroid hormone production and disease. Angiotensin II or potassium regulates the aldosterone synthase gene, CYP11B2. The adrenocorticotropic hormone controls the 11b-hydroxylase, CYP11B1. DNA methylation negatively controls the CYP11B2 and CYP11B1 expression and dynamically changes the expression responsive to continuous stimulation of the promoter gene. Hypomethylation status of the CYP11B2 promoter region is seen in aldosterone-producing adenomas. Methylation of recognition sites of transcription factors, including cyclic AMP responsive element binding protein 1 or nerve growth factor-induced clone B, diminish their DNA-binding activity. A methyl-CpG-binding protein 2 cooperates directly with the methylated CpG dinucleotides of CYP11B2. A low-salt diet, treatment with angiotensin II, and potassium increase the CYP11B2 mRNA levels and induce DNA hypomethylation in the adrenal gland. A close association between a low DNA methylation ratio and an increased CYP11B1 expression is seen in Cushing's adenoma and aldosterone-producing adenoma with autonomous cortisol secretion. Epigenetic control of CYP11B2 or CYP11B1 plays an important role in autonomic aldosterone or cortisol synthesis.


Asunto(s)
Adenoma , Adenoma Corticosuprarrenal , Humanos , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Aldosterona/metabolismo , Oxigenasas de Función Mixta/genética , Hidrocortisona/metabolismo , Angiotensina II/metabolismo , Adenoma Corticosuprarrenal/genética , Adenoma/patología , Epigénesis Genética , Factores de Transcripción/metabolismo , Potasio/metabolismo , ADN
8.
FASEB J ; 37(4): e22869, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36929050

RESUMEN

Steroid 11ß-hydroxylase deficiency (11ß-OHD) is a rare autosomal recessive disorder caused by pathogenic variants of CYP11B1 gene. This study aimed to perform molecular analysis of a Chinese 11ß-OHD series and in vitro functional study of twenty CYP11B1 missense variants. Twelve Chinese patients with clinical diagnosis of 11ß-OHD were included in the study to analyze their molecular etiology. Genomic DNA of patients was extracted to be sequenced all coding exons and intronic flanking sequences of CYP11B1. Fourteen missense variants found in 12 patients mentioned above along with 6 missense variants previously reported by our team were evaluated functionally. Amino acid substitutions were analyzed with computational program to determine their effects on the three-dimensional structure of CYP11B1 protein. Clinical characteristics and hormone levels at baseline of the 18 patients carrying 18 missense variants aforementioned were recorded to perform genotype-phenotype correlation. A total of 21 rare variants including 9 novel and 12 recurrent ones were identified in 12 patients, out of which 17 were missense, 2 were nonsense, 1 was a splice site variant, and 1 was a deletion-insertion variant. Results of in vitro functional study revealed that 3 out of 20 missense mutants (p.Leu3Pro, p.Gly267Ser, and p.Ala367Ser) had partial enzyme activity and the other 17 had little enzymatic activity. The impairment degree of enzymatic activity in vitro functional study was also reflected in the severity degree of interaction change between the wild-type/mutant-type amino acid and its adjacent amino acids in three-dimensional model. In conclusion, the addition of 9 novel variants expands the spectrum of CYP11B1 pathogenic variants. Our results demonstrate that twenty CYP11B1 variants lead to impaired 11ß-hydroxylase activity in vitro. Visualizing these variants in the three-dimensional model structure of CYP11B1 protein can provide a plausible explanation for the results measured in vitro.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 11-beta-Hidroxilasa , Humanos , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/química , Esteroide 11-beta-Hidroxilasa/metabolismo , Pueblos del Este de Asia , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Mutación
9.
Lab Med ; 54(4): 439-446, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493354

RESUMEN

OBJECTIVE: Congenital adrenal hyperplasia (CAH) addresses a number of autosomal recessive disorders characterized by the enzyme defects in steroid hormones biosynthesis. The second common form of CAH is caused by mutations in the CYP11B1 gene. Here, we reveal a novel mutation in the CYP11B1 gene related to the 11ßOHD phenotype. METHODS AND RESULTS: Sequence analysis of the CYP11B1 gene in a 19-year-old Iranian woman with the 11ßOHD phenotype was performed. In silico analysis and molecular docking were done. A novel missense homozygous variant c.1351C > T (p.L451F) in the CYP11B1 gene was identified in the patient and, according to American College of Medical Genetics and Genomics criteria, was categorized as likely pathogenic. Protein docking showed destructive effects of the variant on the CYP11B1 protein-ligand interactions. CONCLUSION: This study broadens the CYP11B1 mutation spectrum and introduces the novel p.L451F likely pathogenic variant leading to destructive effects on protein-ligand interactions. Our results provide reliable information for genetic counseling and molecular diagnostics of CAH.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Femenino , Humanos , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Irán , Ligandos , Simulación del Acoplamiento Molecular , Mutación/genética , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Adulto
10.
PLoS One ; 17(12): e0279682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584094

RESUMEN

The sharp line of demarcation between zona glomerulosa (ZG) and zona fasciculata (ZF) has been recently challenged suggesting that this interface is no longer a compartment boundary. We have used immunohistochemical analyses to study the steroid 11ß-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) pattern of expression and investigate the remodeling of the adrenal cortex in relation to aging. We analyzed human adrenal glands prepared from 47 kidney donors. No aldosterone-producing micronodules (APMs) were detectable in the younger donors aged between 22-39 but the functional ZG depicted by positive CYP11B2 staining demonstrated a lack of continuity. In contrast, the development of APMs was found in samples from individuals aged 40-70. Importantly, the progressive replacement of CYP11B2-expressing cells in the histological ZG by CYP11B1-expressing cells highlights the remodeling capacity of the adrenal cortex. In 70% of our samples, immunofluorescence studies revealed the presence of isolated or clusters of CYP11B2 positive cells in the ZF and zona reticularis. Our data emphasize that mineralocorticoid- and glucocorticoid-producing cells are distributed throughout the cortex and the medulla making the determination of the functional status of a cell or group of cells a unique tool in deciphering the changes occurring in adrenal gland particularly during aging. They also suggest that, in humans, steroidogenic cell phenotype defined by function is a stable feature and thus, the functional zonation might be not solely maintained by cell lineage conversion/migration.


Asunto(s)
Corteza Suprarrenal , Esteroide 11-beta-Hidroxilasa , Humanos , Adulto Joven , Adulto , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Corteza Suprarrenal/metabolismo , Glándulas Suprarrenales/metabolismo , Aldosterona/metabolismo
11.
Biomed Pharmacother ; 155: 113716, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162374

RESUMEN

UV rays constitute an extremely important environmental factor known to operate adaptative mechanisms that maintain biological homeostasis in the skin, adrenal glands, and the brain. The skin is extremely vulnerable to UV rays. UV rays deform collagen, the main component of elastic fibers, decreasing its normal function, and ultimately reducing skin's elasticity. We confirmed that psychological stress occurring during the early stages of UVB-irradiation degraded collagen function by inhibiting production rather than the decomposition of collagen, thereby promoting skin aging. UV irradiation for 0-2 weeks increased the level of a stress factor, corticosterone (CORT). High-performance liquid chromatography and western blot analysis confirmed that the increase was caused by enhanced CYP11B1/2 levels during steroid synthesis in the adrenal gland. Precursor levels decreased significantly during the two weeks of UV irradiation. Skin collagen and collagen fibers reduced drastically during this time. Furthermore, the administration of osilodrostat, a USFDA-approved drug that selectively inhibits CYP11B1/2, preserved skin collagen. The mechanism underlying the reduction of CORT by osilodrostat confirmed that the amount of skin collagen could be preserved with treatment. In addition, upon suppression of the CORT receptor, the amount of collagen was controlled, and skin aging was suppressed by the hypothalamic-pituitary-adrenal axis. Therefore, this study confirmed an inverse relationship between adrenal CYP11B1/2 levels and collagen during the initial stages of UV irradiation of the skin. The findings of this study may be useful for developing new detection mechanisms for aging, following their further verification.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Envejecimiento de la Piel , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Corticosterona/metabolismo , Esteroide 11-beta-Hidroxilasa/metabolismo , Rayos Ultravioleta/efectos adversos , Piel/metabolismo , Colágeno/metabolismo
12.
Ecotoxicol Environ Saf ; 243: 113982, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987080

RESUMEN

Fluorene-9-bisphenol (BHPF), which has been used as a substitute for bisphenol A (BPA) in consumer goods and industrial products, can be detected in environmental media and human urine. BHPF has been reported to have endocrine-disrupting effects, whereas deleterious effects on steroidogenesis in H295R cells and underlying mechanisms are still unclear. Here, we investigated effects of BHPF on steroidogenesis using human adrenocortical carcinoma cells (H295R). Cytotoxicity was initially assessed and half-maximal inhibitory concentration (IC50) was determined based on proliferation of cells. Responses of four steroid hormones, aldosterone, cortisol, testosterone and 17ß-estradiol (E2), and ten critical genes, StAR, HMGR, CYP11A1, CYP11B1, CYP11B1, HSD3B2, CYP21, CYP17, 17ß-HSD, and CYP19, involved in steroidogenesis after exposure to non-cytotoxic concentrations of BHPF were determined in the presence or absence of 100 µM dbcAMP. Adenylate cyclase (AC) activity, intracellular concentrations of cAMP, PKA activity and amounts of steroidogenic factor-1 (SF-1) gene and expressions of proteins were determined to elucidate underlying mechanisms of effects on steroidogenesis. BHPF was cytotoxic to H295R cells in a dose- and time-dependent manner. Effects on production of hormones results demonstrated that exposure to greater concentrations of BHPF inhibited productions of aldosterone, cortisol, testosterone and E2 by down-regulation of steroidogenic genes. Inhibition of AC activity, intercellular cAMP content and PKA activity after exposure to BHPF implied that the AC/cAMP/PKA signaling pathway was involved in BHPF-induced suppression of steroidogenesis in H295R cells. Additionally, BHPF inhibited steroidogenesis and expressions of steroidogenic genes via decreasing expression of SF-1 protein, both in basal and dbcAMP-induced treatment. These results contributed to understanding molecular mechanisms of BHPF-induced effects on steroidogenesis and advancing the comprehensive risk assessment of BPs.


Asunto(s)
Aldosterona , Hidrocortisona , Aldosterona/metabolismo , Compuestos de Bencidrilo , Bucladesina , Línea Celular Tumoral , Fluorenos , Humanos , Hidrocortisona/metabolismo , Fenoles , Transducción de Señal , Esteroide 11-beta-Hidroxilasa/metabolismo , Testosterona/metabolismo
13.
J Inorg Biochem ; 235: 111934, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35952394

RESUMEN

Human cytochrome P450 11B1 (CYP11B1) generation of the major glucocorticoid cortisol requires two electrons delivered sequentially by the iron­sulfur protein adrenodoxin. While the expected adrenodoxin binding site is on the opposite side of the heme and 15-20 Å away, evidence is provided that adrenodoxin allosterically impacts CYP11B1 ligand binding and catalysis. The presence of adrenodoxin both decreases the dissociation constant (Kd) for substrate binding and increases the proportion of substrate that is bound at saturation. Adrenodoxin additionally decreases the Michaelis-Menten constant for the native substrate. Similar studies with several inhibitors also demonstrate the ability of adrenodoxin to modulate inhibition (IC50 values). Somewhat similar allosterism has recently been observed for the closely related CYP11B2/aldosterone synthase, but there are several marked differences in adrenodoxin effects on the two CYP11B enzymes. Comparison of the sequences and structures of these two CYP11B enzymes helps identify regions likely responsible for the functional differences. The allosteric effects of adrenodoxin on CYP11B enzymes underscore the importance of considering P450/redox partner interactions when evaluating new inhibitors.


Asunto(s)
Adrenodoxina , Esteroide 11-beta-Hidroxilasa , Adrenodoxina/química , Adrenodoxina/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Humanos , Ligandos , Oxidación-Reducción , Esteroide 11-beta-Hidroxilasa/química , Esteroide 11-beta-Hidroxilasa/metabolismo
14.
Hum Gene Ther ; 33(15-16): 801-809, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35838129

RESUMEN

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder caused by steroidogenic enzymes containing monogenetic defects. Most steroidogenic enzymes are cytochrome P450 groups that can be categorized as microsomal P450s, including 21-hydroxylase and 17α-hydroxylase/17,20 lyase, and mitochondrial P450s, including 11ß-hydroxylase. It has been shown that ectopic administration of Cyp21a1 ameliorates steroid metabolism in 21-hydroxylase-deficient mice. However, the effectiveness of this approach for mitochondrial P450 has not yet been evaluated. In this study, primary fibroblasts from patients with 21-hydroxylase deficiency (CYP21A2D) (n = 4), 17α-hydroxylase/17,20 lyase deficiency (CYP17A1D) (n = 1), and 11ß-hydroxylase deficiency (CYP11B1D) (n = 1) were infected with adeno-associated virus type 2 (AAV2) vectors. Steroidogenic enzymatic activity was not detected in the AAV2-infected CYP11B1D fibroblasts. Induced pluripotent stem cells (iPSCs) of CYP11B1D were established and differentiated into adrenocortical cells by induction of the NR5A1 gene. Adrenocortical cells established from iPSCs of CYP11B1D (CYP11B1D-iPSCs) were infected with an AAV type 9 (AAV9) vector containing CYP11B1 and exhibited 11ß-hydroxylase activity. For an in vivo evaluation, we knocked out Cyp11b1 in mice by using the CRISPR/Cas9 method. Direct injection of Cyp11b1-containing AAV9 vectors into the adrenal gland of Cyp11b1-deficient mice significantly reduced serum 11-deoxycorticosterone/corticosterone ratios at 4 weeks after injection and the effect was prolonged for up to 12 months. This study indicated that CYP11B1D could be ameliorated by gene induction in the adrenal glands, which suggests that a defective-enzyme-dependent therapeutic strategy for CAH would be required. Defects in microsomal P450, including CYP21A2D and CYP17A1D, can be treated with extra-adrenal gene induction. However, defects in mitochondrial P450, as represented by CYP11B1D, may require adrenal gene induction.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Células Madre Pluripotentes Inducidas , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/terapia , Animales , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Terapia Genética , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mutación , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/genética
15.
Hipertens Riesgo Vasc ; 39(4): 167-173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35778363

RESUMEN

Primary hyperaldosteronism (PAH) is the most frequent cause of secondary arterial hypertension. Most PAHs occur sporadically, but 5% of cases have a hereditary origin (familial PAH). Four forms of familial PAH have been described. Type I familial PAH is produced by a fusion of the CYP11B2 and CYP11B1 genes, in this way the synthesis of aldosterone becomes to be regulated by ACTH instead of by angiotensin II. In type II, III and IV familial PAH there is an increase in the transcription and expression of CYP11B2 responsible for aldosterone synthesis due to a germinal mutation in CLCN2, KCNJ5 and CACNA1H, respectively. On the other hand, somatic mutations have been identified in 50% of sporadic PAHs, with gain-of-function mutations at the level of KCNJ5, ATP1A1, ATP2B3 and CACNA1D being the most common. This review provides a detailed description of the different forms of familial PAH and the molecular profile of patients with sporadic PAH.


Asunto(s)
Aldosterona , Hiperaldosteronismo , Humanos , Aldosterona/metabolismo , Esteroide 11-beta-Hidroxilasa/metabolismo , Citocromo P-450 CYP11B2/metabolismo , Angiotensina II/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Hiperaldosteronismo/genética , Hormona Adrenocorticotrópica/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo
16.
J Mol Graph Model ; 116: 108238, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35691091

RESUMEN

DESIGN: of selective drug candidates for highly structural similar targets is a challenging task for researchers. The main objective of this study was to explore the selectivity modeling of pyridine and pyrimidine scaffold towards the highly homologous targets CYP11B1 and CYP11B2 enzymes by in silico (Molecular docking and QSAR) approaches. In this regard, a big dataset (n = 228) of CYP11B1 and CYP11B2 inhibitors were gathered and classified based on heterocyclic ring and the exhaustive analysis was carried out for pyridine and pyrimidinescaffolds. The LibDock algorithm was used to explore the binding pattern, screening, and identify the structural feature responsible for the selectivity of the ligands towards the studied targets. Finally, QSAR analysis was done to explore the correlation between various binding parameters and structural features responsible for the inhibitory activity and selectivity of the ligands in a quantitative way. The docking and QSAR analysis clearly revealed and distinguished the importance of structural features, functional groups attached for CYP11B2 and CYP11B1 selectivity for pyridine and pyrimidine analogs. Additionally, the docking analysis highlighted the differentiating amino acids residues for selectivity for ligands for each of the enzymes. The results obtained from this research work will be helpful in designing the selective CYP11B1/CYP11B2 inhibitors.


Asunto(s)
Citocromo P-450 CYP11B2 , Esteroide 11-beta-Hidroxilasa , Citocromo P-450 CYP11B2/química , Citocromo P-450 CYP11B2/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Piridinas/farmacología , Pirimidinas , Esteroide 11-beta-Hidroxilasa/química , Esteroide 11-beta-Hidroxilasa/metabolismo
17.
Yi Chuan ; 44(12): 1175-1182, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36927563

RESUMEN

Congenital adrenal hyperplasia (CAH) is an autosomal recessive hereditary disease, and the 11ß- hydroxylase deficiency is the second most common syndrome in different types of CAH. The occurrence of 11ß- hydroxylase deficiency is related to the mutation of CYP11B gene on human autosome 8. In this report, we detected the gene mutation sites of a 14-year-old patient with 11ß-hydroxylase deficiency by whole exon sequencing (WES), verified the suspected mutation by Sanger sequencing, and analyzed its characteristics. Gene sequencing revealed that homozygous missense mutation of c.1226C>T appeared on the 8th exon of CYP11B1 gene, which resulted in the mutation of the encoding protein Ser409 to phenylalanine (p. Ser409Phe), affecting the binding of heme and enzyme and resulting in the loss of CYP11B1 enzyme activity and a series of clinical symptoms. This mutation has not been reported at home and abroad. This case enriches the variation spectrum of CYP11B1 gene and provides clinical data and genetic resources for further research on the pathogenesis of 11ß-hydroxylase deficiency.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 11-beta-Hidroxilasa , Humanos , Adolescente , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Mutación , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/metabolismo , Mutación Missense , Exones
18.
Hormones (Athens) ; 21(1): 155-161, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34697763

RESUMEN

BACKGROUND: Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder caused by pathogenic variants in seven genes involved in the cortisol and aldosterone biosynthetic pathway. The second most common cause, 11ß-hydroxylase deficiency (11ßOHD), is attributed to pathogenic variants in the CYP11B1 gene encoding for the enzyme 11ß-hydroxylase (11ßOH). CASE PRESENTATION: A 13-year-old girl was referred to the pediatric endocrinologist due to a syncopal episode. She is the third child of non-consanguineous parents. She presented with premature adrenarche at the age of 6 years and menarche at the age of 12 years. On physical examination, her height was 154.5 cm and weight 50 kg, while she presented with acne, hirsutism, clitoromegaly, and normal blood pressure. Laboratory investigation revealed increased androgen levels and poor cortisol response to the ACTH stimulation test. From the family history, the mother was diagnosed with CAH at the age of 10 years and was under treatment with methylprednisolone. Previous molecular investigation of the CYP21A2 gene was negative. Due to the increased androstenedione levels in the index patient, the suspicion of 11ßOH was raised, and she was investigated for 11-deoxycortisol, 11-deoxycorticosterone, and CYP11B1 gene pathogenic variants. The patient and her mother were found to be compound heterozygous for two novel variants of the CYP11B1 gene. CONCLUSION: We present a case of CAH due to compound heterozygosity of two novel pathogenic variants of the CYP11B1 gene, emphasizing the importance of molecular investigation in order to confirm clinical diagnosis and allow proper genetic counseling of the family.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Esteroide 11-beta-Hidroxilasa , Adolescente , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Aldosterona , Niño , Femenino , Humanos , Hidrocortisona , Mutación , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 11-beta-Hidroxilasa/metabolismo , Esteroide 21-Hidroxilasa/genética
19.
Commun Biol ; 4(1): 1274, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754074

RESUMEN

We performed genome-wide association study meta-analysis to identify genetic determinants of skeletal age (SA) deviating in multiple growth disorders. The joint meta-analysis (N = 4557) in two multiethnic cohorts of school-aged children identified one locus, CYP11B1 (expression confined to the adrenal gland), robustly associated with SA (rs6471570-A; ß = 0.14; P = 6.2 × 10-12). rs6410 (a synonymous variant in the first exon of CYP11B1 in high LD with rs6471570), was prioritized for functional follow-up being second most significant and the one closest to the first intron-exon boundary. In 208 adrenal RNA-seq samples from GTEx, C-allele of rs6410 was associated with intron 3 retention (P = 8.11 × 10-40), exon 4 inclusion (P = 4.29 × 10-34), and decreased exon 3 and 5 splicing (P = 7.85 × 10-43), replicated using RT-PCR in 15 adrenal samples. As CYP11B1 encodes 11-ß-hydroxylase, involved in adrenal glucocorticoid and mineralocorticoid biosynthesis, our findings highlight the role of adrenal steroidogenesis in SA in healthy children, suggesting alternative splicing as a likely underlying mechanism.


Asunto(s)
Empalme Alternativo , Desarrollo Óseo/genética , Esteroide 11-beta-Hidroxilasa/genética , Determinación de la Edad por el Esqueleto , Niño , Femenino , Humanos , Masculino , Esteroide 11-beta-Hidroxilasa/metabolismo
20.
J Endocrinol ; 251(1): 97-109, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34370692

RESUMEN

Preterm birth is associated with immaturity of several crucial physiological functions notably those prevailing in the lung and kidney. Recently, a steroid secretion deficiency was identified in very preterm neonates, associated with a partial yet transient deficiency in 11ß-hydroxylase activity, sustaining cortisol synthesis. However, the P450c11ß enzyme is expressed in preterm adrenal glands, we hypothesized an inhibition of cortisol production by adrenomedullin (ADM), a peptide highly produced in neonates and whose effect on steroidogenesis remains poorly known. We studied the effects of ADM on three models: 104 cord-blood samples of the PREMALDO neonate cohort, genetically targeted mice overexpressing ADM, and two human adrenocortical cell lines (H295R and HAC15 cells). Mid-regional-proADM (MR-proADM) quantification in cord-blood samples showed strong negative correlation with gestational age (P = 0.0004), cortisol production (P < 0.0001), and 11ß-hydroxylase activity index (P < 0.0001). Mean MR-proADM was higher in very preterm than in term neonates (1.12 vs 0.60 nmol/L, P < 0.0001). ADM-overexpression mice revealed a lower 11ß-hydroxylase activity index (P < 0.05). Otherwise, aldosterone levels measured by LC-MS/MS were higher in ADM-overexpression mice (0.83 vs 0.46 ng/mL, P < 0.05). More importantly, the negative relationship between adrenal ADM expression and aldosterone production found in control was lacking in the ADM-overexpression mice. Finally, LC-MS/MS and gene expression studies on H295R and HAC15 cells revealed an ADM-induced inhibition of both cortisol secretion in cell supernatants and CYP11B1 expression. Collectively, our results converge toward an inhibitory effect of ADM on glucocorticoid synthesis in humans and should be considered to explain the steroid secretion deficiency observed at birth in premature newborns.


Asunto(s)
Adrenomedulina/metabolismo , Hidrocortisona/biosíntesis , Recien Nacido Prematuro/metabolismo , Adrenomedulina/sangre , Animales , Carcinoma Adenoide Quístico/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Sangre Fetal/metabolismo , Humanos , Recién Nacido , Masculino , Ratones , Fragmentos de Péptidos/sangre , Precursores de Proteínas/sangre , Esteroide 11-beta-Hidroxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...