Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Nature ; 626(7998): 367-376, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092041

RESUMEN

Implantation of the human embryo begins a critical developmental stage that comprises profound events including axis formation, gastrulation and the emergence of haematopoietic system1,2. Our mechanistic knowledge of this window of human life remains limited due to restricted access to in vivo samples for both technical and ethical reasons3-5. Stem cell models of human embryo have emerged to help unlock the mysteries of this stage6-16. Here we present a genetically inducible stem cell-derived embryoid model of early post-implantation human embryogenesis that captures the reciprocal codevelopment of embryonic tissue and the extra-embryonic endoderm and mesoderm niche with early haematopoiesis. This model is produced from induced pluripotent stem cells and shows unanticipated self-organizing cellular programmes similar to those that occur in embryogenesis, including the formation of amniotic cavity and bilaminar disc morphologies as well as the generation of an anterior hypoblast pole and posterior domain. The extra-embryonic layer in these embryoids lacks trophoblast and shows advanced multilineage yolk sac tissue-like morphogenesis that harbours a process similar to distinct waves of haematopoiesis, including the emergence of erythroid-, megakaryocyte-, myeloid- and lymphoid-like cells. This model presents an easy-to-use, high-throughput, reproducible and scalable platform to probe multifaceted aspects of human development and blood formation at the early post-implantation stage. It will provide a tractable human-based model for drug testing and disease modelling.


Asunto(s)
Desarrollo Embrionario , Estratos Germinativos , Hematopoyesis , Saco Vitelino , Humanos , Implantación del Embrión , Endodermo/citología , Endodermo/embriología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Saco Vitelino/citología , Saco Vitelino/embriología , Mesodermo/citología , Mesodermo/embriología , Células Madre Pluripotentes Inducidas/citología , Amnios/citología , Amnios/embriología , Cuerpos Embrioides/citología , Linaje de la Célula , Biología Evolutiva/métodos , Biología Evolutiva/tendencias
2.
Nature ; 626(7998): 357-366, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052228

RESUMEN

Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.


Asunto(s)
Desarrollo Embrionario , Estratos Germinativos , Células Madre Pluripotentes , Humanos , Diferenciación Celular , Implantación del Embrión , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Células Madre Pluripotentes/citología , Interleucina-6/metabolismo , Gástrula/citología , Gástrula/embriología , Amnios/citología , Amnios/embriología , Amnios/metabolismo , Ectodermo/citología , Ectodermo/embriología , Ectodermo/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo
3.
Nature ; 622(7983): 562-573, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673118

RESUMEN

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Asunto(s)
Implantación del Embrión , Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Embrionarias Humanas , Humanos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Fertilización , Gastrulación , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Trofoblastos/citología , Saco Vitelino/citología , Saco Vitelino/embriología , Células Gigantes/citología
4.
BMC Biol ; 21(1): 170, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553620

RESUMEN

BACKGROUND: Development of vertebrate embryos is characterized by early formation of the anterior tissues followed by the sequential extension of the axis at their posterior end to build the trunk and tail structures, first by the activity of the primitive streak and then of the tail bud. Embryological, molecular and genetic data indicate that head and trunk development are significantly different, suggesting that the transition into the trunk formation stage involves major changes in regulatory gene networks. RESULTS: We explored those regulatory changes by generating differential interaction networks and chromatin accessibility profiles from the posterior epiblast region of mouse embryos at embryonic day (E)7.5 and E8.5. We observed changes in various cell processes, including several signaling pathways, ubiquitination machinery, ion dynamics and metabolic processes involving lipids that could contribute to the functional switch in the progenitor region of the embryo. We further explored the functional impact of changes observed in Wnt signaling associated processes, revealing a switch in the functional relevance of Wnt molecule palmitoleoylation, essential during gastrulation but becoming differentially required for the control of axial extension and progenitor differentiation processes during trunk formation. We also found substantial changes in chromatin accessibility at the two developmental stages, mostly mapping to intergenic regions and presenting differential footprinting profiles to several key transcription factors, indicating a significant switch in the regulatory elements controlling head or trunk development. Those chromatin changes are largely independent of retinoic acid, despite the key role of this factor in the transition to trunk development. We also tested the functional relevance of potential enhancers identified in the accessibility assays that reproduced the expression profiles of genes involved in the transition. Deletion of these regions by genome editing had limited effect on the expression of those genes, suggesting the existence of redundant enhancers that guarantee robust expression patterns. CONCLUSIONS: This work provides a global view of the regulatory changes controlling the switch into the axial extension phase of vertebrate embryonic development. It also revealed mechanisms by which the cellular context influences the activity of regulatory factors, channeling them to implement one of several possible biological outputs.


Asunto(s)
Cabeza , Torso , Transcriptoma , Torso/embriología , Cabeza/embriología , Animales , Ratones , Regulación del Desarrollo de la Expresión Génica , Mapas de Interacción de Proteínas , Vía de Señalización Wnt , Cromatina/genética , Cromatina/metabolismo , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Factores de Transcripción/metabolismo
5.
Nature ; 622(7983): 584-593, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369347

RESUMEN

The human embryo undergoes morphogenetic transformations following implantation into the uterus, but our knowledge of this crucial stage is limited by the inability to observe the embryo in vivo. Models of the embryo derived from stem cells are important tools for interrogating developmental events and tissue-tissue crosstalk during these stages1. Here we establish a model of the human post-implantation embryo, a human embryoid, comprising embryonic and extraembryonic tissues. We combine two types of extraembryonic-like cell generated by overexpression of transcription factors with wild-type embryonic stem cells and promote their self-organization into structures that mimic several aspects of the post-implantation human embryo. These self-organized aggregates contain a pluripotent epiblast-like domain surrounded by extraembryonic-like tissues. Our functional studies demonstrate that the epiblast-like domain robustly differentiates into amnion, extraembryonic mesenchyme and primordial germ cell-like cells in response to bone morphogenetic protein cues. In addition, we identify an inhibitory role for SOX17 in the specification of anterior hypoblast-like cells2. Modulation of the subpopulations in the hypoblast-like compartment demonstrates that extraembryonic-like cells influence epiblast-like domain differentiation, highlighting functional tissue-tissue crosstalk. In conclusion, we present a modular, tractable, integrated3 model of the human embryo that will enable us to probe key questions of human post-implantation development, a critical window during which substantial numbers of pregnancies fail.


Asunto(s)
Implantación del Embrión , Embrión de Mamíferos , Desarrollo Embrionario , Modelos Biológicos , Células Madre Pluripotentes , Femenino , Humanos , Embarazo , Proteínas Morfogenéticas Óseas , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Cuerpos Embrioides/citología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Pluripotentes/citología
6.
Nature ; 609(7925): 136-143, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35709828

RESUMEN

Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues1-3. Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development4-6 and to advance stem-cell-based regenerative approaches7. Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved (HHEX, LEFTY2, LHX1) and primate-specific (POSTN, SDC4, FZD5) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by SFRP1 and SFRP2 to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through ID1, ID2 and ID3 in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells (PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.


Asunto(s)
Callithrix , Gastrulación , Útero , Animales , Callithrix/embriología , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Endodermo/citología , Endodermo/embriología , Femenino , Perfilación de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Humanos , Células Madre Pluripotentes/citología
7.
Science ; 375(6580): 574-578, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35113719

RESUMEN

The mammalian blastocyst consists of three distinct cell types: epiblast, trophoblast (TB), and primitive endoderm (PrE). Although embryonic stem cells (ESCs) and trophoblast stem cells (TSCs) retain the functional properties of epiblast and TB, respectively, stem cells that fully recapitulate the developmental potential of PrE have not been established. Here, we report derivation of primitive endoderm stem cells (PrESCs) in mice. PrESCs recapitulate properties of embryonic day 4.5 founder PrE, are efficiently incorporated into PrE upon blastocyst injection, generate functionally competent PrE-derived tissues, and support fetal development of PrE-depleted blastocysts in chimeras. Furthermore, PrESCs can establish interactions with ESCs and TSCs and generate descendants with yolk sac-like structures in utero. Establishment of PrESCs will enable the elucidation of the mechanisms for PrE specification and subsequent pre- and postimplantation development.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Endodermo/citología , Endodermo/embriología , Animales , Blastocisto/citología , Blastocisto/fisiología , Diferenciación Celular , Línea Celular , Linaje de la Célula , Quimera , Desarrollo Embrionario , Endodermo/crecimiento & desarrollo , Desarrollo Fetal , Estratos Germinativos/citología , Estratos Germinativos/embriología , Ratones , Ratones Endogámicos C57BL , Trofoblastos/citología , Trofoblastos/fisiología
8.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34608934

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs). Specifically, we observed a reduction in the extension of the ectodermal compartment that is associated with enhanced activin signaling. Surprisingly, rather than a cell-autonomous effect, tracking the dynamics of TGFß signaling demonstrated that HTT-CAG expansion perturbs the spatial restriction of activin response. This is due to defects in the apicobasal polarization in the context of the polarized epithelium of the 2D gastruloid, leading to ectopic subcellular localization of TGFß receptors. This work refines the earliest developmental window for the prodromal phase of HD to the first 2 weeks of human development, as modeled by our 2D gastruloids.


Asunto(s)
Linaje de la Célula , Polaridad Celular , Estratos Germinativos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Proteína Huntingtina/metabolismo , Activinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Humanos , Proteína Huntingtina/genética , Ratones , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Expansión de Repetición de Trinucleótido
9.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651174

RESUMEN

During embryonic development and tissue homeostasis, reproducible proportions of differentiated cell types are specified from populations of multipotent precursor cells. Molecular mechanisms that enable both robust cell-type proportioning despite variable initial conditions in the precursor cells, and the re-establishment of these proportions upon perturbations in a developing tissue remain to be characterized. Here, we report that the differentiation of robust proportions of epiblast-like and primitive endoderm-like cells in mouse embryonic stem cell cultures emerges at the population level through cell-cell communication via a short-range fibroblast growth factor 4 (FGF4) signal. We characterize the molecular and dynamical properties of the communication mechanism and show how it controls both robust cell-type proportioning from a wide range of experimentally controlled initial conditions, as well as the autonomous re-establishment of these proportions following the isolation of one cell type. The generation and maintenance of reproducible proportions of discrete cell types is a new function for FGF signaling that might operate in a range of developing tissues.


Asunto(s)
Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Células Madre Embrionarias de Ratones/citología , Animales , Tipificación del Cuerpo , Desarrollo Embrionario , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Factor 4 de Crecimiento de Fibroblastos/genética , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Comunicación Paracrina/fisiología , Transducción de Señal
10.
J Cell Biol ; 220(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34591076

RESUMEN

Glypicans influence signaling pathways by regulating morphogen trafficking and reception. However, the underlying mechanisms in vertebrates are poorly understood. In zebrafish, Glypican 4 (Gpc4) is required for convergence and extension (C&E) of both the mesoderm and endoderm. Here, we show that transgenic expression of GFP-Gpc4 in the endoderm of gpc4 mutants rescued C&E defects in all germ layers. The rescue of mesoderm was likely mediated by Wnt5b and Wnt11f2 and depended on signaling filopodia rather than on cleavage of the Gpc4 GPI anchor. Gpc4 bound both Wnt5b and Wnt11f2 and regulated formation of the filopodia that transport Wnt5b and Wnt11f2 to neighboring cells. Moreover, this rescue was suppressed by blocking signaling filopodia that extend from endodermal cells. Thus, GFP-Gpc4-labeled protrusions that emanated from endodermal cells transported Wnt5b and Wnt11f2 to other germ layers, rescuing the C&E defects caused by a gpc4 deficiency. Our study reveals a new mechanism that could explain in vivo morphogen distribution involving Gpc4.


Asunto(s)
Estratos Germinativos/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Seudópodos/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas de Pez Cebra/metabolismo , Actinas/metabolismo , Animales , Embrión no Mamífero/metabolismo , Endodermo/metabolismo , Estratos Germinativos/embriología , Glicosilfosfatidilinositoles/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos , Mesodermo/embriología , Mesodermo/metabolismo , Transporte de Proteínas , Pez Cebra
11.
Cells ; 10(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440915

RESUMEN

Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Estratos Germinativos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal , Vertebrados/metabolismo , Animales , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/embriología , Humanos , Modelos Biológicos , Unión Proteica , Receptores de Factores de Crecimiento de Fibroblastos/genética , Vertebrados/embriología , Vertebrados/genética
12.
Dev Genes Evol ; 231(3-4): 73-83, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34100128

RESUMEN

The anterior-posterior axis is a central element of the body plan and, during amniote gastrulation, forms through several transient domains with specific morphogenetic activities. In the chick, experimentally proven activity of signalling molecules and transcription factors lead to the concept of a 'global positioning system' for initial axis formation whereas in the (mammotypical) rabbit embryo, a series of morphological or molecular domains are part of a putative 'three-anchor-point model'. Because circular expression patterns of genes involved in axis formation exist in both amniote groups prior to, and during, gastrulation and may thus be suited to reconcile these models, the expression patterns of selected genes known in the chick, namely the ones coding for the transcription factors eomes and tbx6, the signalling molecule wnt3 and the wnt inhibitor pkdcc, were analysed in the rabbit embryonic disc using in situ hybridisation and placing emphasis on their germ layer location. Peripheral wnt3 and eomes expression in all layers is found initially to be complementary to central pkdcc expression in the hypoblast during early axis formation. Pkdcc then appears - together with a posterior-anterior gradient in wnt3 and eomes domains - in the epiblast posteriorly before the emerging primitive streak is marked by pkdcc and tbx6 at its anterior and posterior extremities, respectively. Conserved circular expression patterns deduced from some of this data may point to shared mechanisms in amniote axis formation while the reshaping of localised gene expression patterns is discussed as part of the 'three-anchor-point model' for establishing the mammalian body plan.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas Wnt/genética , Animales , Estratos Germinativos/embriología , Conejos , Proteínas de Dominio T Box/metabolismo , Proteínas Wnt/metabolismo
13.
Development ; 148(4)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593754

RESUMEN

The generation of the components that make up the embryonic body axis, such as the spinal cord and vertebral column, takes place in an anterior-to-posterior (head-to-tail) direction. This process is driven by the coordinated production of various cell types from a pool of posteriorly-located axial progenitors. Here, we review the key features of this process and the biology of axial progenitors, including neuromesodermal progenitors, the common precursors of the spinal cord and trunk musculature. We discuss recent developments in the in vitro production of axial progenitors and their potential implications in disease modelling and regenerative medicine.


Asunto(s)
Biología , Tipificación del Cuerpo , Gastrulación/fisiología , Estratos Germinativos/embriología , Animales , Ectodermo/embriología , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/inervación , Humanos , Técnicas In Vitro , Mesodermo/embriología , Mesodermo/inervación , Músculo Esquelético , Células Madre
14.
Dev Biol ; 470: 1-9, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33191200

RESUMEN

Caudal homeobox genes are found across animals, typically linked to two other homeobox genes in what has been called the ParaHox cluster. These genes have been proposed to pattern the anterior-posterior axis of the endoderm ancestrally, but the expression of Caudal in extant groups is varied and often occurs in other germ layers. Here we examine the role of Caudal in the embryo of the mollusc Tritia (Ilyanassa) obsoleta. ToCaudal expression is initially broad, then becomes progressively restricted and is finally only in the developing hindgut (a.k.a. intestine). Knockdown of ToCaudal using morpholino oligonucleotides specifically blocks hindgut development, indicating that despite its initially broad expression, the functional role of ToCaudal is in hindgut patterning. This is the first functional characterization of Caudal in an animal with spiralian development, which is an ancient mode of embryogenesis that arose early in bilaterian animal evolution. These results are consistent with the hypothesis that the ancestral role of the ParaHox genes was anterior-posterior patterning of the endoderm.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Caracoles/embriología , Caracoles/genética , Animales , Sistema Digestivo/embriología , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Familia de Multigenes , Filogenia , Caracoles/metabolismo
15.
Dev Biol ; 470: 84-94, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217407

RESUMEN

At implantation, the mouse embryo undergoes a critical transformation which requires the precise spatiotemporal control of signalling pathways necessary for morphogenesis and developmental progression. The role played by such signalling pathways during this transition are largely unexplored, due to the inaccessibility of the embryo during the implantation when it becomes engulfed by uterine tissues. Genetic studies demonstrate that mutant embryos for BMPs die around gastrulation. Here we have aimed to dissect the role of BMPs during pre-to post-implantation transition by using a protocol permitting the development of the embryo beyond implantation stages in vitro and using stem cells to mimic post-implantation tissue organisation. By assessing both the canonical and non-canonical mechanisms of BMP, we show that the loss of canonical BMP activity compromises the extra-embryonic ectoderm development. Our analyses demonstrate that BMP signalling maintains stem cell populations within both embryonic/extra-embryonic tissues during pre-to post-implantation development. These results may provide insight into the role played by BMP signalling in controlling early embryogenesis.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Ectodermo/embriología , Implantación del Embrión , Desarrollo Embrionario , Transducción de Señal , Animales , Muerte Celular , Linaje de la Célula , Ectodermo/citología , Técnicas de Cultivo de Embriones , Células Madre Embrionarias/citología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Ratones , Morfogénesis , Trofoblastos/citología
16.
Acta Biochim Biophys Sin (Shanghai) ; 52(11): 1215-1226, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33098302

RESUMEN

X-box-binding protein 1 (XBP1) is a protein containing the basic leucine zipper structure. It belongs to the cAMP-response element binding protein (CREB)/activating transcription factor transcription factor family. As the main transcription factor, spliced XBP1 (XBP1s) participates in many physiological and pathological processes and plays an important role in embryonic development. Previous studies showed that XBP1-knockout mice died because of pancreatic exocrine function deficiency, indicating that XBP1 plays an important role in pancreatic development. However, the exact role of XBP1 in pancreatic development remains unclear. This study aimed to investigate the role of XBP1 in the pancreatic development of Xenopus laevis embryos. Whole-mount in situ hybridization and quantitative real-time PCR results revealed that the expression levels of pancreatic progenitor marker genes pdx1, p48, ngn3, and sox9 were downregulated in XBP1s morpholino oligonucleotide (MO)-injected embryos. The expression levels of pancreatic exocrine and endocrine marker genes insulin and amylase were also downregulated. Through the overexpression of XBP1s, the phenotype and gene expressions were opposite to those in XBP1s MO-injected embryos. Luciferase and chromatin immunoprecipitation assays showed that XBP1s could bind to the XBP1-binding site in the foxa2 promoter. These results revealed that XBP1 is required in the pancreatic development of Xenopus laevis and might function by regulating foxa2.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Páncreas/embriología , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Inmunoprecipitación de Cromatina , Desarrollo Embrionario/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Páncreas/citología , Páncreas/metabolismo , Regiones Promotoras Genéticas , Xenopus laevis/metabolismo
17.
Nature ; 586(7830): 612-617, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814901

RESUMEN

Single-cell RNA sequencing of embryos can resolve the transcriptional landscape of development at unprecedented resolution. To date, single-cell RNA-sequencing studies of mammalian embryos have focused exclusively on eutherian species. Analysis of mammalian outgroups has the potential to identify deeply conserved lineage specification and pluripotency factors, and can extend our understanding of X dosage compensation. Metatherian (marsupial) mammals diverged from eutherians around 160 million years ago. They exhibit distinctive developmental features, including late implantation1 and imprinted X chromosome inactivation2, which is associated with expression of the XIST-like noncoding RNA RSX3. Here we perform a single-cell RNA-sequencing analysis of embryogenesis and X chromosome inactivation in a marsupial, the grey short-tailed opossum (Monodelphis domestica). We resolve the developmental trajectory and transcriptional signatures of the epiblast, primitive endoderm and trophectoderm, and identify deeply conserved lineage-specific markers that pre-date the eutherian-marsupial divergence. RSX coating and inactivation of the X chromosome occurs early and rapidly. This observation supports the hypothesis that-in organisms with early X chromosome inactivation-imprinted X chromosome inactivation prevents biallelic X silencing. We identify XSR, an RSX antisense transcript expressed from the active X chromosome, as a candidate for the regulator of imprinted X chromosome inactivation. Our datasets provide insights into the evolution of mammalian embryogenesis and X dosage compensation.


Asunto(s)
Embrión de Mamíferos/citología , Desarrollo Embrionario/genética , Monodelphis/embriología , Monodelphis/genética , Análisis de la Célula Individual , Transcriptoma/genética , Inactivación del Cromosoma X/genética , Animales , Linaje de la Célula/genética , Embrión de Mamíferos/embriología , Femenino , Estratos Germinativos/citología , Estratos Germinativos/embriología , Masculino , Monodelphis/clasificación , ARN sin Sentido/genética , ARN no Traducido/genética , Regulación hacia Arriba , Cromosoma X/genética
18.
Proc Natl Acad Sci U S A ; 117(28): 16409-16417, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601185

RESUMEN

The polar trophoblast overlays the epiblast in eutherian mammals and, depending on the species, has one of two different fates. It either remains a single-layered, thinning epithelium called "Rauber's layer," which soon disintegrates, or, alternatively, it keeps proliferating, contributing heavily to the population of differentiating, invasive trophoblast cells and, at least in mice, to the induction of gastrulation. While loss of the persistent polar trophoblast in mice leads to reduced induction of gastrulation, we show here that prevention of the loss of the polar trophoblast in cattle results in ectopic domains of the gastrulation marker, BRACHYURY This phenotype, and increased epiblast proliferation, arose when Rauber's layer was maintained for a day longer by countering apoptosis through BCL2 overexpression. This suggests that the disappearance of Rauber's layer is a necessity, presumably to avoid excessive signaling interactions between this layer and the subjacent epiblast. We note that, in all species in which the polar trophoblast persists, including humans and mice, ectopic polar trophoblast signaling is prevented via epiblast cavitation which leads to the (pro)amniotic cavity, whose function is to distance the central epiblast from such signaling interactions.


Asunto(s)
Trofoblastos/citología , Animales , Apoptosis , Bovinos , Diferenciación Celular , Proliferación Celular , Femenino , Proteínas Fetales/genética , Proteínas Fetales/metabolismo , Gastrulación , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Estratos Germinativos/fisiopatología , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Trofoblastos/metabolismo
19.
Nat Commun ; 11(1): 3317, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620775

RESUMEN

Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells. We identify the Wnt signaling as a regulator of sphingolipid synthesis that mediates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme in sphingolipid production. Sphingolipids determine the palmitoylation state of the Anthrax receptor, which then positions the mitotic spindle of dividing epiblast cells. Our data show how Wnt signaling mediates sphingolipid-dependent oriented division and how sphingolipids determine Anthrax receptor palmitoylation, which ultimately controls the activation of Diaphanous to mediate spindle rotation and oriented mitosis.


Asunto(s)
Embrión no Mamífero/metabolismo , Mitosis , Receptores de Péptidos/metabolismo , Esfingolípidos/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , División Celular Asimétrica/genética , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Lipoilación , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/metabolismo , Receptores de Péptidos/genética , Homología de Secuencia de Aminoácido , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Huso Acromático/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
20.
Mech Dev ; 163: 103624, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562871

RESUMEN

Gastrulation consists in the dramatic reorganisation of the epiblast, a one-cell thick epithelial sheet, into a multilayered embryo. In chick, the formation of the internal layers requires the generation of a macroscopic convection-like flow, which involves up to 50,000 epithelial cells in the epiblast. These cell movements locate the mesendoderm precursors into the midline of the epiblast to form the primitive streak. There they acquire a mesenchymal phenotype, ingress into the embryo and migrate outward to populate the inner embryonic layers. This review covers what is currently understood about how cell behaviours ultimately cause these morphogenetic events and how they are regulated. We discuss 1) how the biochemical patterning of the embryo before gastrulation creates compartments of differential cell behaviours, 2) how the global epithelial flows arise from the coordinated actions of individual cells, 3) how the cells delaminate individually from the epiblast during the ingression, and 4) how cells move after the ingression following stereotypical migration routes. We conclude by exploring new technical advances that will facilitate future research in the chick model system.


Asunto(s)
Gástrula/embriología , Gastrulación/genética , Estratos Germinativos/embriología , Morfogénesis/genética , Animales , Embrión de Pollo , Pollos/crecimiento & desarrollo , Gástrula/crecimiento & desarrollo , Estratos Germinativos/crecimiento & desarrollo , Mesodermo/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...