Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.908
Filtrar
1.
Allergol Immunopathol (Madr) ; 52(3): 1-7, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721949

RESUMEN

INTRODUCTION: Many chronic spontaneous urticaria (CSU) patients have highly stressful life events and exhibit psychiatric comorbidities. Emotional stress can cause or exacerbate urticaria symptoms by causing mast cell degranulation via neuromediators. OBJECTIVES: To investigate the frequency of stressful life events and compare psychiatric comorbidities and serum neuromediator levels in patients with CSU who responded to omalizumab with healthy controls. METHODS: In this cross-sectional study, we included 42 patients with CSU who received at least 6 months of omalizumab treatment and a control group of 42 healthy controls. Stressful life events were evaluated with the Life Events Checklist for DSM-5 (LEC-5). The Depression Anxiety Stress Scale-42 (DASS-42) was used to evaluate depression, anxiety and stress levels. Serum nerve growth factor (NGF), calcitonin gene-related peptide (CGRP) and substance P (SP) levels were measured using the enzyme-linked immunosorbent assay (ELISA) technique. RESULTS: Twenty-six (62%) patients reported at least one stressful life event a median of 3.5 months before the onset of CSU. There were no significant differences in all three variables in the DASS subscales between the patient and control groups. Serum NGF levels were found to be significantly lower in patients with CSU (p <0.001), whereas CGRP levels were found to be significantly higher (p <0.001). There was no significant difference for SP. CONCLUSIONS: The psychological status of patients with CSU who benefited from omalizumab was similar to that of healthy controls. Omalizumab may affect stress-related neuromediator levels.


Asunto(s)
Antialérgicos , Urticaria Crónica , Factor de Crecimiento Nervioso , Omalizumab , Estrés Psicológico , Humanos , Omalizumab/uso terapéutico , Femenino , Masculino , Adulto , Urticaria Crónica/tratamiento farmacológico , Urticaria Crónica/sangre , Estudios Transversales , Persona de Mediana Edad , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/sangre , Factor de Crecimiento Nervioso/sangre , Antialérgicos/uso terapéutico , Sustancia P/sangre , Péptido Relacionado con Gen de Calcitonina , Comorbilidad , Depresión/tratamiento farmacológico , Depresión/sangre , Depresión/epidemiología , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/sangre , Trastornos Mentales/epidemiología
2.
Eur J Med Res ; 29(1): 271, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711117

RESUMEN

Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.


Asunto(s)
Dexmedetomidina , Microbioma Gastrointestinal , Homeostasis , Estrés Psicológico , Animales , Dexmedetomidina/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Homeostasis/efectos de los fármacos , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Memoria/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Aprendizaje por Laberinto/efectos de los fármacos , Ansiedad/tratamiento farmacológico
3.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732539

RESUMEN

BACKGROUND: Stress is a known causative factor in modulating cognitive health, which overall well-being and quality of life are dependent on. Long-term stress has been shown to disrupt the balance of the hypothalamic-pituitary-adrenal (HPA) axis. Adaptogens, such as Withania somnifera (ashwagandha), are commonly used in Ayurvedic medicine for stress relief and ameliorating HPA-axis dysfunction. The aim of this study was to support the role of a root and leaf water-extracted ashwagandha extract (WS) in stress reduction by confirming the lowest clinically validated dose for stress management (125 mg/day) in a dose-dependent clinical study in adults with self-reported high stress. METHODS: An 8-week, randomized, double-blinded, placebo-controlled study to compare the effects of three different WS extract doses (125, 250 and 500 mg) was performed. A total of 131 adults were enrolled, and 98 were included in the final analysis. Attenuation of chronic stress was measured using the 14-item Perceived Stress Scale (PSS) and biochemical-related stress parameters. RESULTS: We have shown that aqueous WS extract (roots and leaves) safely reduces mild to moderate chronic stress at doses of 125 mg, 250 mg, and 500 mg/day for 8 weeks. CONCLUSIONS: Our findings demonstrate the stress-reduction capabilities of this well-characterized aqueous extract of WS (root and leaf) at the low dose of 125 mg/day, in a dose-dependent manner, via the modulation of the HPA axis. TRIAL REGISTRATION: This study was registered with the Clinical Trials Registry-India (CTRI) with the registration number: CTRI/2019/11/022100.


Asunto(s)
Extractos Vegetales , Hojas de la Planta , Raíces de Plantas , Estrés Psicológico , Withania , Humanos , Withania/química , Extractos Vegetales/farmacología , Masculino , Femenino , Adulto , Método Doble Ciego , Estrés Psicológico/tratamiento farmacológico , Hojas de la Planta/química , Persona de Mediana Edad , Raíces de Plantas/química , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Enfermedad Crónica , Medicina Ayurvédica , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Adulto Joven , Fitoterapia
4.
Pak J Pharm Sci ; 37(1): 129-137, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38741409

RESUMEN

Stress is described as a noxious stimulus that affects the health of an individual and alters body homeostasis resulting in changes the individual behavioural and metabolic condition. Synthesis of drug from plants has main interest due the significant medicinal values. The recent investigation was designed to examine the pharmacological impacts of Ficus carica leaves extract on stress. In this experiment, the rodents were randomly distributed as (n=6) control rats were kept at standard condition, second group of rats were exposed with different stressors and Third group of rodents was exposed to stress and treated with extract of ficus carica leaves at the dose of 100 mg/kg. Acute behavioural alteration was observed after 7 days and prolonged impact was monitored after the 28 days. The current finding showed that administration of Ficus carica leaves extract produced anxiolytic behaviours and decreased depression like symptoms in CUMS treated rats. It also increased stimulatory, ambulatory, locomotor activity and enhanced spatial working memory and recognition memory in CUMS exposed rats. So, it can be concluded from recent study that leaves of Ficus carica can be utilized as secure drug for curing physiological stress with less side effect profile.


Asunto(s)
Conducta Animal , Modelos Animales de Enfermedad , Ficus , Extractos Vegetales , Hojas de la Planta , Estrés Psicológico , Animales , Ficus/química , Extractos Vegetales/farmacología , Conducta Animal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Masculino , Ratas , Ratas Wistar , Ansiolíticos/farmacología , Depresión/tratamiento farmacológico
5.
Eur J Pharmacol ; 972: 176559, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38588768

RESUMEN

This study aimed to assess whether brief recall of methamphetamine (MA) memory, when combined with ketamine (KE) treatment, may prevent stress-primed MA memory reinstatement. Combining 3-min recall and KE facilitated MA memory extinction and resistance to subsequent stress-primed reinstatement. Such combination also produced glutamate metabotropic receptor 5 (mGluR5) upregulation in animals' medial prefrontal cortex (mPFC) γ-amino-butyric acid (GABA) neuron. Accordingly, chemogenetic methods were employed to bi-directionally modulate mPFC GABA activity. Following brief recall and KE-produced MA memory extinction, intra-mPFC mDlx-Gi-coupled-human-muscarinic-receptor 4 (hM4Di)-infused mice receiving compound 21 (C21) treatment showed eminent stress-primed reinstatement, while their GABA mGluR5 expression seemed to be unaltered. Intra-mPFC mDlx-Gq-coupled-human-muscarinic-receptor 3 (hM3Dq)-infused mice undergoing C21 treatment displayed MA memory extinction and resistance to stress-provoked reinstatement. These results suggest that combining a brief recall and KE treatment and exciting mPFC GABA neuron may facilitate MA memory extinction and resistance to stress-primed recall. mPFC GABA neuronal activity plays a role in mediating brief recall/KE-produced effects on curbing the stress-provoked MA seeking.


Asunto(s)
Extinción Psicológica , Ketamina , Recuerdo Mental , Metanfetamina , Corteza Prefrontal , Receptor del Glutamato Metabotropico 5 , Estrés Psicológico , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Metanfetamina/farmacología , Ketamina/farmacología , Masculino , Ratones , Recuerdo Mental/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/psicología , Receptor del Glutamato Metabotropico 5/metabolismo , Extinción Psicológica/efectos de los fármacos , Memoria/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Ratones Endogámicos C57BL
6.
Sci Rep ; 14(1): 9582, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671040

RESUMEN

Stress is an adaptive response to the stressors that adversely affects physiological and psychological health. Stress elicits HPA axis activation, resulting in cortisol release, ultimately contributing to oxidative, inflammatory, physiological and mental stress. Nutritional supplementations with antioxidant, anti-inflammatory, and stress-relieving properties are among widely preferred complementary approaches for the stress management. However, there is limited research on the potential combined impact of vitamins, minerals and natural ingredients on stress. In the present study, we have investigated the effect of a multi-nutrient botanical formulation, Nutrilite® Daily Plus, on clinical stress parameters. The stress-modulatory effects were quantified at population level using a customized sub-clinical inflammation mathematical model. The model suggested that combined intervention of botanical and micronutrients lead to significant decline in physical stress (75% decline), mental stress (70% decline), oxidative stress (55% decline) and inflammatory stress (75% decline) as evident from reduction in key stress parameters such as ROS, TNF-α, blood pressure, cortisol levels and PSS scores at both individual and population levels. Further, at the population level, the intervention relieved stress in 85% of individuals who moved towards a healthy state. The in silico studies strongly predicts the use of Gotukola based Nutrilite® Daily Plus as promising anti-stress formulation.


Asunto(s)
Estrés Oxidativo , Biología de Sistemas , Humanos , Biología de Sistemas/métodos , Estrés Oxidativo/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Suplementos Dietéticos , Masculino , Femenino , Antioxidantes/farmacología , Estrés Fisiológico/efectos de los fármacos , Adulto , Modelos Teóricos , Hidrocortisona , Persona de Mediana Edad
7.
Behav Brain Res ; 466: 114976, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38599249

RESUMEN

Although there are various treatments available for depression, some patients may experience resistance to treatment or encounter adverse effects. Centella asiatica (C. asiatica) is an ancient medicinal herb used in Ayurvedic medicine for its rejuvenating, neuroprotective and psychoactive properties. This study aims to explore the antidepressant-like effects of the major constituents found in C. asiatica, i.e., asiatic acid, asiaticoside, madecassic acid, and madecassoside at three doses (1.25, 2.5, and 5 mg/kg, i.p), on the behavioural and cortisol level of unpredictable chronic stress (UCS) zebrafish model. Based on the findings from the behavioural study, the cortisol levels in the zebrafish body after treatment with the two most effective compounds were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, a molecular docking study was conducted to predict the inhibitory impact of the triterpenoid compounds on serotonin reuptake. The in vivo results indicate that madecassoside (1.25, 2.5, and 5 mg/kg), asiaticoside and asiatic acid (5 mg/kg) activated locomotor behaviour. Madecassoside at all tested doses and asiaticoside at 2.5 and 5 mg/kg significantly decreased cortisol levels compared to the stressed group, indicating the potential regulation effect of madecassoside and asiaticoside on the hypothalamic-pituitary-adrenal axis overactivity. This study highlights the potential benefits of madecassoside and asiaticoside in alleviating depressive symptoms through their positive effects on behaviour and the hypothalamic-pituitary-adrenal (HPA)- axis in a chronic unpredictable stress zebrafish model. Furthermore, the in silico study provided additional evidence to support these findings. These promising results suggest that C. asiatica may be a valuable and cost-effective therapeutic option for depression, and further research should be conducted to explore its potential benefits.


Asunto(s)
Antidepresivos , Centella , Simulación del Acoplamiento Molecular , Triterpenos Pentacíclicos , Triterpenos , Pez Cebra , Animales , Triterpenos/farmacología , Centella/química , Antidepresivos/farmacología , Triterpenos Pentacíclicos/farmacología , Hidrocortisona/metabolismo , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Depresión/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Biomarcadores/metabolismo , Masculino
8.
J Ethnopharmacol ; 330: 118150, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631487

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: JiaWei DaChaiHu is composed of Bupleurum chinense, Scutellaria baicalensis, Pinellia ternata, Paeonia lactiflora, Zingiber officinaleRoscoe, Poncirus tuifoliata, Rheum palmatum L., Curcumae Radix, Herba Lysimachiae, Ziziphus. JiaWei DaChaiHu is one of the most common traditional Chinese medicines for the treatment of depression. AIM OF THE STUDY: The chronic unpredictable mild stress (CUMS) has been shown to promote atherosclerosis (AS). Dachaihu has been widely used in traditional Chinese medicine and has been known to exert distinct pharmacological effects. This investigation aims to examine the therapeutic effect of Jiawei Dachaihu extract on AS animal models with CUMS. METHODS: AS-CUMS mice model was established by Apoe-/- mice. Mice were treated with Jiawei Dachaihu. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C) levels were measured using ELISA kits. Aortic tissue pathologic changes detected by oil red O staining. Mice behavioral changes detected by sucrose preference test and sucrose preference test. The relative mRNA expression levels of CRH, ND1, and TFAM were determined by qRT-PCR. 5-HT1A, BDNF, LON, TFAM, PGC-1α, and SIRT1 protein expression determined by western blotting. ATP content detected by ATP kits. RESULTS: The treatment with Jiawei Dachaihu extract alleviated the veins plaque and reduced stress signs in vitro and in vivo. It increased the ATP and HDL-C levels while decreased the TC, TG, LDL-C levels. Jiawei Dachaihu extract treatment upregulated Lon, SIRT1, TFAM, PGC-1α, BDNF, and 5-HT1A protein expression and regained mitochondrial function. CONCLUSION: Jiawei Dachaihu extract could alleviate AS and reduce CUMS by upregulating the SIRT1/PGC-1α signaling and promoted its crosstalk with Lon protein to maintain mitochondrial stability.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Mitocondrias , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal , Sirtuina 1 , Estrés Psicológico , Animales , Aterosclerosis/tratamiento farmacológico , Sirtuina 1/metabolismo , Sirtuina 1/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Transducción de Señal/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratones , Estrés Psicológico/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones Noqueados para ApoE
9.
Pharmacol Biochem Behav ; 239: 173775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657873

RESUMEN

Electroconvulsive shock (ECS) is utilized to treat depression but may cause learning/memory impairments, which may be ameliorated by anesthetics through the modulation of hippocampal synaptic plasticity. Given that synaptic plasticity is governed by aerobic glycolysis, it remains unclear whether anesthetics modulate aerobic glycolysis to enhance learning and memory function. Depression-like behavior in rats was induced by chronic mild unpredictable stress (CUMS), with anhedonia assessed via sucrose preference test (SPT). Depressive-like behaviors and spatial learning/memory were assessed with forced swim test (FST), open field test (OFT), and Morris water maze (MWM) test. Changes in aerobic glycolysis and synaptic plasticity in the hippocampal region of depressive-like rats post-ECS were documented using immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy. Both the OFT and FST indicated that ECS was effective in alleviating depressive-like behaviors. The MWM test demonstrated that anesthetics were capable of attenuating ECS-induced learning and memory deficits. Immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy revealed that the decline in learning and memory abilities in ECS-induced depressive-like rats was correlated with decreased aerobic glycolysis, and that the additional use of ciprofol or propofol ameliorated these alterations. Adding the glycolysis inhibitor 2-DG diminished the ameliorative effects of the anesthetic. No significant difference was observed between ciprofol and propofol in enhancing aerobic glycolysis in astrocytes and synaptic plasticity after ECS. These findings may contribute to understanding the mechanisms by which anesthetic drugs modulate learning and memory impairment after ECS in depressive-like behavior rats.


Asunto(s)
Depresión , Glucólisis , Hipocampo , Trastornos de la Memoria , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Glucólisis/efectos de los fármacos , Depresión/metabolismo , Depresión/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Plasticidad Neuronal/efectos de los fármacos , Electrochoque , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad , Propofol/farmacología , Aprendizaje por Laberinto/efectos de los fármacos
10.
Neurochem Int ; 176: 105728, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561150

RESUMEN

Protein arginine methyltransferase (PRMT) 2 catalyzes the methylation of arginine residues in histones. Depression is associated with histone methylation; however, more comprehensive research is needed on how PRMT2 regulates depression. The present study aimed to investigate the effects and possible mechanism(s) of PRMT2 overexpression on depression-like behavior induced by chronic unpredictable mild stress (CUMS) in rats, and whether lentivirus-mediated PRMT2 overexpression in the hippocampus suppresses depression-like behavior. Furthermore, the PRMT2 inhibitor MS023 was administered to the animals to investigate whether the antidepressant effect of PRMT2 overexpression could be reversed. Behavioral experiments were performed to detect depression-like behavior in rats. Western blotting was used to determine protein expression levels of PRMT2, histone H3R8 asymmetric dimethylation (H3R8me2a), inducible nitric oxide synthase (iNOS), and arginase 1 (Arg1) in rat hippocampal tissues. Hippocampal microglia and PRMT2 were stained using immunofluorescence techniques. Enzyme-linked immunosorbent assay was used to determine the levels of various inflammatory factors in rat hippocampal tissue. Results of analysis revealed that PRMT2 overexpression in the hippocampus exerted an antidepressant effect. PRMT2 overexpression in the hippocampus reduced the proportion of activated microglia in the hippocampus, upregulated Arg1 and H3R8me2a expression, and downregulated iNOS expression. PRMT2 overexpression in the hippocampus inhibited the release of pro-inflammatory factors and promoted the release of anti-inflammatory factors. In summary, PRMT2 overexpression in the hippocampus promoted the conversion of microglia from the M1 to M2 type, resulting in an antidepressant effect. These results suggest that PRMT2 may be a potential therapeutic target to prevent and treat depression.


Asunto(s)
Hipocampo , Proteína-Arginina N-Metiltransferasas , Ratas Sprague-Dawley , Animales , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/biosíntesis , Masculino , Ratas , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Microglía/metabolismo , Microglía/efectos de los fármacos
11.
Neuropharmacology ; 252: 109949, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636726

RESUMEN

Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.


Asunto(s)
Adaptación Psicológica , Agresión , Anfetaminas , Alucinógenos , Estrés Psicológico , Animales , Masculino , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Alucinógenos/administración & dosificación , Alucinógenos/farmacología , Adaptación Psicológica/efectos de los fármacos , Adaptación Psicológica/fisiología , Ratones , Agresión/efectos de los fármacos , Agresión/fisiología , Anfetaminas/farmacología , Anfetaminas/administración & dosificación , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Agonistas del Receptor de Serotonina 5-HT2/administración & dosificación , Reacción de Fuga/efectos de los fármacos , Habilidades de Afrontamiento
12.
Eur J Pharmacol ; 973: 176582, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38642668

RESUMEN

The growing burden of psychological stress among diabetes patients has contributed to a rising incidence of depression within this population. It is of significant importance to conduct research on the impact of stress on diabetes patients and to explore potential pharmacological interventions to counteract the stress-induced exacerbation of their condition. Gastrodin is a low molecular weight bioactive compound extracted from the rhizome of Gastrodiae elata Blume, and it may be a preventive strategy for diabetes and a novel treatment for depression symptoms. However, its relevant pharmacological mechanisms for protecting against the impacts of psychological stress in diabetic patients are unclear. In this study, we performed 5 weeks CUMS intervention and simultaneously administered gastrodin (140 mg/kg, once daily) on T2DM mice, to investigate the potential protective effects of gastrodin. The protective effect of gastrodin was evaluated by behavioral tests, biochemical analysis, histopathological examination, RT-qPCR and gut microbiota analysis. We found that the depressive-like behavior and glucolipid metabolism could be deteriorated by chronic stress in type 2 diabetic mice, while gastrodin showed a protective effect against these exacerbations by regulating HPA hormones, activating FXR and Cyp7a1, reducing inflammatory and oxidative stress responses, and regulating ileal gut microbiota abundance. Gastrodin might be a potential therapeutic agent for mitigating the deterioration of diabetes conditions due to chronic stress.


Asunto(s)
Conducta Animal , Alcoholes Bencílicos , Depresión , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glucósidos , Estrés Psicológico , Animales , Alcoholes Bencílicos/farmacología , Alcoholes Bencílicos/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Masculino , Ratones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología , Microbioma Gastrointestinal/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Enfermedad Crónica
13.
Behav Pharmacol ; 35(4): 227-238, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651981

RESUMEN

We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.


Asunto(s)
Antidepresivos , Benzotiepinas , Depresión , Relación Dosis-Respuesta a Droga , Fluoxetina , Proteínas Quinasas Asociadas a Fase-S , Estrés Psicológico , Animales , Masculino , Antidepresivos/farmacología , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ratones , Femenino , Depresión/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Fluoxetina/farmacología , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos
14.
Food Funct ; 15(9): 5103-5117, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38680105

RESUMEN

Hydroxytyrosol (HT), a phenolic extra-virgin olive oil compound used as a food supplement, has been recognized to protect liver function and alleviate stress-induced depressive-like behaviors. However, its protective effects against stress-induced liver injury (SLI) remain unknown. Here, the anti-SLI effect of HT was evaluated in mice with chronic unpredictable mild stress-induced SLI. Network pharmacology combined with molecular docking was used to clarify the underlying mechanism of action of HT against SLI, followed by experimental verification. The results showed that accompanying with the alleviation of HT on stress-induced depressive-like behaviors, HT was confirmed to exert the protective effects against SLI, as represented by reduced serum corticosterone (CORT), aspartate aminotransferase and alanine aminotransferase activities, as well as repair of liver structure, inhibition of oxidative homeostasis collapse, and inflammation reaction in the liver. Furthermore, core genes including histone deacetylase 1 and 2 (HDAC1/2), were identified as potential targets of HT in SLI based on bioinformatic screening and simulation. Consistently, HT significantly inhibited HDAC1/2 expression to maintain mitochondrial dysfunction in an autophagy-dependent manner, which was confirmed in a CORT-induced AML-12 cell injury and SLI mice models combined with small molecule inhibitors. We provide the first evidence that HT inhibits HDAC1/2 to induce autophagy in hepatocytes for maintaining mitochondrial dysfunction, thus preventing inflammation and oxidative stress for exerting an anti-SLI effect. This constitutes a novel therapeutic modality to synchronously prevent stress-induced depression-like behaviors and liver injury, supporting the advantaged therapeutic potential of HT.


Asunto(s)
Autofagia , Histona Desacetilasa 2 , Alcohol Feniletílico , Alcohol Feniletílico/análogos & derivados , Animales , Ratones , Alcohol Feniletílico/farmacología , Autofagia/efectos de los fármacos , Masculino , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/genética , Ratones Endogámicos C57BL , Histona Desacetilasa 1/metabolismo , Simulación del Acoplamiento Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicaciones
15.
Behav Brain Res ; 467: 115005, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38641178

RESUMEN

BACKGROUND: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear. METHODS: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments. RESULTS: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway. CONCLUSIONS: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.


Asunto(s)
Ansiedad , Factor Neurotrófico Derivado del Encéfalo , Depresión , Modelos Animales de Enfermedad , Hipocampo , Transducción de Señal , Trastornos por Estrés Postraumático , Canal Catiónico TRPC6 , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Masculino , Depresión/tratamiento farmacológico , Depresión/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/metabolismo , Canal Catiónico TRPC6/metabolismo , Conducta Animal/efectos de los fármacos , Marihuana Medicinal/farmacología , Ratones Endogámicos C57BL , Apoptosis/efectos de los fármacos , Aceites de Plantas/farmacología , Aceites de Plantas/administración & dosificación , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo
16.
Sci Signal ; 17(834): eadn4556, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687826

RESUMEN

Signaling mediated by brain-derived neurotrophic factor (BDNF), which is supported by the postsynaptic scaffolding protein PSD-95, has antidepressant effects. Conversely, clinical depression is associated with reduced BDNF signaling. We found that peptidomimetic compounds that bind to PSD-95 promoted signaling by the BDNF receptor TrkB in the hippocampus and reduced depression-like behaviors in mice. The compounds CN2097 and Syn3 both bind to the PDZ3 domain of PSD-95, and Syn3 also binds to an α-helical region of the protein. Syn3 reduced depression-like behaviors in two mouse models of stress-induced depression; CN2097 had similar but less potent effects. In hippocampal neurons, application of Syn3 enhanced the formation of TrkB-Gαi1/3-PSD-95 complexes and potentiated downstream PI3K-Akt-mTOR signaling. In mice subjected to chronic mild stress (CMS), systemic administration of Syn3 reversed the CMS-induced, depression-associated changes in PI3K-Akt-mTOR signaling, dendrite complexity, spine density, and autophagy in the hippocampus and reduced depression-like behaviors. Knocking out Gαi1/3 in hippocampal neurons prevented the therapeutic effects of Syn3, indicating dependence of these effects on the TrkB pathway. The findings suggest that compounds that induce the formation of PSD-95-TrkB complexes have therapeutic potential to alleviate depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Homólogo 4 de la Proteína Discs Large , Hipocampo , Transducción de Señal , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Homólogo 4 de la Proteína Discs Large/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Depresión/metabolismo , Depresión/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Ratones Noqueados , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Receptor trkB/metabolismo , Receptor trkB/genética , Ratones Endogámicos C57BL , Conducta Animal/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos
17.
Biomed Pharmacother ; 173: 116425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490155

RESUMEN

Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.


Asunto(s)
Depresión , Ferroptosis , Glucósidos , Luteolina , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Microglía/metabolismo , Hipocampo , Conducta Animal , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
18.
J Affect Disord ; 354: 752-764, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537753

RESUMEN

BACKGROUND: Depression affects a significant portion of the global population and has emerged as one of the most debilitating conditions worldwide. Recent studies have explored the relationship between depression and the microbiota of the intestine, revealing potential avenues for effective treatment. METHODS: To evaluate the potential alleviation of depression symptoms, we employed a depression C57BL/6 mice model induced by chronic unpredictable mild stress (CUMS). We administered Lactiplantibacillus plantarum JYLP-326 and conducted various animal behavior tests, including the open-field test (OFT), sucrose preference test (SPT), and tail-suspension test (TST). Additionally, we conducted immunohistochemistry staining and analyzed the hippocampal and colon parts of the mice. RESULTS: The results of the behavior tests indicated that L. plantarum JYLP-326 alleviated spontaneous behavior associated with depression. Moreover, the treatment led to significant improvements in GFAP and Iba1, suggesting its potential neuroprotective effects. Analysis of the hippocampal region indicated that L. plantarum JYLP-326 administration upregulated p-TPH2, TPH2, and 5-HT1AR, while downregulating the expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. In the colon, the treatment inhibited the TLR4-MyD88-NF-κB pathway and increased the levels of occludin and ZO-1, indicating improved intestinal barrier function. Additionally, the probiotic demonstrated a regulatory effect on the HMGB1-RAGE-TLR4 signaling pathway. CONCLUSIONS: Our findings demonstrate that L. plantarum JYLP-326 exhibits significant antidepressant-like effects in mice, suggesting its potential as a therapeutic approach for depression through the modulation of gut microbiota. However, further investigations and clinical trials are required to validate its safety and efficacy for human use.


Asunto(s)
Depresión , Microbioma Gastrointestinal , Humanos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/etiología , Receptor Toll-Like 4/metabolismo , Disbiosis/tratamiento farmacológico , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad
19.
J Ethnopharmacol ; 328: 118124, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38556138

RESUMEN

ETHNOPHAMACOLOGICAL RELEVANCE: Morinda officinalis oligosaccharides (MOs) is a mixture of oligosaccharides extracted from the roots of Morinda officinalis (MO). It is approved by Chinese Food and Drug Administration (CFDA) for depression treatment. MOs could improve the antidepressant efficacy of escitalopram in clinic. AIM OF THE STUDY: We aim to explore the antidepressant activity and potential mechanism of the combination usage of MOs and escitalopram on animal model of depression. MATERIALS AND METHODS: Depressive animal model was induced by chronic mild stress (CMS). Behavioral tests were conducted to evaluate the antidepressant efficacy of MOs and escitalopram. Serum neurotransmitter levels were detected by High-performance liquid chromatography (HPLC). Quantitative real-time PCR and Western blotting were applied to assay the hippocampus neurotrophic factors' mRNA and protein levels. Peripheral cytokines levels were measured through Enzyme-Linked Immunosorbent Assay (ELISA). Micorglia polization phenotype was assayed by immunofluorescence and flow cytometry. RESULTS: MOs and escitalopram obviously attenuated depression-like behaviors of CMS mice. Importantly, MOs plus escitalopram exhibited better antidepressant activity on CMS mice than monotherapy. At the same time, MOs combined escitalopram treatment significantly increased hippocampus neurotransmitters and neurotrophic factor levels, stimulated hippocampus neurogenesis and relieved central nervous system (CNS) microglia over-activation of CMS mice. The combination therapy had greater effect on neuroprotection and inflammation attenuation of CMS mice than monotherapy. CONCLUSION: Our results indicates MOs combined escitalopram might produce antidepressant activity through protecting neuron activity, relieving inflammation and modulating microglia polarization process.


Asunto(s)
Escitalopram , Morinda , Ratones , Animales , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Inflamación/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
20.
J Affect Disord ; 354: 574-588, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490587

RESUMEN

BACKGROUND: Chronic stress is an important risk factor for the development of major depressive disorder (MDD). Recent studies have shown microbiome dysbiosis as one of the pathogenic mechanisms associated with MDD. Thus, it is important to find novel non-pharmacological therapeutic strategies that can modulate gut microbiota and brain activity. One such strategy is photobiomodulation (PBM), which involves the non-invasive use of light. OBJECTIVE/HYPOTHESIS: Brain-gut PBM could have a synergistic beneficial effect on the alterations induced by chronic stress. METHODS: We employed the chronic unpredictable mild stress (CUMS) protocol to induce a depressive-like state in mice. Subsequently, we administered brain-gut PBM for 6 min per day over a period of 3 weeks. Following PBM treatment, we examined behavioral, structural, molecular, and cellular alterations induced by CUMS. RESULTS: We observed that the CUMS protocol induces profound behavioral alterations and an increase of sirtuin1 (Sirt1) levels in the hippocampus. We then combined the stress protocol with PBM and found that tissue-combined PBM was able to rescue cognitive alterations induced by CUMS. This rescue was accompanied by a restoration of hippocampal Sirt1 levels, prevention of spine density loss in the CA1 of the hippocampus, and the modulation of the gut microbiome. PBM was also effective in reducing neuroinflammation and modulating the morphology of Iba1-positive microglia. LIMITATIONS: The molecular mechanisms behind the beneficial effects of tissue-combined PBM are not fully understood. CONCLUSIONS: Our results suggest that non-invasive photobiomodulation of both the brain and the gut microbiome could be beneficial in the context of stress-induced MDD.


Asunto(s)
Trastorno Depresivo Mayor , Terapia por Luz de Baja Intensidad , Ratones , Animales , Depresión/psicología , Sirtuina 1/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Hipocampo/metabolismo , Cognición , Estrés Psicológico/terapia , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...