Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.944
Filtrar
1.
J Ethnopharmacol ; 336: 118742, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197806

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Persian medicine (TPM), people often use herbal infusions as a dosage form to treat diseases related to hyperglycemia, known as 'dam-kardeh'. Traditionally, herbal preparations of Eryngium bungei Boiss. (E. b), Tragopogon buphthalmoides (DC.) Boiss. (T. b), Salvia hydrangea DC. ex Benth. (S. h), and Juniperus polycarpos K. Koch. (J. p) are used to manage diabetes in Iran. However, there is no evidence of their effectiveness in controlling glucose levels and their mechanisms remain unclear. AIM OF THE STUDY: This study aimed to investigate whether traditional doses of plant infusions can have hypoglycemic and/or anti-hyperglycemic effects during fasting and/or postprandial states and establish the basis for future research on their potential mechanisms of action. MATERIALS AND METHODS: The effects of traditional doses of herbal extracts on blood glucose levels in STZ-NA-induced hyperglycemic rats were investigated in 2-h acute tests during fasting and postprandial states (with a glucose load). In addition, the potential inhibitory effect in vitro of enzymes involved in relevant pathways, such as gluconeogenesis (fructose-1,6-bisphosphatase, FBPase and glucose-6-phosphatase, G6Pase), carbohydrate breakdown (intestinal α-glucosidases), and insulin sensitivity (protein tyrosine phosphatase 1B, PTP-1B) was evaluated. Acute toxicity tests were carried out and HPLC-SQ-TOF was used to analyze the chemical profiles of the plant extracts. RESULTS: In the fasting state, T. b, S. h, and E. b were as effective as glibenclamide in lowering blood glucose levels in hyperglycemic rats. Moreover, all three suppressed G6Pase and FBPase enzymatic activity by 90-97% and 80-91%, respectively. On the other hand, significant postprandial hypoglycemic efficacy was observed for E. b, S. h, and T. b. Based on the AUC values, T. b caused a reduction comparable to the therapeutic efficacy of repaglinide. When investigating the possible mechanisms of action involved in this activity, E. b, S. h, and T. b showed significant inhibition of PTP-1B in vitro (>70%). Finally, all plant extracts showed no signs of acute toxicity. Several compounds that may contribute to biological activities were identified, including phenolic acids and flavonoid glycosides. CONCLUSIONS: The present study supports the traditional use of T. b, E. b and S. h for the control of diabetes in the fasting and postprandial state. Moreover, these plants were found to be rich in bioactive compounds with hypoglycemic and antihyperglycemic activities. On the other hand, J. p, showed a modest effect only in the fasting state and after 90 min. Further studies are needed to expand these results by analyzing the chemical composition and using complementary experimental models.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Ayuno , Hipoglucemiantes , Extractos Vegetales , Periodo Posprandial , Animales , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/sangre , Masculino , Irán , Ratas , Medicina Persa , Ratas Wistar , Hiperglucemia/tratamiento farmacológico , Plantas Medicinales/química , Estreptozocina , Juniperus/química
2.
J Ethnopharmacol ; 336: 118684, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127117

RESUMEN

ETHNOPHARMACOLOGICAL PREVALENCE: Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. 200C, 30C, and mother tincture [MT] are used to treat diabetes. This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating diabetic nephropathy (DN). MATERIALS AND METHODS: Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 µL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 µg/mL) were incubated with renal cells (HEK-293) for 24 h. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed. RESULT: In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex. CONCLUSION: SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Factor 2 Relacionado con NF-E2 , Syzygium , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Syzygium/química , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Células HEK293 , Estrés Oxidativo/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Productos Finales de Glicación Avanzada/metabolismo , Estreptozocina , Ratas Wistar , Antioxidantes/farmacología , Ratas Sprague-Dawley
3.
PLoS One ; 19(9): e0308879, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39312526

RESUMEN

INTRODUCTION: Indigenous plants have historically been crucial in treating human diseases across various cultures worldwide. Research continues to uncover new therapeutic uses for indigenous plants, from treating infectious diseases to managing chronic conditions such as diabetes and wound care. This study aimed to examine the effect of palm tree leaves "Phoenix dactylifera L" extract and its topical film formulation on wound healing and blood glucose levels. METHODS: Palm leaves were collected, authenticated, powdered, and extracted with ethanol by cold maceration. Saponins were isolated. The dried extract was analyzed using reverse-phase high-pressure liquid chromatography to identify the phytochemicals present. Diabetes mellitus was induced by a single intraperitoneal injection of Streptozotocin (40mg/kg). Rats with blood glucose levels ≥ 200 mg/dl were used to determine the reduction in blood glucose with or without the oral extract. Incision and excision wounds were induced in both diabetic and normal rats. Topical films containing extract or saponin and inert films were applied to the wounds every other day, and wound sizes were recorded until the wound was completely healed. RESULTS: The presence of six flavonoids, Naringin, Rutin, Quercetin, Kaempferol, Apigenin, and Catechin, and five phenolic acids, Syringic acid, p Coumaric acid, Caffeic acid, Ferulic acid, Ellagic acid were detected in the dried extract. A significant reduction in blood sugar in diabetic rats and wound diameter in the treated group compared to the control group in both diabetic and normal rats was observed, confirming the promising role of palm leaf extract on diabetes and wound care. Macroscopic, morphometric, and histological data suggested that the cutaneous wound healing in rats treated with the leaf extract was better and faster than the control or inert groups. CONCLUSIONS: Our research findings highlight the marked effect of Phoenix dactylifera extract as a supportive or alternative treatment for both hyperglycemia and incision or excision wounds. Further research and clinical trials are warranted to validate these findings and explore the underlying mechanisms of action.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Hipoglucemiantes , Phoeniceae , Extractos Vegetales , Hojas de la Planta , Saponinas , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Saponinas/farmacología , Saponinas/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas , Phoeniceae/química , Hipoglucemiantes/farmacología , Masculino , Glucemia/efectos de los fármacos , Estreptozocina
4.
Drug Des Devel Ther ; 18: 4203-4213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319194

RESUMEN

Objective: This study aimed to demonstrate whether ozone has cardioprotective effects on the myocardial ischemia-reperfusion injury (IRI) in rats with streptozotocin(STZ)-induced diabetes. Methods: A total of 38 male Wistar Albino rats were divided into five groups as follows: control group (group C,n=6), diabetic group (group D,n=6), diabetic ozone group (group DO,n=6), diabetic-ischemia/reperfusion (group DIR,n=6), diabetic-ischemia/reperfusion-ozone (group DIRO,n=6). Six rats died during this period and two died because of surgical complications. A myocardial ischemia-reperfusion model was created using a thoracotomy incision from 4th intercostal space. The LAD was ligated using an 8-0 prolene suture for 30min. Ozone was administered intraperitoneally(1mg/kg) 5min before reperfusion. The reperfusion time was 120 min. At the end of the reperfusion procedure, myocardial tissue histopathological examinations, and serum biochemical analyses were performed. Results: The percentage of TUNEL(+) cardiomyocytes/HPF was significantly higher in the DIR group than in the C, D, and DO groups. Conversely, TUNEL positivity was significantly lower in the DIRO group than in the DIR group. The IRI score was significantly higher in the DIR and DIRO groups than that in the C, D, and DO groups. In contrast, the IRI damage score in the DIRO group was significantly lower than that in the DIR group. Serum MDA levels were significantly higher in the DIR group than in the C, D, and DO groups. Similarly, MDA levels were significantly higher in the DIRO group than in the C and D groups. CAT activity was significantly higher in the DIR group than in the C and D groups. SOD activity was significantly higher in the DIR group than in the C and DO groups. Conclusion: Our study showed that ozone exerts cardioprotective effects in STZ-induced diabetic rats through its antioxidant role against oxidative stress. Both biochemical and histological analyses clearly revealed that ozone has beneficial effects against IRI in the diabetic rat myocardium.


Asunto(s)
Diabetes Mellitus Experimental , Daño por Reperfusión Miocárdica , Ozono , Ratas Wistar , Estreptozocina , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Masculino , Ozono/farmacología , Ozono/administración & dosificación , Ratas , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Modelos Animales de Enfermedad
5.
Bull Exp Biol Med ; 177(4): 406-411, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39259466

RESUMEN

The dynamics of nephropathy development in rats with type 2 diabetes mellitus, caused by a high-fat diet and the streptozotocin administration (25 mg/kg), and metabolic syndrome, caused by addition of 20% fructose solution to the diet, was evaluated during the experiment. Models with moderate severity of metabolic changes without significant changes in body weight were obtained after 24 weeks. To study neuropathy severity, the method of electroneuromyography was used; the velocities of motor and sensory excitation propagation along the caudal nerve fibers were measured. In modeled diabetes mellitus against the background of hyperglycemia, a marked decrease in motor and sensory propagation rates was observed, and an increase in the response durations was noted from week 12 to week 24, indicating pronounced neuropathy. In the fructose model, the motor response duration increased from week 12, which possibly indicates the development of peripheral neuropathy.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Síndrome Metabólico , Estreptozocina , Animales , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Síndrome Metabólico/patología , Ratas , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Masculino , Neuropatías Diabéticas/fisiopatología , Neuropatías Diabéticas/patología , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/metabolismo , Estreptozocina/toxicidad , Diabetes Mellitus Tipo 2/fisiopatología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Ratas Wistar , Fructosa , Dieta Alta en Grasa/efectos adversos , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/etiología , Modelos Animales de Enfermedad , Conducción Nerviosa/fisiología
6.
Open Vet J ; 14(8): 1761-1770, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39308716

RESUMEN

Background: Diabetes is a degenerative disease associated with metabolic disorders. The majority of people have type 2 diabetes mellitus (DM) insulin resistance due to an unhealthy lifestyle. The development of DM treatment is also growing, one of which is using conditioned medium. Aim: This study aims to determine the effect of Bovine umbilical mesenchymal stem cell-conditioned medium (BUMSC-CM) on nicotinamide (NA) and streptozotocin (STZ) induced rats as an animal model of DM. Methods: The study began with the in vitro docking of Cholecalciferol with aldolase reductase and glucokinase. In the in vivo study, animal models were divided into five groups: group A (negative control), group B (diabetic rats), group C (NA+STZ+Metformin), group D (NA+STZ+ BUMSC-CM 0.2 ml/kg BW), and group E (NA+STZ+ BUMSC-CM 0.5 ml/kg BW). Blood sugar levels were checked, and BUMSC-CM was administered by intramuscular injection at four-day intervals for a duration of 16 days. Blood sugar levels were also sampled, and GLUT4 histochemical and immunohistochemical staining was performed. Results: The results showed that Cholecalciferol can bind to aldolase reductase ASP43 and TYR48 and bind to glucokinase at TYR214 with hydrogen bonds. BUMSC-CM administration was able to reduce blood sugar well. In addition, BUMSC-CM also helped repair the tissue structure of the pancreas damaged by inflammation from STZ administration. Conclusion: This study can be concluded that the administration of BUMSC-CM can be an alternative cell-free therapy for patients with DM.


Asunto(s)
Diabetes Mellitus Experimental , Transportador de Glucosa de Tipo 4 , Células Madre Mesenquimatosas , Niacinamida , Estreptozocina , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Niacinamida/farmacología , Niacinamida/administración & dosificación , Ratas , Células Madre Mesenquimatosas/efectos de los fármacos , Bovinos , Medios de Cultivo Condicionados/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Páncreas/efectos de los fármacos , Páncreas/patología , Ratas Wistar
7.
Mol Biol Rep ; 51(1): 993, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292293

RESUMEN

BACKGROUND: Misfolded proteins accumulate in the liver due to endoplasmic reticulum stress (ERS) caused by high blood glucose levels in diabetes. This triggers the unfolded protein response (UPR), which if persistently activated, results in cellular dysfunction. Chronic ER stress increases inflammation, insulin resistance, and apoptosis. There is growing interest in using native plants and traditional medicine for diabetes treatment. The stevia plant has recently gained attention for its potential therapeutic effects. This study investigates the protective effects of aquatic stevia extract on liver damage, ER stress, and the UPR pathway in streptozotocin (STZ)-induced diabetic rats. METHODS: Rats were randomly divided into four groups: a control group that received 1 ml of water; a diabetic group induced by intraperitoneal injection of STZ (60 mg/kg); a diabetic group treated with metformin (500 mg/kg); and a diabetic group treated with aquatic extracts of stevia (400 mg/kg). After 28 days, various parameters were assessed, including inflammatory markers, oxidative stress indices, antioxidant levels, gene expression, stereology, and liver tissue pathology. RESULT: Compared to the diabetic control group, treatment with stevia significantly decreased serum glucose, liver enzymes, inflammatory markers, and oxidative stress while increasing body weight and antioxidant levels. Additionally, stevia extract manipulated UPR gene expression and reduced apoptosis pathway activation. Histological examination revealed improved liver tissue morphology in stevia-treated diabetic rats. CONCLUSION: These findings suggest that aquatic stevia extract mitigates ER stress in diabetic rats by modulating the IRE-1 arm of the UPR and apoptosis pathways, highlighting its potential therapeutic benefits for diabetes-related liver complications.


Asunto(s)
Diabetes Mellitus Experimental , Estrés del Retículo Endoplásmico , Hígado , Estrés Oxidativo , Extractos Vegetales , Stevia , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Stevia/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Extractos Vegetales/farmacología , Ratas , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Estreptozocina , Apoptosis/efectos de los fármacos , Antioxidantes/farmacología , Hipoglucemiantes/farmacología
8.
J Biochem Mol Toxicol ; 38(9): e23841, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39235091

RESUMEN

Considering detrimental impacts of combustible cigarettes (CCs) on the exacerbation of diabetes mellitus (DM), a significant number of DM patients have substituted CCs with electronic nicotine delivery systems (ENDS). Herewith, we compared CCs and ENDS-dependent modulation of immune cell-driven inflammation in DM patients who used ENDS (DMENDS), CCs (DMCC) or were non-smokers (DMAIR), paving the way for the better understanding of ENDS-induced biological effects. Multiple low dose streptozotocin (MLD-STZ)-induced mice model of DM was used to support clinical findings. Both CCs and ENDS aggravated MLD-STZ-induced DM. Pancreatic injury and inflammation were more severe in CC-exposed than in ENDS-exposed diabetic mice. CCs promoted activation of NLRP3 inflammasome, enhanced production of inflammatory cytokines in neutrophils, macrophages and remarkably improved antigen presenting capacity of dendritic cells which resulted in the expansion of TNF-α, IFN-γ and IL-17-producing Th1 and Th17 lymphocytes, NK and NKT cells. Compared to CCs, ENDS more intensively promoted expansion of FoxP3-expressing, IL-10-producing NK and NKT cells and triggered less intense systemic inflammatory response in diabetic animals. Similar findings were observed in DM patients. The highest numbers of inflammatory, TNF-α and IL-1ß-producing neutrophils and monocytes, TNF-α and IFN-γ-producing T lymphocytes, NK and NKT cells were determined in the blood of DMCC patients, while total number of immunosuppressive, TGF-ß-producing CD3 + CD4 + T cells was the highest in the blood of DMENDS patients. In conclusion, although both CC and ENDS aggravate on-going inflammation in DM, ENDS have weaker capacity to induce production of inflammatory cytokines in immune cells than CCs.


Asunto(s)
Diabetes Mellitus Experimental , Sistemas Electrónicos de Liberación de Nicotina , Inflamación , Animales , Diabetes Mellitus Experimental/inmunología , Ratones , Humanos , Inflamación/inmunología , Masculino , Femenino , Persona de Mediana Edad , Ratones Endogámicos C57BL , Citocinas/metabolismo , Citocinas/sangre , Estreptozocina , Adulto
9.
Drug Des Devel Ther ; 18: 3903-3919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224902

RESUMEN

Purpose: Bone loss is a common complication of type 2 diabetes mellitus (T2DM). Circadian rhythms play a significant role in T2DM and bone remodeling. Eldecalcitol (ED-71), a novel active vitamin D analog, has shown promise in ameliorating T2DM. We aimed to investigate whether the circadian rhythm coregulator BMAL1 mediates the anti-osteoporotic effect of ED-71 in T2DM and its associated mechanisms. Methods: A T2DM mouse model was established using high-fat diet (HDF) and streptozotocin (STZ) injection, and blood glucose levels were monitored weekly. HE staining, Masson staining, and Micro-CT were performed to assess the changes in bone mass. IHC staining and IF staining were used to detect osteoblast status and BMAL1 expression and RT-qPCR was applied to detect the change of oxidative stress factors. In vitro, high glucose (HG) stimulation was used to simulate the cell environment in T2DM. RT-qPCR, Western blot, IF, ALP staining and AR staining were used to detect osteogenic differentiation and SIRT1/GSK3ß signaling pathway. DCFH-DA staining was used to detect reactive oxygen species (ROS) levels. Results: ED-71 increased bone mass and promoted osteogenesis in T2DM mice. Moreover, ED-71 inhibited oxidative stress and promoted BMAL1 expression in osteoblasts The addition of STL1267, an agonist of the BMAL1 transcriptional repressor protein REV-ERB, reversed the inhibitory effect of ED-71 on oxidative stress and the promotional effect on osteogenic differentiation. In addition, ED-71 facilitated SIRT1 expression and reduced GSK3ß activity. The inhibition of SIRT1 with EX527 partially attenuated ED-71's effects, whereas the GSK3ß inhibitor LiCl further enhanced ED-71's positive effects on BMAL1 expression. Conclusion: ED-71 ameliorates bone loss in T2DM by upregulating the circadian rhythm coregulator BMAL1 and promoting osteogenesis through inhibition of oxidative stress. The SIRT1/GSK3ß signaling pathway is involved in the regulation of BMAL1.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones Endogámicos C57BL , Osteogénesis , Regulación hacia Arriba , Animales , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Ratones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Osteogénesis/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ritmo Circadiano/efectos de los fármacos , Estreptozocina , Vitamina D/farmacología , Vitamina D/análogos & derivados , Dieta Alta en Grasa , Células Cultivadas
10.
Eur Rev Med Pharmacol Sci ; 28(16): 4214-4224, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39229849

RESUMEN

OBJECTIVE: Isorhamnetin, a naturally occurring flavonoid compound, holds paramount importance as a primary constituent within several medicinal plants, exhibiting profound pharmacological significance. The aim of this study is to investigate the pain-relieving attributes of isorhamnetin in murine models through both formalin-induced pain and diabetic neuropathy scenarios. MATERIALS AND METHODS: To achieve our objective, isorhamnetin was orally administered to mice at varying dosage levels (10 to 100 mg/kg). Pain-related behaviors were assessed using the formalin test during its secondary phase. Additionally, the potential pain-alleviating effect of isorhamnetin was evaluated in a diabetic neuropathy model induced by streptozotocin. Additionally, we carried out advanced interventions using naloxone, which is a well-known antagonist of opioid receptors, yohimbine, which blocks α2-adrenergic receptors, and methysergide, which inhibits serotonergic receptors, during the formalin test. RESULTS: The oral intake of isorhamnetin showed a decrease in behaviors associated with pain that was proportional to the dose observed during the second phase of the formalin test when induced by formalin. In the diabetic neuropathy model, isorhamnetin administration effectively reversed the reduced pain threshold observed. Notably, naloxone, the opioid receptor antagonist, effectively counteracted the pain-relieving effect produced by isorhamnetin in the formalin test, whereas yohimbine and methysergide did not yield similar outcomes. Isorhamnetin also led to a reduction in elevated spinal cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) levels triggered by formalin, with this effect reversed by pre-treatment with naloxone. The compound also suppressed heightened spinal phosphorylated CREB (p-CREB) levels caused by diabetic neuropathy. CONCLUSIONS: This research determined that isorhamnetin has notable abilities to relieve pain in models of formalin-induced pain and diabetic neuropathy. The pain-relieving mechanism of isorhamnetin in the formalin-induced pain model seems to be connected to the activation of spinal opioid receptors and the adjustment of CREB protein amounts. This insight improves our knowledge of how isorhamnetin could be used therapeutically to treat pain conditions stemming from formalin-induced pain and diabetic neuropathy.


Asunto(s)
Analgésicos , Neuropatías Diabéticas , Formaldehído , Quercetina , Animales , Ratones , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/inducido químicamente , Quercetina/análogos & derivados , Quercetina/farmacología , Quercetina/uso terapéutico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Masculino , Modelos Animales de Enfermedad , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Yohimbina/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Naloxona/farmacología , Naloxona/uso terapéutico , Estreptozocina , Dimensión del Dolor/efectos de los fármacos , Relación Dosis-Respuesta a Droga
11.
Biomed Pharmacother ; 179: 117308, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39180791

RESUMEN

The continual increase in global diabetic statistics portends decreased productivity and life spans, thus making it a disease of concern requiring more effective and safe therapeutic options. While several reports on antidiabetic plants, including Hura crepitans, are available, there is still a dearth of information on the holistic antidiabetic properties of H. crepitans and its associated complications. This study evaluated the antidiabetic potential of methanolic extract of Hura crepitans using in vitro, in vivo, and in silico approaches. The extract revealed a dose-dependent in vitro effect, with a 47.97 % and 65.34 % decrease in the fasting blood sugar levels of streptozotocin (STZ) induced diabetic rats at 150 and 300 mg/kg BW, respectively. Likewise, the extract increased serum and pancreatic insulin levels, and significantly ameliorated neuronal oxidative stress and inflammation by reducing the expression levels of cholinesterase, NF-κB, and COX-2 in the brain of hyperglycemic rats. Serum dyslipidemia, liver, and kidney biomarker indices, and hematological alterations in diabetic rats were also significantly attenuated by the extract. Several constituents, mainly terpenes, were identified in the extract. To further predict the drug-likeness, pharmacokinetics, and binding properties of the compounds, in silico analysis was conducted. Ergosta-2,24-dien-26-oicacid,18-(acetyloxy)-5,6-epoxy-4, 22-dihydroxy-1-oxo-,delta.-lactone-4.beta., displayed the highest docking scores for acetylcholinesterase, butyrylcholinesterases, alpha-amylase, and nuclear factor-kB with values of -12.4, -10.9, -10.3, and -9.4 kcal/mol, while ergost-25-ene-6,12-dione,3,5-dihydroxy-, (3.beta.,5.alpha.) topped for cyclooxygenase-2 (-9.0 kcal/mol). The top-ranked compounds also presented significant oral drug-likeness, pharmacokinetics, and safety properties. Altogether, our data provide preclinical evidence of the potential of Hura crepitans in ameliorating diabetes and its associated complications.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Hipoglucemiantes , Extractos Vegetales , Ratas Wistar , Estreptozocina , Terpenos , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/sangre , Extractos Vegetales/farmacología , Masculino , Ratas , Terpenos/farmacología , Hipoglucemiantes/farmacología , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Simulación del Acoplamiento Molecular , Complicaciones de la Diabetes/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos
12.
Braz Oral Res ; 38: e073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109769

RESUMEN

This study aimed to assess the influence of streptozotocin (STZ)-induced diabetes on the nociceptive behavior evoked by the injection of hypertonic saline (HS) into the masseter muscle of rats. Forty male rats were equally divided into four groups: a) isotonic saline control, which received 0.9% isotonic saline (IS), (Ctrl-IS); b) hypertonic saline control, which received 5% HS (Ctrl-HS); c) STZ-induced diabetic, which received IS, (STZ-IS); d) STZ-induced diabetic, which received HS (STZ-HS). Experimental diabetes was induced by a single intraperitoneal injection of STZ at dose of 60 mg/kg dissolved in 0.1 M citrate buffer, and 100 µL of HS or IS were injected into the left masseter to measure the nociceptive behavior. Later on, muscle RNA was extracted to measure the relative expression of the following cytokines: cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF-α), and interleukins (IL)-1ß, -2, -6, and -10. One-way analysis of variance (ANOVA) was applied to the data (p < 0.050). We observed a main effect of group on the nociceptive response (ANOVA: F = 11.60, p < 0.001), where the Ctrl-HS group presented the highest response (p < 0.001). However, nociceptive response was similar among the Ctrl-IS, STZ-IS, and STZ-HS group (p > 0.050). In addition, the highest relative gene expression of TNF-α and IL-6 was found in the masseter of control rats following experimental muscle pain (p < 0.050). In conclusion, the loss of somatosensory function can be observed in deep orofacial tissues of STZ-induced diabetic rats.


Asunto(s)
Citocinas , Diabetes Mellitus Experimental , Músculo Masetero , Ratas Wistar , Estreptozocina , Animales , Masculino , Músculo Masetero/efectos de los fármacos , Músculo Masetero/fisiopatología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/fisiopatología , Análisis de Varianza , Citocinas/análisis , Solución Salina Hipertónica/farmacología , Dimensión del Dolor , Factores de Tiempo , Reproducibilidad de los Resultados , Dolor Facial/fisiopatología , Distribución Aleatoria , Ratas
13.
Medicina (Kaunas) ; 60(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39202513

RESUMEN

Background and Objectives: Lower-extremity ischemia-reperfusion injury can induce distant organ ischemia, and patients with diabetes are particularly susceptible to ischemia-reperfusion injury. Sevoflurane, a widely used halogenated inhalation anesthetic, and fullerenol C60, a potent antioxidant, were investigated for their effects on heart and lung tissues in lower-extremity ischemia-reperfusion injury in streptozotocin (STZ)-induced diabetic mice. Materials and Methods: A total of 41 mice were divided into six groups: control (n = 6), diabetes-control (n = 7), diabetes-ischemia (n = 7), diabetes-ischemia-fullerenol C60 (n = 7), diabetes-ischemia-sevoflurane (n = 7), and diabetes-ischemia-fullerenol C60-sevoflurane (n = 7). Diabetes was induced in mice using a single intraperitoneal dose of 55 mg/kg STZ in all groups except for the control group. Mice in the control and diabetes-control groups underwent midline laparotomy and were sacrificed after 120 min. The DIR group underwent 120 min of lower-extremity ischemia followed by 120 min of reperfusion. In the DIR-F group, mice received 100 µg/kg fullerenol C60 intraperitoneally 30 min before IR. In the DIR-S group, sevoflurane and oxygen were administered during the IR procedure. In the DIR-FS group, fullerenol C60 and sevoflurane were administered. Biochemical and histological evaluations were performed on collected heart and lung tissues. Results: Histological examination of heart tissues showed significantly higher necrosis, polymorphonuclear leukocyte infiltration, edema, and total damage scores in the DIR group compared to controls. These effects were attenuated in fullerenol-treated groups. Lung tissue examination revealed more alveolar wall edema, hemorrhage, vascular congestion, polymorphonuclear leukocyte infiltration, and higher total damage scores in the DIR group compared to controls, with reduced injury parameters in the fullerenol-treated groups. Biochemical analyses indicated significantly higher total oxidative stress, oxidative stress index, and paraoxonase-1 levels in the DIR group compared to the control and diabetic groups. These levels were lower in the fullerenol-treated groups. Conclusions: Distant organ damage in the lung and heart tissues due to lower-extremity ischemia-reperfusion injury can be significantly reduced by fullerenol C60.


Asunto(s)
Diabetes Mellitus Experimental , Fulerenos , Pulmón , Daño por Reperfusión , Sevoflurano , Animales , Sevoflurano/farmacología , Fulerenos/farmacología , Fulerenos/uso terapéutico , Ratones , Daño por Reperfusión/complicaciones , Diabetes Mellitus Experimental/complicaciones , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Masculino , Anestésicos por Inhalación/farmacología , Corazón/efectos de los fármacos , Extremidad Inferior/irrigación sanguínea , Miocardio/patología , Estreptozocina , Éteres Metílicos/farmacología , Éteres Metílicos/uso terapéutico
14.
Medicina (Kaunas) ; 60(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39202547

RESUMEN

Introduction: We evaluated the effects of repeated ketamine, propofol, and ketamine + propofol administration on cognitive functions and brain tissue of elderly rat models with streptozotocin-induced Alzheimer's disease. Materials and Methods: Thirty elderly male Wistar Albino rats were divided into five groups: control (Group C), Alzheimer's (Group A), Alzheimer's + ketamine (Group AK), Alzheimer's + propofol (Group AP), and Alzheimer's + propofol + ketamine (Group APK). Alzheimer's disease was induced in Groups A, AK, AP, and APK via intracerebroventricular streptozotocin. Four weeks after surgery, ketamine, propofol, and ketamine + propofol were administered intraperitoneally for 3 days to Groups AK, AP, and APK, respectively. The radial arm maze test (RAMT) was performed in the initial, 1st, 2nd, 3rd, and 4th weeks after surgery and daily following anaesthesia. Blood and brain tissue samples were obtained. Results: The RAMT results of Groups A, AK, AP, and APK decreased compared to Group C 2 weeks after Alzheimer's disease onset. Compared to Group A, the RAMT results increased in Groups AK and APK after the first anaesthesia, and in Group AP after the second anaesthesia. Brain tissue paraoxonase-1 (PON-1) and catalase (CAT) activities were low, and the thiobarbituric acid reactive substance (TBARS) level was high in Group A compared to Group C. TBARS levels of Groups AP and APK were lower than Group A, while CAT activity was higher. PON-1 activity was higher in Groups AK, AP, and APK than in Group A. Histopathological changes decreased in Groups AP and AK. A decrease in p53 was found in Group C compared to Group A. Ketamine and propofol were found to be effective at Bcl-2 immunoexpression, but a decrease in Caspase-3 was observed in Group APK. GFAP immunoexpression increased in Group A compared to Group C and in Group AP compared to Group AK. Conclusions: Repetitive anaesthesia application was found to positively affect cognitive functions. This was supported by histopathological and biochemical markers.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Cognición , Modelos Animales de Enfermedad , Ketamina , Propofol , Ratas Wistar , Animales , Ratas , Masculino , Propofol/farmacología , Propofol/administración & dosificación , Ketamina/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cognición/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Estreptozocina , Anestesia/métodos , Anestesia/efectos adversos
15.
In Vivo ; 38(5): 2190-2196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39187339

RESUMEN

BACKGROUND/AIM: In a previous report, our group showed that oral administration of lipopolysaccharides (LPS) from Pantoea agglomerans can prevent the progression of streptozotocin (STZ)-induced diabetes-related cognitive dysfunction (DRCD) in mice without causing significant side-effects. However, the treatment effects of oral administration of LPS to DRCD remain unknown. MATERIALS AND METHODS: We modified our previous animal experimental model to investigate whether oral administration of LPS can recover cognitive function after DRCD onset. RESULTS: The Morris water maze (MWM) revealed a significant decrease in learning and memory abilities at 13 days after intracerebroventricular administration of STZ, thereby providing evidence of the occurrence of DRCD in the animal model. Oral administration of LPS (1 mg/kg per day) started after cognitive impairment was observed. After 28 days of treatment, mice receiving LPS via the oral route showed significant recovery of spatial learning ability, a symptom of early dementia, while only a trend toward recovery was seen for spatial memory compared to the untreated group. CONCLUSION: These results, limited to MWM, suggest that oral administration of LPS is a promising therapeutic strategy for restoring decreased spatial learning ability.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Lipopolisacáridos , Aprendizaje por Laberinto , Aprendizaje Espacial , Animales , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/administración & dosificación , Ratones , Administración Oral , Disfunción Cognitiva/etiología , Disfunción Cognitiva/tratamiento farmacológico , Masculino , Diabetes Mellitus Experimental/complicaciones , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Estreptozocina/administración & dosificación
16.
Int Immunopharmacol ; 140: 112871, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39111146

RESUMEN

Diabetic keratopathy, characterized by corneal structural changes, is a common complication of diabetes mellitus (DM). Docosahexaenoic acid (DHA), an omega-3 fatty acid, has shown potential therapeutic benefits in various diabetic complications. This study aimed to investigate the protective effect of DHA on corneal tissue in streptozotocin (STZ)-induced type 2 DM in rats. Forty male Sprague-Dawley rats were randomly assigned to four groups (n = 10 per group): Control, DHA, DM, and DM + DHA. The DHA group received DHA by oral gavage at a dose of 100 mg/kg daily for 10 days. In the DM group, diabetes was induced by a single intraperitoneal injection of STZ at 50 mg/kg. Confirmation of diabetes induction was based on monitoring fasting blood glucose levels on the third day post-injection. The DM + DHA group underwent the same diabetes induction protocol with STZ and received DHA at 100 mg/kg daily via oral gavage for 10 consecutive days. Corneal tissue samples were collected at the end of the study period for histopathological, immunohistochemical, qRT-PCR, and ELISA analyses. Histopathological analysis showed significant edema, angiogenesis, and degeneration in the DM group compared to the control (p < 0.001). DHA treatment significantly mitigated these changes, approaching control levels (p < 0.01). Immunohistochemistry showed increased VEGFR2 and iNOS expression in the DM group, which was significantly reduced in the DM + DHA group (p < 0.01). qRT-PCR results indicated a significant decrease in Bcl-2 expression (p < 0.001) and an increase in ATF-6, IRE1, NF-κB, TNF-α, IL-1ß, NLRP3, Bax, and Caspase-3 expressions in the DM group (p < 0.001). ELISA analyses revealed significantly elevated levels of inflammatory markers NF-κB, TNF-α, IL-1ß, and IL-6 in the DM group compared to the control (p < 0.001). DHA treatment significantly upregulated Bcl-2 and downregulated apoptotic and inflammatory markers (p < 0.01). DHA demonstrated significant protective effects against STZ-induced corneal damage in diabetic rats by modulating apoptotic and inflammatory pathways. These findings suggest that DHA may be a promising therapeutic agent for preventing diabetic keratopathy.


Asunto(s)
Diabetes Mellitus Experimental , Ácidos Docosahexaenoicos , Estrés del Retículo Endoplásmico , Ratas Sprague-Dawley , Animales , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Masculino , Estrés del Retículo Endoplásmico/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratas , Córnea/efectos de los fármacos , Córnea/patología , Córnea/metabolismo , Apoptosis/efectos de los fármacos , Enfermedades de la Córnea/tratamiento farmacológico , Enfermedades de la Córnea/patología , Enfermedades de la Córnea/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Estreptozocina , Citocinas/metabolismo
17.
Food Funct ; 15(18): 9357-9367, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39189105

RESUMEN

Diabetes mellitus is a metabolic disease characterized by high blood glucose levels or hyperglycemia. Diabetes causes a decrease in immune function in the human body. Mytilus edulis has been identified as having anti-inflammatory properties and the ability to improve inflammation. Thus, this study aimed to investigate the function of Matsu M. edulis water extract (MWE) in mediating the regulation of immune responses and dysregulating the intestinal immune system in hyperglycemia mouse models. The mice were treated with MWE for seven weeks. The results showed that treatment with MWE has the ability to decrease triglyceride and total cholesterol concentrations. MWE also increases the interleukin (IL)-10 concentration and natural killer cell activation. It also improves the phagocytic capacity of monocytes in the colon and the proliferative capacity of lymphocytes in the mesentery. Furthermore, MWE also regulates the IL-6 concentration and the ratio of T helper 17 cells to regulatory T cells. Collectively, this extract can improve dyslipidemia, inflammatory responses, and dysregulation of the intestinal immune system. Therefore, M. edulis water extract can be used as an alternative treatment to reduce diabetes complications.


Asunto(s)
Diabetes Mellitus Experimental , Dieta Alta en Grasa , Mytilus edulis , Animales , Ratones , Mytilus edulis/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Dieta Alta en Grasa/efectos adversos , Intestinos/efectos de los fármacos , Intestinos/inmunología , Interleucina-10/metabolismo , Ratones Endogámicos C57BL , Estreptozocina , Triglicéridos/sangre , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología
18.
Int Immunopharmacol ; 140: 112802, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39088924

RESUMEN

BACKGROUND: Formononetin (FNT) is an isoflavone known for its anti-inflammatory properties and has been shown to reduce insulin resistance in Type 2 Diabetes Mellitus (T2DM). However, its effects and the underlying mechanisms in diabetic liver injury remain largely unexplored. METHODS: We established a T2DM-induced liver injury mouse model by feeding high-fat diet, followed by injecting streptozotocin. The mice were then treated with FNT and the liver function in these mice was assessed. Macrophage markers in FNT-treated T2DM mice or human THP-1 cells were evaluated using flow cytometry, RT-qPCR, and Western blotting. The expression of PTP1B and STAT6 in mouse liver tissues and THP-1 cells was analyzed. Molecular docking predicted the interaction between PTP1B and STAT6, which was validated via co-immunoprecipitation (Co-IP) and phos-tag analysis. Microscale thermophoresis (MST) assessed the binding affinity of FNT to PTP1B. RESULTS: FNT treatment significantly ameliorated blood glucose levels, hepatocyte apoptosis, inflammatory response, and liver dysfunction in T2DM mice. Moreover, FNT facilitated M2 macrophage polarization in both T2DM mice and high glucose (HG)-induced THP-1-derived macrophages. The PTP1B/STAT6 axis, deregulated in T2DM mice, was normalized by FNT treatment, which counteracted the T2DM-induced upregulation of PTP1B and downregulation of phosphorylated STAT6. Molecular docking and subsequent analyses revealed that PTP1B binds to and dephosphorylates STAT6 at the S325A site. In contrast, FNT strongly binds to PTP1B and influences its expression at the K116A site, promoting M2 polarization of THP-1 cells via downregulation of PTP1B. CONCLUSION: Formononetin mitigates diabetic hepatic injury by fostering M2 macrophage polarization via the PTP1B/STAT6 axis.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Isoflavonas , Macrófagos , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT6/metabolismo , Estreptozocina , Células THP-1
19.
Biomed Pharmacother ; 178: 117184, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39142252

RESUMEN

BACKGROUND: A two-way relationship exists between type 2 diabetes (T2DM) and human nonalcoholic steatohepatitis (NASH). Several diabetic NASH models have the disadvantages of long cycles or inconsistent with the actual incidence of human disease, which would be costly and time-consuming to investigate disease pathogenesis and develop drugs. Therefore, there is an urgent need to establish a diabetic NASH mouse model. METHODS: The combination between Fructose-palmitate-cholesterol diet (FPC) and Streptozotocin (STZ) (FPC+STZ) was used to construct diabetic NASH mouse model. The in vivo effects of silencing acid-sensitive Ion Channel 1a (ASIC1a) were examined with an adeno-associated virus 9 (AAV9) carrying ASIC1a short hairpin RNA (shRNA) in FPC+STZ model. RESULTS: The mice fed with FPC for 12 weeks had insulin resistance, hyperinsulinemia, lipid accumulation, and increased hepatic levels of inflammatory factors. However, it still did not develop remarkable liver fibrosis. Most interestingly, noticeable fibrotic scars were observed in the liver of mice from FPC+STZ group. Furthermore, insulin therapy significantly ameliorated FPC+STZ-induced NASH-related liver fibrosis, indicating that hyperglycemia is of great significance in NASH development and progression. Importantly, ASIC1a was found to be involved in the pathogenesis of diabetic NASH as demonstrated that silencing ASIC1a in HSCs significantly ameliorated FPC+STZ-induced NASH fibrosis. Mechanistically, ASIC1a interacted with Poly Adp-adenosine ribose polymerase (PARP1) to promote HSC activation by inducing autophagy. CONCLUSION: A FPC diet combined with an injection of STZ induces a diabetic NASH mouse model in a shorter period. Targeting ASIC1a may provide a novel therapeutic target for the treatment of diabetic NASH.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Diabetes Mellitus Experimental , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Canales Iónicos Sensibles al Ácido/metabolismo , Canales Iónicos Sensibles al Ácido/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Fructosa , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Insulina/metabolismo , Resistencia a la Insulina , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estreptozocina
20.
Psychoneuroendocrinology ; 169: 107151, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39098101

RESUMEN

BACKGROUND: Depression is a multifaceted disorder that represents one of the most common causes of disability. The risk for developing depression is increased in women and among individuals with chronic diseases. For example, individuals in the United States with diabetes mellitus (DM) are at a twofold increased risk of developing depression compared to the general population and approximately one-quarter of women with diabetes have comorbid depression. The neurobiological mechanisms underlying this association between diabetes and depression is not fully understood and is particularly under-investigated in female models. We sought to explore the role of neuroinflammation in diabetes-induced depression in a female mouse model of hyperglycemia. METHODS: To this end, we utilized female C57BL/6 J mice to (1) characterize the depressive-like symptoms in response to 75 mg/kg/day dose of streptozotocin (STZ) over 5 days, a dose reported to induce hyperglycemia in female mice (n=20), (2) determine if female hyperglycemic mice are sensitized to unpredictable chronic mild stress (UCMS)-induced depressive-like behavior and neuroinflammation (n=28), and (3) investigate if female hyperglycemic mice are primed to respond to a subthreshold dose of lipopolysaccharide (LPS), an acute inflammatory challenge (n=21). RESULTS: Our results demonstrate that female mice exhibit robust hyperglycemia but limited evidence of depressive-like behavior in response to 75 mg/kg STZ. Additionally, we observe that healthy female mice have limited response to our stress protocol; however, hyperglycemic mice display increased stress-sensitivity as indicated by increased immobility in the forced swim test. While STZ mice show evidence of mild neuroinflammation, this effect was blunted by stress. Further, STZ mice failed to display a sensitization to inflammation-induced depressive-like behavior. CONCLUSION: We interpret this data to indicate that while STZ-induced hyperglycemia does increase vulnerability to stress-induced depressive-like behavior, this effect is not a consequence of neuroinflammatory priming. Future studies will seek to better understand the mechanisms underlying this sensitization.


Asunto(s)
Conducta Animal , Depresión , Diabetes Mellitus Experimental , Hiperglucemia , Inflamación , Ratones Endogámicos C57BL , Estrés Psicológico , Animales , Femenino , Hiperglucemia/metabolismo , Ratones , Depresión/metabolismo , Depresión/etiología , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Inflamación/metabolismo , Conducta Animal/fisiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/psicología , Modelos Animales de Enfermedad , Lipopolisacáridos/farmacología , Estreptozocina , Glucemia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA