Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.833
Filtrar
1.
PLoS One ; 19(5): e0302739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728329

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) reliably ameliorates cardinal motor symptoms in Parkinson's disease (PD) and essential tremor (ET). However, the effects of DBS on speech, voice and language have been inconsistent and have not been examined comprehensively in a single study. OBJECTIVE: We conducted a systematic analysis of literature by reviewing studies that examined the effects of DBS on speech, voice and language in PD and ET. METHODS: A total of 675 publications were retrieved from PubMed, Embase, CINHAL, Web of Science, Cochrane Library and Scopus databases. Based on our selection criteria, 90 papers were included in our analysis. The selected publications were categorized into four subcategories: Fluency, Word production, Articulation and phonology and Voice quality. RESULTS: The results suggested a long-term decline in verbal fluency, with more studies reporting deficits in phonemic fluency than semantic fluency following DBS. Additionally, high frequency stimulation, left-sided and bilateral DBS were associated with worse verbal fluency outcomes. Naming improved in the short-term following DBS-ON compared to DBS-OFF, with no long-term differences between the two conditions. Bilateral and low-frequency DBS demonstrated a relative improvement for phonation and articulation. Nonetheless, long-term DBS exacerbated phonation and articulation deficits. The effect of DBS on voice was highly variable, with both improvements and deterioration in different measures of voice. CONCLUSION: This was the first study that aimed to combine the outcome of speech, voice, and language following DBS in a single systematic review. The findings revealed a heterogeneous pattern of results for speech, voice, and language across DBS studies, and provided directions for future studies.


Asunto(s)
Estimulación Encefálica Profunda , Lenguaje , Enfermedad de Parkinson , Habla , Voz , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Habla/fisiología , Voz/fisiología , Temblor Esencial/terapia , Temblor Esencial/fisiopatología
2.
Mo Med ; 121(2): 149-155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694614

RESUMEN

Functional neurosurgery encompasses surgical procedures geared towards treating movement disorders (such as Parkinson's disease and essential tremor), drug-resistant epilepsy, and various types of pain disorders. It is one of the most rapidly expanding fields within neurosurgery and utilizes both traditional open surgical methods such as open temporal lobectomy for epilepsy as well as neuromodulation-based treatments such as implanting brain or nerve stimulation devices. This review outlines the role functional neurosurgery plays in treatment of epilepsy, movement disorders, and pain, and how it is being implemented at the University of Missouri by the Department of Neurosurgery.


Asunto(s)
Dolor Crónico , Epilepsia , Trastornos del Movimiento , Procedimientos Neuroquirúrgicos , Humanos , Dolor Crónico/cirugía , Trastornos del Movimiento/cirugía , Procedimientos Neuroquirúrgicos/métodos , Procedimientos Neuroquirúrgicos/tendencias , Epilepsia/cirugía , Missouri , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento
3.
J Neural Eng ; 21(3)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701768

RESUMEN

Deep brain stimulation (DBS) is a therapy for Parkinson's disease (PD) and essential tremor (ET). The mechanism of action of DBS is still incompletely understood. Retrospective group analysis of intra-operative data recorded from ET patients implanted in the ventral intermediate nucleus of the thalamus (Vim) is rare. Intra-operative stimulation tests generate rich data and their use in group analysis has not yet been explored.Objective.To implement, evaluate, and apply a group analysis workflow to generate probabilistic stimulation maps (PSMs) using intra-operative stimulation data from ET patients implanted in Vim.Approach.A group-specific anatomical template was constructed based on the magnetic resonance imaging scans of 6 ET patients and 13 PD patients. Intra-operative test data (total:n= 1821) from the 6 ET patients was analyzed: patient-specific electric field simulations together with tremor assessments obtained by a wrist-based acceleration sensor were transferred to this template. Occurrence and weighted mean maps were generated. Voxels associated with symptomatic response were identified through a linear mixed model approach to form a PSM. Improvements predicted by the PSM were compared to those clinically assessed. Finally, the PSM clusters were compared to those obtained in a multicenter study using data from chronic stimulation effects in ET.Main results.Regions responsible for improvement identified on the PSM were in the posterior sub-thalamic area (PSA) and at the border between the Vim and ventro-oral nucleus of the thalamus (VO). The comparison with literature revealed a center-to-center distance of less than 5 mm and an overlap score (Dice) of 0.4 between the significant clusters. Our workflow and intra-operative test data from 6 ET-Vim patients identified effective stimulation areas in PSA and around Vim and VO, affirming existing medical literature.Significance.This study supports the potential of probabilistic analysis of intra-operative stimulation test data to reveal DBS's action mechanisms and to assist surgical planning.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Tálamo , Humanos , Temblor Esencial/terapia , Temblor Esencial/fisiopatología , Temblor Esencial/diagnóstico por imagen , Estimulación Encefálica Profunda/métodos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Mapeo Encefálico/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Núcleos Talámicos Ventrales/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/diagnóstico por imagen , Monitorización Neurofisiológica Intraoperatoria/métodos
4.
Acta Neurochir (Wien) ; 166(1): 217, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748304

RESUMEN

PURPOSE: To assess whether diffusion tensor imaging (DTI) and generalized q-sampling imaging (GQI) metrics could preoperatively predict the clinical outcome of deep brain stimulation (DBS) in patients with Parkinson's disease (PD). METHODS: In this single-center retrospective study, from September 2021 to March 2023, preoperative DTI and GQI examinations of 44 patients who underwent DBS surgery, were analyzed. To evaluate motor functions, the Unified Parkinson's Disease Rating Scale (UPDRS) during on- and off-medication and Parkinson's Disease Questionnaire-39 (PDQ-39) scales were used before and three months after DBS surgery. The study population was divided into two groups according to the improvement rate of scales: ≥ 50% and < 50%. Five target regions, reported to be affected in PD, were investigated. The parameters having statistically significant difference were subjected to a receiver operating characteristic (ROC) analysis. RESULTS: Quantitative anisotropy (qa) values from globus pallidus externus, globus pallidus internus (qa_Gpi), and substantia nigra exhibited significant distributional difference between groups in terms of the improvement rate of UPDRS-3 scale during on-medication (p = 0.003, p = 0.0003, and p = 0.0008, respectively). In ROC analysis, the best parameter in predicting DBS response included qa_Gpi with a cut-off value of 0.01370 achieved an area under the ROC curve, accuracy, sensitivity, and specificity of 0.810, 73%, 62.5%, and 85%, respectively. Optimal cut-off values of ≥ 0.01864 and ≤ 0.01162 yielded a sensitivity and specificity of 100%, respectively. CONCLUSION: The imaging parameters acquired from GQI, particularly qa_Gpi, may have the ability to non-invasively predict the clinical outcome of DBS surgery.


Asunto(s)
Estimulación Encefálica Profunda , Imagen de Difusión Tensora , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Resultado del Tratamiento , Globo Pálido/diagnóstico por imagen , Valor Predictivo de las Pruebas
5.
Clin Neurol Neurosurg ; 241: 108306, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713962

RESUMEN

BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is a type of inherited metabolic disorder caused by mutation in the PANK2 gene. The metabolic disorder mainly affects the basal ganglia region and eventually manifests as dystonia. For patients of dystonia, their dystonic symptom may progress to life-threatening emergency--status dystonicus. OBJECTIVE: We described a case of a child with PKAN who had developed status dystonicus and was successfully treated with deep brain stimulation (DBS). Based on this rare condition, we analysed the clinical features of PKAN with status dystonicus and reviewed the reasonable management process of this condition. CONCLUSION: This case confirmed the rationality of choosing DBS for the treatment of status dystonicus. Meanwhile, we found that children with classic PKAN have a cluster of risk factors for developing status dystonicus. Once children diagnosed with similar neurodegenerative diseases are under status dystonicus, DBS can be active considered because it has showed high control rate of this emergent condition.


Asunto(s)
Estimulación Encefálica Profunda , Neurodegeneración Asociada a Pantotenato Quinasa , Humanos , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Estimulación Encefálica Profunda/métodos , Masculino , Niño , Distonía/terapia , Femenino , Trastornos Distónicos/terapia , Trastornos Distónicos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
6.
Physiol Rep ; 12(9): e16001, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697943

RESUMEN

Local field potential (LFP) oscillations in the beta band (13-30 Hz) in the subthalamic nucleus (STN) of Parkinson's disease patients have been implicated in disease severity and treatment response. The relationship between single-neuron activity in the STN and regional beta power changes remains unclear. We used spike-triggered average (STA) to assess beta synchronization in STN. Beta power and STA magnitude at the beta frequency range were compared in three conditions: STN versus other subcortical structures, dorsal versus ventral STN, and high versus low beta power STN recordings. Magnitude of STA-LFP was greater within the STN compared to extra-STN structures along the trajectory path, despite no difference in percentage of the total power. Within the STN, there was a higher percent beta power in dorsal compared to ventral STN but no difference in STA-LFP magnitude. Further refining the comparison to high versus low beta peak power recordings inside the STN to evaluate if single-unit activity synchronized more strongly with beta band activity in areas of high beta power resulted in a significantly higher STA magnitude for areas of high beta power. Overall, these results suggest that STN single units strongly synchronize to beta activity, particularly units in areas of high beta power.


Asunto(s)
Ritmo beta , Enfermedad de Parkinson , Núcleo Subtalámico , Núcleo Subtalámico/fisiopatología , Enfermedad de Parkinson/fisiopatología , Humanos , Masculino , Ritmo beta/fisiología , Persona de Mediana Edad , Femenino , Anciano , Potenciales de Acción/fisiología , Neuronas/fisiología , Estimulación Encefálica Profunda/métodos
7.
Neurosurg Rev ; 47(1): 218, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739328

RESUMEN

This letter addresses important considerations for enhancing the research on the gender gap in deep brain stimulation (DBS) for Parkinson's disease. While acknowledging the commendable efforts of the study's authors, we highlight several areas that warrant further attention to maximize the research's yield and applicability. Specifically, we emphasize the need for a more diverse cohort to enhance the generalizability of findings, inclusion of a control group for comprehensive evaluation, utilization of additional assessment tools to mitigate bias, incorporation of qualitative data for a holistic understanding, and evaluation of long-term outcomes beyond short follow-up durations. Addressing these considerations would strengthen the validity, applicability, and impact of research findings in this crucial area of study.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Femenino , Masculino , Estudios Retrospectivos , Resultado del Tratamiento , Factores Sexuales
8.
Nat Commun ; 15(1): 4017, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740759

RESUMEN

Ultrasound-driven bioelectronics could offer a wireless scheme with sustainable power supply; however, current ultrasound implantable systems present critical challenges in biocompatibility and harvesting performance related to lead/lead-free piezoelectric materials and devices. Here, we report a lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation, which integrates two developed lead-free sandwich porous 1-3-type piezoelectric composite elements with enhanced harvesting performance in a flexible printed circuit board. The implant is ultrasonically powered through a portable external dual-frequency transducer and generates programmable biphasic stimulus pulses in clinically relevant frequencies. Furthermore, we demonstrate ultrasound-driven implants for long-term biosafety therapy in deep brain stimulation through an epileptic rodent model. With biocompatibility and improved electrical performance, the lead-free materials and devices presented here could provide a promising platform for developing implantable ultrasonic electronics in the future.


Asunto(s)
Estimulación Encefálica Profunda , Tecnología Inalámbrica , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Animales , Tecnología Inalámbrica/instrumentación , Ratas , Electrodos Implantados , Epilepsia/terapia , Masculino , Prótesis e Implantes , Ratas Sprague-Dawley , Transductores , Diseño de Equipo , Ondas Ultrasónicas
10.
Science ; 384(6691): 42, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574146

RESUMEN

Ingestible electronic pills can be used for targeted noninvasive neuromodulation.


Asunto(s)
Encéfalo , Estimulación Encefálica Profunda , Electrónica , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Estómago
11.
Transl Psychiatry ; 14(1): 186, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605027

RESUMEN

Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia , Ratones , Humanos , Ratas , Animales , Estimulación Encefálica Profunda/métodos , Roedores , Encéfalo , Hipocampo
12.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605039

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/fisiología , Ganglios Basales/fisiología , Neuronas/fisiología
13.
Transl Psychiatry ; 14(1): 190, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622130

RESUMEN

Drug addiction represents a multifaceted and recurrent brain disorder that possesses the capability to create persistent and ineradicable pathological memory. Deep brain stimulation (DBS) has shown a therapeutic potential for neuropsychological disorders, while the precise stimulation targets and therapeutic parameters for addiction remain deficient. Among the crucial brain regions implicated in drug addiction, the dorsal raphe nucleus (DRN) has been found to exert an essential role in the manifestation of addiction memory. Thus, we investigated the effects of DRN DBS in the treatment of addiction and whether it might produce side effects by a series of behavioral assessments, including methamphetamine priming-induced reinstatement of drug seeking behaviors, food-induced conditioned place preference (CPP), open field test and elevated plus-maze test, and examined brain activity and connectivity after DBS of DRN. We found that high-frequency DBS of the DRN significantly lowered the CPP scores and the number of active-nosepokes in the methamphetamine-primed CPP test and the self-administration model. Moreover, both high-frequency and sham DBS group rats were able to establish significant food-induced place preference, and no significant difference was observed in the open field test and in the elevated plus-maze test between the two groups. Immunofluorescence staining and functional magnetic resonance imaging revealed that high-frequency DBS of the DRN could alter the activity and functional connectivity of brain regions related to addiction. These results indicate that high-frequency DBS of the DRN effectively inhibits methamphetamine priming-induced relapse and seeking behaviors in rats and provides a new target for the treatment of drug addiction.


Asunto(s)
Estimulación Encefálica Profunda , Metanfetamina , Trastornos Relacionados con Sustancias , Ratas , Animales , Núcleo Dorsal del Rafe , Estimulación Encefálica Profunda/métodos , Comportamiento de Búsqueda de Drogas/fisiología , Trastornos Relacionados con Sustancias/terapia
14.
BMC Neurol ; 24(1): 145, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684956

RESUMEN

BACKGROUND: Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders. METHODS: Ten children and young adults with DCP and disabling movement disorders with or without spasticity will undergo bilateral DBS in the dorsal dentate nucleus, with the most distal contact ending in the superior cerebellar peduncle. We will implant Medtronic Percept, a bidirectional neurostimulator that can sense and store brain activity and deliver DBS therapy. The efficacy of cerebellar DBS in improving quality of life and motor outcomes will be tested by a series of N-of-1 clinical trials. Each N-of-1 trial will consist of three blocks, each consisting of one month of effective stimulation and one month of sham stimulation in a random order with weekly motor and quality of life scales as primary and secondary outcomes. In addition, we will characterize abnormal patterns of cerebellar oscillatory activity measured by local field potentials from the intracranial electrodes related to clinical assessments and wearable monitors. Pre- and 12-month postoperative volumetric structural and functional MRI and diffusion tensor imaging will be used to identify candidate imaging markers of baseline disease severity and response to DBS. DISCUSSION: Our goal is to test a cerebellar neuromodulation therapy that produces meaningful changes in function and well-being for people with CP, obtain a mechanistic understanding of the underlying brain network disorder, and identify physiological and imaging-based predictors of outcomes useful in planning further studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT06122675, first registered November 7, 2023.


Asunto(s)
Cerebelo , Parálisis Cerebral , Estimulación Encefálica Profunda , Trastornos del Movimiento , Humanos , Parálisis Cerebral/terapia , Parálisis Cerebral/fisiopatología , Estimulación Encefálica Profunda/métodos , Niño , Adolescente , Adulto Joven , Trastornos del Movimiento/terapia , Cerebelo/diagnóstico por imagen , Masculino , Femenino , Adulto
15.
J Neural Eng ; 21(3)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38648783

RESUMEN

Objective. Our goal is to decode firing patterns of single neurons in the left ventralis intermediate nucleus (Vim) of the thalamus, related to speech production, perception, and imagery. For realistic speech brain-machine interfaces (BMIs), we aim to characterize the amount of thalamic neurons necessary for high accuracy decoding.Approach. We intraoperatively recorded single neuron activity in the left Vim of eight neurosurgical patients undergoing implantation of deep brain stimulator or RF lesioning during production, perception and imagery of the five monophthongal vowel sounds. We utilized the Spade decoder, a machine learning algorithm that dynamically learns specific features of firing patterns and is based on sparse decomposition of the high dimensional feature space.Main results. Spade outperformed all algorithms compared with, for all three aspects of speech: production, perception and imagery, and obtained accuracies of 100%, 96%, and 92%, respectively (chance level: 20%) based on pooling together neurons across all patients. The accuracy was logarithmic in the amount of neurons for all three aspects of speech. Regardless of the amount of units employed, production gained highest accuracies, whereas perception and imagery equated with each other.Significance. Our research renders single neuron activity in the left Vim a promising source of inputs to BMIs for restoration of speech faculties for locked-in patients or patients with anarthria or dysarthria to allow them to communicate again. Our characterization of how many neurons are necessary to achieve a certain decoding accuracy is of utmost importance for planning BMI implantation.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Automático , Neuronas , Habla , Tálamo , Humanos , Neuronas/fisiología , Masculino , Femenino , Persona de Mediana Edad , Habla/fisiología , Adulto , Tálamo/fisiología , Estimulación Encefálica Profunda/métodos , Anciano , Percepción del Habla/fisiología
16.
Medicine (Baltimore) ; 103(17): e37955, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669414

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) is a viable therapeutic for advanced Parkinson's disease. However, the efficacy and safety of STN-DBS under local anesthesia (LA) versus general anesthesia (GA) remain controversial. This meta-analysis aims to compare them using an expanded sample size. METHODS: The databases of Embase, Cochrane Library and Medline were systematically searched for eligible cohort studies published between 1967 and 2023. Clinical efficacy was assessed using either Unified Parkinson's Disease Rating Scale (UPDRS) section III scores or levodopa equivalent dosage requirements. Subgroup analyses were performed to assess complications (adverse effects related to stimulation, general neurological and surgical complications, and hardware-related complications). RESULTS: Fifteen studies, comprising of 13 retrospective cohort studies and 2 prospective cohort studies, involving a total of 943 patients were included in this meta-analysis. The results indicate that there were no significant differences between the 2 groups with regards to improvement in UPDRS III score or postoperative levodopa equivalent dosage requirement. However, subgroup analysis revealed that patients who underwent GA with intraoperative imaging had higher UPDRS III score improvement compared to those who received LA with microelectrode recording (MER) (P = .03). No significant difference was found in the improvement of UPDRS III scores between the GA group and LA group with MER. Additionally, there were no notable differences in the incidence rates of complications between these 2 groups. CONCLUSIONS: Our meta-analysis indicates that STN-DBS performed under GA or LA have similar clinical outcomes and complications. Therefore, GA may be a suitable option for patients with severe symptoms who cannot tolerate the procedure under LA. Additionally, the GA group with intraoperative imaging showed better clinical outcomes than the LA group with MER. A more compelling conclusion would require larger prospective cohort studies with a substantial patient population and extended long follow-up to validate.


Asunto(s)
Anestesia General , Anestesia Local , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Estimulación Encefálica Profunda/efectos adversos , Enfermedad de Parkinson/terapia , Anestesia General/métodos , Anestesia Local/métodos , Resultado del Tratamiento
17.
Neurotherapeutics ; 21(3): e00366, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38688105

RESUMEN

Psychiatric disorders are among the leading contributors to global disease burden and disability. A significant portion of patients with psychiatric disorders remain treatment-refractory to best available therapy. With insights from the neurocircuitry of psychiatric disorders and extensive experience of neuromodulation with deep brain stimulation (DBS) in movement disorders, DBS is increasingly being considered to modulate the neural network in psychiatric disorders. Currently, obsessive-compulsive disorder (OCD) is the only U.S. FDA (United States Food and Drug Administration) approved DBS indication for psychiatric disorders. Medically refractory depression, addiction, and other psychiatric disorders are being explored for DBS neuromodulation. Studies evaluating DBS for psychiatric disorders are promising but lack larger, controlled studies. This paper presents a brief review and the current state of DBS and other neurosurgical neuromodulation therapies for OCD and other psychiatric disorders. We also present a brief review of MR-guided Focused Ultrasound (MRgFUS), a novel form of neurosurgical neuromodulation, which can target deep subcortical structures similar to DBS, but in a noninvasive fashion. Early experiences of neurosurgical neuromodulation therapies, including MRgFUS neuromodulation are encouraging in psychiatric disorders; however, they remain investigational. Currently, DBS and VNS are the only FDA approved neurosurgical neuromodulation options in properly selected cases of OCD and depression, respectively.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Mentales , Humanos , Estimulación Encefálica Profunda/métodos , Trastornos Mentales/terapia , Trastorno Obsesivo Compulsivo/terapia , Procedimientos Neuroquirúrgicos/métodos , Procedimientos Neuroquirúrgicos/tendencias
19.
Brain Res ; 1835: 148914, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580047

RESUMEN

Closed-loop deep brain stimulation (DBS) system offers a promising approach for treatment-resistant depression, but identifying universally accepted electrophysiological biomarkers for closed-loop DBS systems targeting depression is challenging. There is growing evidence suggesting a strong association between the lateral habenula (LHb) and depression. Here, we took LHb as a key target, utilizing multi-site local field potentials (LFPs) to study the acute and chronic changes in electrophysiology, functional connectivity, and brain network characteristics during the formation of a chronic restraint stress (CRS) model. Furthermore, our model combining the electrophysiological changes of LHb and interactions between LHb and other potential targets of depression can effectively distinguish depressive states, offering a new way for developing effective closed-loop DBS strategies.


Asunto(s)
Depresión , Habénula , Restricción Física , Estrés Psicológico , Habénula/fisiología , Habénula/fisiopatología , Animales , Estrés Psicológico/fisiopatología , Depresión/fisiopatología , Restricción Física/métodos , Masculino , Modelos Animales de Enfermedad , Estimulación Encefálica Profunda/métodos , Ratas , Ratas Sprague-Dawley
20.
Epilepsy Res ; 202: 107356, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564925

RESUMEN

Implantable brain recording and stimulation devices apply to a broad spectrum of conditions, such as epilepsy, movement disorders and depression. For long-term monitoring and neuromodulation in epilepsy patients, future extracranial subscalp implants may offer a promising, less-invasive alternative to intracranial neurotechnologies. To inform the design and assess the safety profile of such next-generation devices, we estimated extracranial complication rates of deep brain stimulation (DBS), cranial peripheral nerve stimulation (PNS), responsive neurostimulation (RNS) and existing subscalp EEG devices (sqEEG), as proxy for future implants. Pubmed was searched systematically for DBS, PNS, RNS and sqEEG studies from 2000 to February 2024 (48 publications, 7329 patients). We identified seven categories of extracranial adverse events: infection, non-infectious cutaneous complications, lead migration, lead fracture, hardware malfunction, pain and hemato-seroma. We used cohort sizes, demographics and industry funding as metrics to assess risks of bias. An inverse variance heterogeneity model was used for pooled and subgroup meta-analysis. The pooled incidence of extracranial complications reached 14.0%, with infections (4.6%, CI 95% [3.2 - 6.2]), surgical site pain (3.2%, [0.6 - 6.4]) and lead migration (2.6%, [1.0 - 4.4]) as leading causes. Subgroup analysis showed a particularly high incidence of persisting pain following PNS (12.0%, [6.8 - 17.9]) and sqEEG (23.9%, [12.7 - 37.2]) implantation. High rates of lead migration (12.4%, [6.4 - 19.3]) were also identified in the PNS subgroup. Complication analysis of DBS, PNS, RNS and sqEEG studies provides a significant opportunity to optimize the safety profile of future implantable subscalp devices for chronic EEG monitoring. Developing such promising technologies must address the risks of infection, surgical site pain, lead migration and skin erosion. A thin and robust design, coupled to a lead-anchoring system, shall enhance the durability and utility of next-generation subscalp implants for long-term EEG monitoring and neuromodulation.


Asunto(s)
Estimulación Encefálica Profunda , Humanos , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Electrodos Implantados/efectos adversos , Electroencefalografía/métodos , Electroencefalografía/instrumentación , Convulsiones/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...