Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
J Am Soc Mass Spectrom ; 35(7): 1394-1402, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38905538

RESUMEN

Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography. The ability to perform high-quality native mass spectrometry of protein complexes, however, remains largely uninvestigated. Here, we evaluate a commercial TIMS-Q-TOF platform for analyzing noncovalent protein complexes by utilizing the instrument's full range of ion mobility, MS, and MS/MS (both in-source activation and collision cell CID) capabilities. The TIMS analyzer is able to be tuned gently to yield collision cross sections of native-like complexes comparable to those previously reported on various instrument platforms. In-source activation and collision cell CID were robust for both small and large complexes. TIMS-CID was performed on protein complexes streptavidin (53 kDa), avidin (68 kDa), and cholera toxin B (CTB, 58 kDa). Complexes pyruvate kinase (237 kDa) and GroEL (801 kDa) were beyond the trapping capabilities of the commercial TIMS analyzer, but TOF mass spectra could be acquired. The presented results indicate that the commercial TIMS-Q-TOF platform can be used for both omics and native mass spectrometry applications; however, modifications to the commercial RF drivers for both the TIMS analyzer and quadrupole (currently limited to m/z 3000) are necessary to mobility analyze protein complexes greater than about 60 kDa.


Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Piruvato Quinasa/química , Piruvato Quinasa/análisis , Estreptavidina/química , Estreptavidina/análisis , Toxina del Cólera/análisis , Toxina del Cólera/química , Avidina/química , Avidina/análisis , Proteínas/análisis , Proteínas/química
2.
ACS Sens ; 7(9): 2691-2700, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36084142

RESUMEN

Engineered protein switches have been widely applied in cell-based protein sensors and point-of-care diagnosis for the rapid and simple analysis of a wide variety of proteins, metabolites, nucleic acids, and enzymatic activities. Currently, these protein switches are based on two main types of switching mechanisms to transduce the target binding event to a quantitative signal, through a change in the optical properties of fluorescent molecules and the activation of enzymatic activities. In this paper, we introduce a new affinity-tunable protein switch strategy in which the binding of a small-molecule target with the protein activates the streptavidin-biotin interaction to generate a readout signal. In the absence of a target, the biotinylated protein switch forms a closed conformation where the biotin is positioned in close proximity to the protein, imposing a large steric hindrance to prevent the effective binding with streptavidin. In the presence of the target molecule, this steric hindrance is removed, thereby exposing the biotin for streptavidin binding to produce strong fluorescent signals. With this modular sensing concept, various sulfonamide, methotrexate, and trimethoprim drugs can be selectively detected on the cell surface of native and genetically engineered cells using different fluorescent dyes and detection techniques.


Asunto(s)
Biotina , Ácidos Nucleicos , Biotina/química , Colorantes Fluorescentes , Metotrexato , Proteínas , Estreptavidina/análisis , Sulfonamidas , Trimetoprim
3.
An Acad Bras Cienc ; 94(3): e20210917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35920489

RESUMEN

Molecular machines, as exemplified by the kinesin and microtubule system, are responsible for molecular transport in cells. The monitoring of the cellular machinery has attracted much attention in recent years, requiring sophisticated techniques such as optical tweezers, and dark field hyperspectral and fluorescence microscopies. It also demands suitable procedures for immobilization and labeling with functional agents such as dyes, plasmonic nanoparticles and quantum dots. In this work, microtubules were co-polymerized by incubating a tubulin mix consisting of 7 biotinylated tubulin to 3 rhodamine tubulin. Rhodamine provided the fluorescent tag, while biotin was the anchoring group for receiving streptavidin containing species. To control the microtubule alignment and consequently, the molecular gliding directions, functionalized iron oxide nanoparticles were employed in the presence of an external magnet field. Such iron oxide nanoparticles, (MagNPs) were previously coated with silica and (3-aminopro-pyl)triethoxysilane (APTS) and then modified with streptavidin (SA) for linking to the biotin-functionalized microtubules. In this way, the binding has been successfully performed, and the magnetic alignment probed by Inverted Fluorescence Microscopy. The proposed strategy has proved promising, as tested with one of the most important biological structures of the cellular machinery.


Asunto(s)
Biotina , Tubulina (Proteína) , Biotina/análisis , Biotina/química , Biotina/metabolismo , Óxido Ferrosoférrico/análisis , Óxido Ferrosoférrico/metabolismo , Fenómenos Magnéticos , Microscopía Fluorescente , Microtúbulos/química , Microtúbulos/metabolismo , Rodaminas/análisis , Rodaminas/metabolismo , Estreptavidina/análisis , Estreptavidina/química , Estreptavidina/metabolismo , Tubulina (Proteína)/análisis , Tubulina (Proteína)/metabolismo
4.
ACS Appl Mater Interfaces ; 13(28): 32653-32661, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34242017

RESUMEN

Intense electromagnetic (EM) hot-spots arising at the junctions or gaps in plasmonic nanoparticle assemblies can drive ultrahigh sensitivity in molecular detection by surface-enhanced spectroscopies. Harnessing this potential however requires access to the confined physical space at the EM hot-spots, which is a challenge for larger analytes such as biomolecules. Here, we demonstrate self-assembly derived gold nanoparticle cluster arrays (NCAs) on gold substrates exhibiting controlled interparticle (<1 nm wide) and intercluster (<10 nm wide) hot-spots as highly promising in this direction. Sensitivity of the NCAs toward detection of small (<1 nm) or large (protein-receptor interactions) analytes in surface-enhanced Raman and metal-enhanced fluorescence assays is found to be strongly impacted by the size of the cluster and the presence of reflective substrates. Experiments supported by numerical simulations attribute the higher sensitivity to higher EM field enhancements at the hot-spots, as well as greater analyte leverage over EM hot-spots. The best-performing arrays could push the sensitivity down to picomolar detection limits for sub-nanometric organic analytes as well as large protein analytes. The investigation paves the way for rational design of plasmonic biosensors and highlights the unique capabilities of a molecular self-assembly approach toward catering to this objective.


Asunto(s)
Carbocianinas/análisis , Colorantes Fluorescentes/análisis , Nanopartículas del Metal/química , Naftalenos/análisis , Estreptavidina/análisis , Compuestos de Sulfhidrilo/análisis , Carbocianinas/química , Colorantes Fluorescentes/química , Oro/química , Oro/efectos de la radiación , Luz , Límite de Detección , Nanopartículas del Metal/efectos de la radiación , Poliestirenos/química , Polivinilos/química , Piridinas/química , Espectrometría de Fluorescencia/métodos , Espectrometría Raman/métodos , Estreptavidina/química
5.
ACS Appl Mater Interfaces ; 13(7): 7966-7976, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33566573

RESUMEN

Nowadays, there is an increasing demand for more accessible routine diagnostics for patients with respect to high accuracy, ease of use, and low cost. However, the quantitative and high accuracy bioassays in large hospitals and laboratories usually require trained technicians and equipment that is both bulky and expensive. In addition, the multistep bioassays and long turnaround time could severely affect the disease surveillance and control especially in pandemics such as influenza and COVID-19. In view of this, a portable, quantitative bioassay device will be valuable in regions with scarce medical resources and help relieve burden on local healthcare systems. Herein, we introduce the MagiCoil diagnostic device, an inexpensive, portable, quantitative, and rapid bioassay platform based on the magnetic particle spectrometer (MPS) technique. MPS detects the dynamic magnetic responses of magnetic nanoparticles (MNPs) and uses the harmonics from oscillating MNPs as metrics for sensitive and quantitative bioassays. This device does not require trained technicians to operate and employs a fully automatic, one-step, and wash-free assay with a user friendly smartphone interface. Using a streptavidin-biotin binding system as a model, we show that the detection limit of the current portable device for streptavidin is 64 nM (equal to 5.12 pmole). In addition, this MPS technique is very versatile and allows for the detection of different diseases just by changing the surface modifications on MNPs. Although MPS-based bioassays show high sensitivities as reported in many literatures, at the current stage, this portable device faces insufficient sensitivity and needs further improvements. It is foreseen that this kind of portable device can transform the multistep, laboratory-based bioassays to one-step field testing in nonclinical settings such as schools, homes, offices, etc.


Asunto(s)
Bioensayo , Nanopartículas de Magnetita/química , Teléfono Inteligente , Estreptavidina/análisis , Bioensayo/instrumentación , COVID-19/diagnóstico , Humanos , Hidrodinámica , Gripe Humana/diagnóstico , Fenómenos Magnéticos , Tamaño de la Partícula , Propiedades de Superficie
6.
Anal Bioanal Chem ; 413(2): 555-564, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33156401

RESUMEN

Hybrid material surfaces on microparticles are emerging as vehicles for many biomedical multiplexing applications. Functionalization of these hybrid surface microparticles to biomolecules presents unique challenges related to optimization of surface chemistries including uniformity, repeatability, and sample sparring. Hybrid interfaces between microlevel surfaces and individual biomolecules will provide different microenvironments impacting the surface functionalization optimization and efficiency. Here, we propose and validate the first demonstration of streptavidin adsorption-based antibody functionalization on unmodified, hybrid surface microparticles for in vitro analysis. We test this analytical technique and fabricate hybrid surface microparticles with a polystyrene core and aluminum oxide semi-coating. Additionally, we optimize the streptavidin-biotin functionalization chemistry in both assay implementation and sample sparring via analytical mass balances for these microparticles and subsequently conjugate anti-human CD11b antibodies. Result confirmation and characterization occurs from ultraviolet protein absorbance and ImageJ processing of fluorescence microscopy images. Additionally, we design and implement the multi-sectional imaging (MSI) approach to support functionalization uniformity on the hybrid surface microparticles. Finally, as a proof-of-concept performance, we validate anti-CD11b antibodies functionalization by visualizing hybrid surface microparticles conjugate to human neutrophils isolated from blood samples collected from potentially septic patients. Our study introduces and defines a category of functionalization for hybrid surface microparticles with the intent of minuscule sample volumes, low cost, and low environmental impact to be used for many cellular or proteomic in vitro multiplexing applications in the future. Graphical abstract.


Asunto(s)
Óxido de Aluminio/análisis , Microesferas , Neutrófilos/metabolismo , Estreptavidina/análisis , Adsorción , Biotina/química , Antígeno CD11b/análisis , Humanos , Técnicas In Vitro , Microscopía Fluorescente , Tamaño de la Partícula , Poliestirenos , Propiedades de Superficie
7.
J Am Soc Mass Spectrom ; 32(1): 301-306, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33196170

RESUMEN

The alkaline phosphatase-streptavidin enzyme amplification conjugate (APSA) was diluted and quantified to the equivalent of one enzyme molecule injected on column by monitoring the production of excess adenosine from adenosine monophosphate (AMP) using sensitive and selective enzyme-linked mass spectrometric assay. The APSA enzyme conjugate has a mass of about 195 kDa and catalyzed the production of millions of enzyme products over the course of incubation that may be sensitively quantified by liquid chromatography, electrospray ionization, and mass spectrometry. APSA enzyme conjugate from fg/mL to ag/mL alongside 0 g/mL (control) was incubated with the substrate 1 mM AMP for 2 h in free solution before collecting a 1 µL of sample of the enzyme product adenosine for injection and analysis by LC-MS. The enzyme product adenosine showed a Gaussian distribution after log10 transformation. The safe limit of detection and quantification was approximately 250 zg of APSA enzyme conjugate injected on column. A linear signal with acceptable error was observed at the mass of the enzyme product adenosine from 10 to 10000 zg of APSA enzyme conjugate injected, compared to controls without enzyme. It was possible to make a linear and Gaussian measurement to the single molecule range of the universal APSA enzyme amplification conjugate per micro liter injected with approximately 10% error. This study describes the first linear and Gaussian quantification of enzyme product from the equivalent of one enzyme conjugate molecule injected onto LC-MS for analysis.


Asunto(s)
Fosfatasa Alcalina/análisis , Cromatografía Liquida/métodos , Imagen Individual de Molécula/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Adenosina Monofosfato/metabolismo , Fosfatasa Alcalina/química , Enzimas/análisis , Límite de Detección , Distribución Normal , Imagen Individual de Molécula/estadística & datos numéricos , Estreptavidina/análisis , Estreptavidina/química
8.
Anal Bioanal Chem ; 413(2): 585-597, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33184759

RESUMEN

The toxic protein of ricin has drawn wide attention in recent years as a potential bioterrorism agent due to its high toxicity and wide availability. For the verification of the potential anti-terrorism activities, it is urgent for the quantification of ricin in food-related matrices. Here, a novel strategy of trypsin/Glu-C tandem digestion was introduced for quantitative detection of ricin marker peptides in several beverage matrices using isotope-labeled internal standard (IS)-mass spectrometry. The ricin in beverages was captured and enriched by biotinylated anti-ricin polyclonal antibodies conjugated to streptavidin magnetic beads. The purified ricin was cleaved using the developed trypsin/Glu-C tandem digestion method and then quantitatively detected by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) with isotope-labeled T7A and TG11B selected as IS. The use of trypsin/Glu-C digestion allows shorter peptides, which are more suitable for MS detection, to be obtained than the use of single trypsin digestion. Under the optimized tandem digestion condition, except for T7A in the A-chain, two resulting specific peptides of TG13A, TG28A from the A-chain and two of TG11B, TG33B from the B-chain were chosen as novel marker peptides with high MS response. The uniqueness of the selected marker peptides allows for unambiguous identification of ricin among its homologous proteins in a single run. The MS response of the four novel marker peptides is increased by more than 10 times compared with that of individual corresponding tryptic peptides. Both the marker peptides of A-chain T7A and B-chain TG11B were selected as quantitative peptides based on the highest MS response among the marker peptides from their individual chains. The limit of detection (LOD) of ricin is 0.1 ng/mL in PBS and 0.5 ng/mL in either milk or orange juice. The linear range of calibration curves for ricin were 0.5-300 ng/mL in PBS, 1.0-400 ng/mL in milk, and 1.0-250 ng/mL in orange juice. The method accuracy ranged between 82.6 and 101.8% for PBS, 88.9-105.2% for milk, and 95.3-118.7% for orange juice. The intra-day and inter-day precision had relative standard deviations (%RSD) of 0.3-9.4%, 0.7-8.9%, and 0.2-6.9% in the three matrices respectively. Furthermore, whether T7A or TG11B is used as a quantitative peptide, the quantitative results of ricin are consistent. This study provides not only a practical method for the absolute quantification of ricin in beverage matrices but also a new strategy for the investigation of illegal use of ricin in chemical weapon verification tasks such as OPCW biotoxin sample analysis exercises.


Asunto(s)
Bebidas/análisis , Cromatografía Líquida de Alta Presión/métodos , Ricina/análisis , Espectrometría de Masas en Tándem/métodos , Tripsina/análisis , Biotinilación , Calibración , Marcaje Isotópico , Límite de Detección , Magnetismo , Péptidos/química , Control de Calidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Solventes , Estreptavidina/análisis
9.
Sci Rep ; 10(1): 19477, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173064

RESUMEN

To demonstrate the potential of time-resolved flow cytometry (FCM) for bioanalysis, clinical diagnostics, and optically encoded bead-based assays, we performed a proof-of-principle study to detect biomolecular interactions utilizing fluorescence lifetime (LT)-encoded micron-sized polymer beads bearing target-specific bioligands and a recently developed prototype lifetime flow cytometer (LT-FCM setup). This instrument is equipped with a single excitation light source and different fluorescence detectors, one operated in the photon-counting mode for time-resolved measurements of fluorescence decays and three detectors for conventional intensity measurements in different spectral windows. First, discrimination of bead-bound biomolecules was demonstrated in the time domain exemplarily for two targets, Streptavidin (SAv) and the tumor marker human chorionic gonadotropin (HCG). In a second step, the determination of biomolecule concentration levels was addressed representatively for the inflammation-related biomarker tumor necrosis factor (TNF-α) utilizing fluorescence intensity measurements in a second channel of the LT-FCM instrument. Our results underline the applicability of LT-FCM in the time domain for measurements of biomolecular interactions in suspension assays. In the future, the combination of spectral and LT encoding and multiplexing and the expansion of the time scale from the lower nanosecond range to the longer nanosecond and the microsecond region is expected to provide many distinguishable codes. This enables an increasing degree of multiplexing which could be attractive for high throughput screening applications.


Asunto(s)
Bioensayo/métodos , Citometría de Flujo/métodos , Microesferas , Polímeros/química , Bioensayo/instrumentación , Gonadotropina Coriónica/análisis , Citometría de Flujo/instrumentación , Fluorescencia , Colorantes Fluorescentes/química , Humanos , Reproducibilidad de los Resultados , Estreptavidina/análisis
10.
Anal Chem ; 92(13): 8654-8659, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32525300

RESUMEN

Aluminum has recently attracted considerable interest as a plasmonic material due to its unique optical properties, but most work has been limited to nanostructures. We report here SPR biosensing with aluminum thin-films using the standard Kretschmann configuration that has previously been dominated by gold films. Electron-beam physical vapor deposition (EBPVD)-prepared Al films oxidize in air to form a nanofilm of Al2O3, yielding robust stability for sensing applications in buffered solutions. FDTD simulations revealed a sharp plasmonic dip in the visible range that enables measurement of both angular shift and reflection intensity change at a fixed angle. Bulk and surface tests indicated that Al films exhibited superb sensitivity performance in both categories. Compared to Au, the Al/Al2O3 layer showed a marked effect of suppressing nonspecific binding from proteins in human serum. Further characterization indicated that Al film demonstrated a higher sensitivity and a wider working range than Au films when used for SPR imaging analysis. Combined with its economic and manufacturing benefits, the Al thin-film has the potential to become a highly advantageous plasmonic substrate to meet a wide range of biosensing needs in SPR configurations.


Asunto(s)
Aluminio/química , Técnicas Biosensibles/métodos , Óxido de Aluminio/química , Animales , Biotina/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Bovinos , Oro/química , Humanos , Nanoestructuras/química , Refractometría , Albúmina Sérica Bovina/química , Estreptavidina/análisis , Resonancia por Plasmón de Superficie/métodos
11.
Anal Chem ; 92(10): 7218-7225, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32338885

RESUMEN

Elucidating the structures and stabilities of proteins and their complexes is paramount to understanding their biological functions in cellular processes. Native mass spectrometry (MS) coupled with ion mobility spectrometry (IMS) is emerging as an important biophysical technique owing to its high sensitivity, rapid analysis time, and ability to interrogate sample complexity or heterogeneity and the ability to probe protein structure dynamics. Here, a commercial IMS-MS platform has been modified for static native ESI emitters and an extended mass-to-charge range (20 kDa m/z) and its performance capabilities and limits were explored for a range of protein and protein complexes. The results show new potential for this instrument platform for studies of large protein and protein complexes and provides a roadmap for extending the performance metrics for studies of even larger, more complex systems, namely, membrane protein complexes and their interactions with ligands.


Asunto(s)
Concanavalina A/análisis , Fructosa-Bifosfato Aldolasa/análisis , Estreptavidina/análisis , Ubiquitina/análisis , Fructosa-Bifosfato Aldolasa/metabolismo , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Conformación Proteica , Desplegamiento Proteico
12.
Anal Chem ; 92(5): 3627-3635, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32031784

RESUMEN

Sensitive and specific quantification of protein biomarkers is important in medical diagnostics, academic research, and pharmaceutical development. However, multiple binding steps in conventional sandwich immunoassay protocols result in high assay hands-on-time and delayed results. This is particularly relevant for medical diagnostics, where assay turn-around-time can have an immense impact on patient outcomes. To address this limitation, we report the assembly of nanosensors prepared using DNA-antibody conjugates, which combine capture and detection antibody binding steps by facilitating rapid antigen capture. Following antigen binding, detection antibodies are released using chemically induced complex rearrangement. A panel of 12 chemical additives are characterized to identify melting point depressants capable of rapidly denaturing double stranded DNA (dsDNA) linkers, and 8 compounds are demonstrated to be capable of disrupting dsDNA while maintaining the integrity of protein binding. This technique is then validated for the measurement of the heart attack indicator cardiac troponin I and is shown to successfully combine antigen binding steps while also increasing detection sensitivity 42×. Linker-mediated immunoassays are also demonstrated to provide robust quantification in human serum and are shown to be compatible with each of the most commonly used immunoassay detection modalities.


Asunto(s)
Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Nanotecnología/métodos , Anticuerpos/inmunología , Anticuerpos/metabolismo , ADN/química , ADN/metabolismo , Desnaturalización de Ácido Nucleico , Estreptavidina/análisis
13.
J Mater Chem B ; 8(16): 3606-3615, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31922167

RESUMEN

The interaction between a bioreceptor and its target is key in developing sensitive, specific and robust diagnostic devices. Suboptimal interbioreceptor distances and bioreceptor orientation on the sensor surface, resulting from uncontrolled deposition, impede biomolecular interactions and lead to a decreased biosensor performance. In this work, we studied and implemented a 3D DNA origami design, for the first time comprised of assay specifically tailored anchoring points for the nanostructuring of the bioreceptor layer on the surface of disc-shaped microparticles in the continuous microfluidic environment of the innovative EvalutionTM platform. This bioreceptor immobilization strategy resulted in the formation of a less densely packed surface with reduced steric hindrance and favoured upward orientation. This increased bioreceptor accessibility led to a 4-fold enhanced binding kinetics and a 6-fold increase in binding efficiency compared to a directly immobilized non-DNA origami reference system. Moreover, the DNA origami nanotailored biosensing concept outperformed traditional aptamer coupling with respect to limit of detection (11 × improved) and signal-to-noise ratio (2.5 × improved) in an aptamer-based sandwich bioassay. In conclusion, our results highlight the potential of these DNA origami nanotailored surfaces to improve biomolecular interactions at the sensing surface, thereby increasing the overall performance of biosensing devices. The combination of the intrinsic advantages of DNA origami together with a smart design enables bottom-up nanoscale engineering of the sensor surface, leading towards the next generation of improved diagnostic sensing devices.


Asunto(s)
Técnicas Biosensibles , ADN/análisis , Técnicas Electroquímicas , Inmunoglobulina E/análisis , Estreptavidina/análisis , Trombina/análisis , Aptámeros de Nucleótidos/química , ADN/síntesis química , Nanoestructuras/química , Tamaño de la Partícula , Propiedades de Superficie
14.
Anal Chem ; 92(3): 2460-2467, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31909984

RESUMEN

The use of submicrometer capillaries for nanoelectrospray ionization of native proteins and protein complexes effectively reduces the number of nonspecific salt adducts to biological molecules, therefore increasing the apparent resolution of a mass spectrometer without any further instrument modifications or increased ion activation. However, the increased interaction between proteins and the surface of the capillary has been shown to promote protein expansion and therefore loss of native structure. Here, we compare the effect of micrometer and submicrometer sized capillaries on the native structures of the protein complexes streptavidin, concanavalin A, and C-reactive protein under charge reducing conditions. We observe that the use of submicrometer capillaries did not result in a significantly higher charge state distribution, indicative of expansion, when compared to micrometer sized capillaries for complexes in 100 mM ammonium acetate and 100 mM triethylammonium acetate and for streptavidin in 200 mM ammonium acetate with no charge reduction. Additionally, no significant differences in collision cross sections were observed using ion mobility mass spectrometry. Finally, the dissociation behaviors of protein complexes ionized using micrometer and submicrometer capillaries were compared to determine if any structural perturbation occurred during ionization. Protein complexes from both capillary sizes displayed similar surface-induced dissociation patterns at similar activation energies. The results suggest that submicrometer capillaries do not result in significant changes to protein complex structure under charge reducing conditions and may be used for native mass spectrometry experiments. Submicrometer capillaries can be used to resolve small mass differences of biological systems on a QTOF platform; however, a laser tip puller is required for pulling reproducible submicrometer capillaries, and disruption in spray due to clogging was observed for larger protein complexes.


Asunto(s)
Proteína C-Reactiva/análisis , Concanavalina A/análisis , Estreptavidina/análisis , Espectrometría de Movilidad Iónica , Tamaño de la Partícula , Espectrometría de Masa por Ionización de Electrospray , Propiedades de Superficie
15.
Analyst ; 145(1): 46-51, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31755892

RESUMEN

Development of a simple, fast, cost-efficient and sensitive approach for accurate protein analysis is of high significance due to its potential application in disease diagnosis and biomedicine research. Thus, we established a label-free fluorescence DNA walker for streptavidin detection based on terminal protection and dual enzyme assisted cleavage induced G-quadruplex/berberine conformation. In this paper, the swing arm probe and report probe were pre-assembled on gold nanoparticles. With the addition of a target, through the high-efficiency affinity between streptavidin and biotin in order to prevent the hydrolysis of exonuclease I, the swing arm probe which contains 8-17 DNAzyme cannot be destroyed and plays a role in the catalytic cleavage of the report probe, and the liberating fragment of the report probe which contains a specific sequence (5'-(TTAGGG)4) of G-quadruplex units can combine with berberine and shows an evident fluorescence signal enhancement. Our method, a sensitive and selective method of protein detection, achieves a 20 pM detection limit toward streptavidin. This developed DNA walker, which combines terminal protection and a dual enzyme assisted strategy, provides a prospective channel for streptavidin detection and should also be used for the design of biosensors in bio-detection and disease diagnosis.


Asunto(s)
Berberina/química , Sondas de ADN/química , ADN Catalítico/química , G-Cuádruplex , Estreptavidina/análisis , Técnicas Biosensibles/métodos , Biotina/química , Sondas de ADN/genética , ADN Catalítico/genética , Exodesoxirribonucleasas/química , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Espectrometría de Fluorescencia/métodos , Estreptavidina/química
16.
ACS Sens ; 4(11): 2869-2878, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31702912

RESUMEN

In nearly all biosensors, sensitivity is greatly reduced for measurements conducted in biological matrices due to nonspecific binding from off-target molecules. One method to overcome this issue is to design a sensor that enables selective size-based uptake of proteins. Herein, a protein-polymer conjugate thin-film biosensor is fabricated that self-assembles into lamellae containing alternating domains of protein and polymer. Analyte is captured in protein regions while polymer domains restrict diffusion of large molecules. Device sensitivity and size-based exclusion properties are probed using two analytes: streptavidin (SA, 52.8 kDa) and monomeric streptavidin (mSA2, 15.6 kDa). Tuning domain spacing by adjusting polymer molecular weight allows the design of films that relatively freely uptake mSA2 and largely restrict SA diffusion. Furthermore, when detecting the smaller mSA2, no reduction in the limit of detection (LOD) is observed when transitioning from detection in the buffer to detection in biological fluids. As a result, LOD measured in fluid samples is reduced by 2 orders of magnitude compared to a traditional surface-immobilized protein monolayer.


Asunto(s)
Técnicas Biosensibles , Líquidos Corporales/química , Polímeros/química , Estreptavidina/análisis , Difusión , Humanos , Tamaño de la Partícula , Propiedades de Superficie
17.
Anal Chem ; 91(22): 14765-14772, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31638377

RESUMEN

Noncovalent interactions between biomolecules are critical to their activity. Native mass spectrometry (MS) has enabled characterization of these interactions by preserving noncovalent assemblies for mass analysis, including protein-ligand and protein-protein complexes for a wide range of soluble and membrane proteins. Recent advances in native MS of lipoprotein nanodiscs have also allowed characterization of antimicrobial peptides and membrane proteins embedded in intact lipid bilayers. However, conventional native electrospray ionization (ESI) can disrupt labile interactions. To stabilize macromolecular complexes for native MS, charge reducing reagents can be added to the solution prior to ESI, such as triethylamine, trimethylamine oxide, and imidazole. Lowering the charge acquired during ESI reduces Coulombic repulsion that leads to dissociation, and charge reduction reagents may also lower the internal energy of the ions through evaporative cooling. Here, we tested a range of imidazole derivatives to discover improved charge reducing reagents and to determine how their chemical properties influence charge reduction efficacy. We measured their effects on a soluble protein complex, a membrane protein complex in detergent, and lipoprotein nanodiscs with and without embedded peptides, and used computational chemistry to understand the observed charge-reduction behavior. Together, our data revealed that hydrophobic substituents at the 2 position on imidazole can significantly improve both charge reduction and gas-phase stability over existing reagents. These new imidazole derivatives will be immediately beneficial for a range of native MS applications and provide chemical principles to guide development of novel charge reducing reagents.


Asunto(s)
Proteínas de Transporte de Catión/análisis , Proteínas de Escherichia coli/análisis , Imidazoles/química , Lipoproteínas/análisis , Estreptavidina/análisis , Proteínas de Transporte de Catión/química , Proteínas de Escherichia coli/química , Interacciones Hidrofóbicas e Hidrofílicas , Lipoproteínas/química , Nanoestructuras/análisis , Nanoestructuras/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Electricidad Estática , Estreptavidina/química
18.
Colloids Surf B Biointerfaces ; 183: 110370, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31398619

RESUMEN

Thermoresponsive core-corona type nanoparticles were prepared exhibiting biomolecule recognition ability on their surfaces. These thermoresponsive nanoparticles were prepared from a poly(N-isopropylacrylamide) (PNIPAAm) macro-initiator and styrene (St) in a polar solvent via atom transfer radical dispersion polymerization. The PNIPAAm macro-initiator contains an alkyl halide and/or phthalimide group on the terminated group of the polymer chain, and thus, the grafting of PNIPAAm on the PSt core resulted in terminating phthalimide end groups. These terminal groups were utilized to immobilize biomolecule recognition units, and the dispersion stabilities of the nanoparticles were found to change in aqueous solution at room temperature due to alteration of the terminating PNIPAAm groups by the presence of biomolecules at different concentrations.


Asunto(s)
Resinas Acrílicas/química , Biotina/química , Ácidos Borónicos/química , Nanopartículas/química , Estireno/química , Coloides , Glucosa/análisis , Ftalimidas/química , Polimerizacion , Soluciones , Estreptavidina/análisis , Temperatura , Agua/química
19.
J Am Chem Soc ; 141(29): 11721-11726, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31257869

RESUMEN

For an assay to be most effective in point-of-care clinical analysis, it needs to be economical, simple, generalizable, and free from tedious workflows. While electrochemistry-based DNA sensors reduce instrumental costs and eliminate complicated procedures, there remains a need to address probe costs and generalizability, as numerous probes with multiple conjugations are needed to quantify a wide range of biomarkers. In this work, we have opened a route to circumvent complicated multiconjugation schemes using enzyme-catalyzed probe construction directly on the surface of the electrode. With this, we have created a versatile DNA nanostructure probe and validated its effectiveness by quantification of proteins (streptavidin, anti-digoxigenin, anti-tacrolimus) and small molecules (biotin, digoxigenin, tacrolimus) using the same platform. Tacrolimus, a widely prescribed immunosuppressant drug for organ transplant patients, was directly quantified with electrochemistry for the first time, with the assay range matching the therapeutic index range. Finally, the stability and sensitivity of the probe was confirmed in a background of minimally diluted human serum.


Asunto(s)
ADN/química , Técnicas Electroquímicas/métodos , Electrodos , Nanoestructuras/química , Proteínas/análisis , Anticuerpos/análisis , Anticuerpos/sangre , Biotina/análisis , Calibración , Digoxigenina/análisis , Técnicas Electroquímicas/instrumentación , Humanos , Ácidos Nucleicos Inmovilizados/química , Límite de Detección , Reproducibilidad de los Resultados , Estreptavidina/análisis , Tacrolimus/sangre , Tacrolimus/inmunología
20.
Biosens Bioelectron ; 141: 111396, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31195197

RESUMEN

Mode volume overlap factor is one of the parameters determining the sensitivity of a sensor. In past decades, many approaches have been proposed to increase the mode volume overlap. As the increased mode volume overlap factor results in reduced mode confinement, the maximum value is ultimately determined by the micro- and nano-structure of the refractive index distribution of the sensing devices. Due to the asymmetric index profile along the vertical direction on silicon-on-insulator platform, further increasing the sensitivity of subwavelength grating metamaterial (SGM) waveguide based sensors is challenging. In this paper, we propose and demonstrate pedestaled SGM which reduces the asymmetricity and thus allows further increasing the interaction between optical field and analytes. The pedestal structure can be readily formed by a controlled undercut etching. Both theoretical analysis and experimental demonstration show a significant improvement of sensitivity. The bulk sensitivity and surface sensitivity are improved by 28.8% and 1000 times, respectively. The detection of streptavidin at a low concentration of 0.1 ng/mL (∼1.67 pM) is also demonstrated through real-time monitoring of the resonance shift. A ∼400 fM streptavidin limit of detection is expected with a 0.01nm resolution spectrum analyzer based on the real-time measurement of streptavidin detection results from two-site binding model fitting.


Asunto(s)
Técnicas Biosensibles/instrumentación , Refractometría/instrumentación , Algoritmos , Diseño de Equipo , Silicio/química , Estreptavidina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...