Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
FEBS Lett ; 595(9): 1267-1274, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33576021

RESUMEN

Protein stability is subject to environmental perturbations such as pressure and crowding, as well as sticking to other macromolecules and quinary structure. Thus, the environment inside and outside the cell plays a key role in how proteins fold, interact, and function on the scale from a few molecules to macroscopic ensembles. This review discusses three aspects of protein phase diagrams: first, the relevance of phase diagrams to protein folding and function in vitro and in cells; next, how the evolution of protein surfaces impacts on interaction phase diagrams; and finally, how phase separation plays a role on much larger length-scales than individual proteins or oligomers, when liquid phase-separated regions form to assist protein function and cell homeostasis.


Asunto(s)
Sustancias Macromoleculares/ultraestructura , Pliegue de Proteína , Estructura Cuaternaria de Proteína/genética , Proteínas/ultraestructura , Humanos , Modelos Moleculares , Estabilidad Proteica , Proteínas/genética
2.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573298

RESUMEN

The oncogenic potential of high-risk human papillomavirus (HPV) is predicated on the production of the E6 and E7 oncoproteins, which are responsible for disrupting the control of the cell cycle. Epidemiological studies have proposed that the presence of the N29S and H51N variants of the HPV16 E7 protein is significantly associated with cervical cancer. It has been suggested that changes in the amino acid sequence of E7 variants may affect the oncoprotein 3D structure; however, this remains uncertain. An analysis of the structural differences of the HPV16 E7 protein and its variants (N29S and H51N) was performed through homology modeling and structural refinement by molecular dynamics simulation. We propose, for the first time, a 3D structure of the E7 reference protein and two of Its variants (N29S and H51N), and conclude that the mutations induced by the variants in N29S and H51N have a significant influence on the 3D structure of the E7 protein of HPV16, which could be related to the oncogenic capacity of this protein.


Asunto(s)
Papillomavirus Humano 16/genética , Proteínas E7 de Papillomavirus/genética , Secuencia de Aminoácidos/genética , Femenino , Variación Genética , Papillomavirus Humano 16/patogenicidad , Papillomavirus Humano 16/ultraestructura , Humanos , Simulación de Dinámica Molecular , Mutación , Proteínas E7 de Papillomavirus/ultraestructura , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología
3.
Endocrinology ; 161(8)2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32569368

RESUMEN

Ovarian-derived inhibin A and inhibin B (heterodimers of common α- and differing ß-subunits) are secreted throughout the menstrual cycle in a discordant pattern, with smaller follicles producing inhibin B, whereas the dominant follicle and corpus luteum produce inhibin A. The classical function for endocrine inhibins is to block signalling by activins (homodimers of ß-subunits) in gonadotrope cells of the anterior pituitary and, thereby, inhibit the synthesis of FSH. Whether inhibin A and inhibin B have additional physiological functions is unknown, primarily because producing sufficient quantities of purified inhibins, in the absence of contaminating activins, for preclinical studies has proven extremely difficult. Here, we describe novel methodology to enhance inhibin A and inhibin B activity and to produce these ligands free of contaminating activins. Using computational modeling and targeted mutagenesis, we identified a point mutation in the activin ß A-subunit, A347H, which completely disrupted activin dimerization and activity. Importantly, this ß A-subunit mutation had minimal effect on inhibin A bioactivity. Mutation of the corresponding residue in the inhibin ß B-subunit, G329E, similarly disrupted activin B synthesis/activity without affecting inhibin B production. Subsequently, we enhanced inhibin A potency by modifying the binding site for its co-receptor, betaglycan. Introducing a point mutation into the α-subunit (S344I) increased inhibin A potency ~12-fold. This study has identified a means to eliminate activin A/B interference during inhibin A/B production, and has facilitated the generation of potent inhibin A and inhibin B agonists for physiological exploration.


Asunto(s)
Inhibinas , Ingeniería de Proteínas/métodos , Femenino , Células HEK293 , Humanos , Inhibinas/genética , Inhibinas/aislamiento & purificación , Inhibinas/metabolismo , Inhibinas/farmacología , Proteínas de la Membrana , Modelos Moleculares , Mutagénesis/fisiología , Ovario/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/aislamiento & purificación , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Subunidades de Proteína/genética , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Subunidades de Proteína/farmacología , Proteínas de Saccharomyces cerevisiae , Transfección
4.
Nature ; 581(7809): 480-485, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461643

RESUMEN

Most proteins associate into multimeric complexes with specific architectures1,2, which often have functional properties such as cooperative ligand binding or allosteric regulation3. No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate haemoglobin, a heterotetramer of paralogous α- and ß-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern haemoglobin evolved from an ancient monomer and characterize the historical 'missing link' through which the modern tetramer evolved-a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct α- and ß-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favourable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity, because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein's structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures.


Asunto(s)
Evolución Molecular , Hemoglobinas/metabolismo , Regulación Alostérica , Sitios de Unión/genética , Hemo/metabolismo , Hemoglobinas/química , Humanos , Hierro/metabolismo , Modelos Moleculares , Oxígeno/metabolismo , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína/genética , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
5.
J Biol Chem ; 294(40): 14574-14590, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31375564

RESUMEN

Human tankyrase-1 (TNKS) is a member of the poly(ADP-ribose) polymerase (PARP) superfamily of proteins that posttranslationally modify themselves and target proteins with ADP-ribose (termed PARylation). The TNKS ankyrin repeat domain mediates interactions with a growing number of structurally and functionally diverse binding partners, linking TNKS activity to multiple critical cell processes, including Wnt signaling, Golgi trafficking, and telomere maintenance. However, some binding partners can engage TNKS without being modified, suggesting that separate parameters influence TNKS interaction and PARylation. Here, we present an analysis of the sequence and structural features governing TNKS interactions with two model binding partners: the PARylated partner telomeric repeat-binding factor 1 (TRF1) and the non-PARylated partner GDP-mannose 4,6-dehydratase (GMD). Using a combination of TNKS-binding assays, PARP activity assays, and analytical ultracentrifugation sedimentation analysis, we found that both the specific sequence of a given TNKS-binding peptide motif and the quaternary structure of individual binding partners play important roles in TNKS interactions. We demonstrate that GMD forms stable 1:1 complexes with the TNKS ankyrin repeat domain; yet, consistent with results from previous studies, we were unable to detect GMD modification. We also report in vitro evidence that TNKS primarily directs PAR modification to glutamate/aspartate residues. Our results suggest that TNKS-binding partners possess unique sequence and structural features that control binding and PARylation. Ultimately, our findings highlight the binding partner:ankyrin repeat domain interface as a viable target for inhibition of TNKS activity.


Asunto(s)
Hidroliasas/química , Complejos Multiproteicos/química , Estructura Cuaternaria de Proteína/genética , Tanquirasas/química , Proteínas de Unión a Telómeros/química , Adenosina Difosfato Ribosa/química , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Repetición de Anquirina/genética , Ácido Aspártico/genética , Sitios de Unión/genética , Ácido Glutámico/genética , Humanos , Hidroliasas/genética , Hidroliasas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Unión Proteica/genética , Homología de Secuencia de Aminoácido , Complejo Shelterina , Relación Estructura-Actividad , Tanquirasas/genética , Tanquirasas/metabolismo , Homeostasis del Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Vía de Señalización Wnt/genética
7.
Nat Commun ; 10(1): 2653, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201319

RESUMEN

Ribonucleotide reductases (RNRs) use a conserved radical-based mechanism to catalyze the conversion of ribonucleotides to deoxyribonucleotides. Within the RNR family, class Ib RNRs are notable for being largely restricted to bacteria, including many pathogens, and for lacking an evolutionarily mobile ATP-cone domain that allosterically controls overall activity. In this study, we report the emergence of a distinct and unexpected mechanism of activity regulation in the sole RNR of the model organism Bacillus subtilis. Using a hypothesis-driven structural approach that combines the strengths of small-angle X-ray scattering (SAXS), crystallography, and cryo-electron microscopy (cryo-EM), we describe the reversible interconversion of six unique structures, including a flexible active tetramer and two inhibited helical filaments. These structures reveal the conformational gymnastics necessary for RNR activity and the molecular basis for its control via an evolutionarily convergent form of allostery.


Asunto(s)
Sitio Alostérico/genética , Proteínas Bacterianas/genética , Ribonucleótido Reductasas/genética , Regulación Alostérica/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Evolución Molecular , Modelos Moleculares , Estructura Cuaternaria de Proteína/genética , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Ribonucleótido Reductasas/ultraestructura , Ribonucleótidos/metabolismo , Dispersión del Ángulo Pequeño
8.
Nat Commun ; 10(1): 2399, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160585

RESUMEN

Manganese superoxide dismutase (MnSOD) functions as a tumor suppressor; however, once tumorigenesis occurs, clinical data suggest MnSOD levels correlate with more aggressive human tumors, implying a potential dual function of MnSOD in the regulation of metabolism. Here we show, using in vitro transformation and xenograft growth assays that the MnSOD-K68 acetylation (Ac) mimic mutant (MnSODK68Q) functions as a tumor promoter. Interestingly, in various breast cancer and primary cell types the expression of MnSODK68Q is accompanied with a change of MnSOD's stoichiometry from a known homotetramer complex to a monomeric form. Biochemical experiments using the MnSOD-K68Q Ac-mimic, or physically K68-Ac (MnSOD-K68-Ac), suggest that these monomers function as a peroxidase, distinct from the established MnSOD superoxide dismutase activity. MnSODK68Q expressing cells exhibit resistance to tamoxifen (Tam) and cells selected for Tam resistance exhibited increased K68-Ac and monomeric MnSOD. These results suggest a MnSOD-K68-Ac metabolic pathway for Tam resistance, carcinogenesis and tumor progression.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Resistencia a Antineoplásicos/genética , Superóxido Dismutasa/genética , Acetilación , Animales , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Técnicas In Vitro , Lisina/metabolismo , Células MCF-7 , Ratones , Mutación , Trasplante de Neoplasias , Peroxidasa/metabolismo , Estructura Cuaternaria de Proteína/genética , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Tamoxifeno/uso terapéutico , Proteínas Supresoras de Tumor
9.
PLoS Comput Biol ; 15(6): e1006886, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31158218

RESUMEN

The self-assembly of proteins into protein quaternary structures is of fundamental importance to many biological processes, and protein misassembly is responsible for a wide range of proteopathic diseases. In recent years, abstract lattice models of protein self-assembly have been used to simulate the evolution and assembly of protein quaternary structure, and to provide a tractable way to study the genotype-phenotype map of such systems. Here we generalize these models by representing the interfaces as mutable binary strings. This simple change enables us to model the evolution of interface strengths, interface symmetry, and deterministic assembly pathways. Using the generalized model we are able to reproduce two important results established for real protein complexes: The first is that protein assembly pathways are under evolutionary selection to minimize misassembly. The second is that the assembly pathway of a complex mirrors its evolutionary history, and that both can be derived from the relative strengths of interfaces. These results demonstrate that the generalized lattice model offers a powerful new idealized framework to facilitate the study of protein self-assembly processes and their evolution.


Asunto(s)
Evolución Molecular , Estructura Cuaternaria de Proteína , Proteínas , Algoritmos , Biología Computacional , Unión Proteica , Estructura Cuaternaria de Proteína/genética , Estructura Cuaternaria de Proteína/fisiología , Proteínas/química , Proteínas/genética
10.
J Struct Biol ; 207(2): 183-198, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31112746

RESUMEN

Analyses of the hydropathic environments of protein amino acid residues reveal structural information on multiple levels. The interactions made by each residue are the basis for sidechain (rotamer) conformation and ultimately for secondary, tertiary and even quaternary protein structure. By identifying and characterizing the interactions for each residue type, we are developing a basis set of environmental data that can be used to understand protein structure. This work focuses alanine and its roles. We calculated and analyzed separately backbone-to-environment and sidechain-to-environment 3D maps for over 57,000 alanines that, with respect to hydrophobic and polar interactions, show the environment around each. After binning by backbone ϕ and ψ angles, we clustered each bin with k-means based on calculated map similarities between map-map pairs. Four bins were examined in detail: one in the ß-pleat region, two in the right-hand α-helix (RHα) region and one in the left-hand α-helix region of the Ramachandran plot. All regions indicated a common map motif of hydrophobic-hydrophobic interactions along the CA-CB axis, accounting for 62% in the ß-pleat bin, about one-third in the two RHα bins and 42% in the LHα bin. Another shared motif shows no interactions along the CA-CB axis; this was uncommon (8%) in ß-pleat, but >30% elsewhere. The maps calculated for the two RHα bins are extremely similar (pairwise >0.9787), which suggests that the hydropathic interaction sets or motifs found around each residue are conserved. Altogether, these results are integral to a new paradigm for understanding protein structure and function.


Asunto(s)
Alanina/química , Aminoácidos/química , Conformación Proteica en Hélice alfa , Conformación Proteica , Alanina/genética , Secuencias de Aminoácidos/genética , Aminoácidos/genética , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Conformación Proteica en Lámina beta/genética , Estructura Cuaternaria de Proteína/genética , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética
11.
PLoS One ; 14(3): e0212888, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30889178

RESUMEN

TRIM5α is an interferon inducible restriction factor which contributes to intrinsic defense against HIV infection by targeting the HIV capsid protein CA. Although human TRIM5α (huTRIM5α) does not potently inhibit HIV-1 infection, the ability of huTRIM5α to exhibit some control of HIV-1 infection is evidenced by a single nucleotide polymorphism in huTRIM5α which substitutes aspartic acid to glycine at position 249 (G249D) in the L2 region and is associated with higher susceptibility to HIV-1 infection. To understand the mechanistic basis for the reduced antiviral activity, we employed biophysical and cell biological methods coupled with molecular dynamics simulations to compare WT and the G249D polymorphism of huTRIM5α. We investigated the differences in conformational dynamics of rhesus and huTRIM5α Coiled Coil-Linker 2 (CC-L2) dimers utilizing circular dichroism and single molecule-Fluorescence Energy Transfer (sm-FRET). These methods revealed that the G249D dimer exhibits secondary structure and conformational dynamics similar to WT huTRIM5α. Homology modelling revealed that G249 was present on the hairpin of the antiparallel dimer, in a position which may act to stabilize the adjacent BBox2 domain which mediates the inter-dimeric contacts required for the formation of TRIM5 assemblies. We therefore asked if the G249D mutant forms assemblies in cells with the same efficiency as WT protein by expressing these proteins as YFP fusions and quantifying the number of assemblies in cells. In cells expressing comparable amounts of protein, the G249D mutant formed fewer assemblies than WT protein, in agreement with our homology modeling predictions and molecular dynamics simulations of dimers and higher oligomers of TRIM5α, providing a mechanistic explanation of the reduced antiviral activity of the G249D polymorphism.


Asunto(s)
Proteínas Portadoras/genética , Infecciones por VIH/genética , VIH-1/inmunología , Animales , Factores de Restricción Antivirales , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Gatos , Predisposición Genética a la Enfermedad , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Simulación de Dinámica Molecular , Polimorfismo de Nucleótido Simple , Conformación Proteica en Hélice alfa/genética , Dominios Proteicos/genética , Estructura Cuaternaria de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas
12.
Mutat Res ; 814: 1-6, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30648609

RESUMEN

HNF4α is a culprit gene product for a monogenic and dominantly-inherited form of diabetes, referred to as MODY1 (Maturity Onset Diabetes of the Young type 1). Reduced HNF4α activities have been linked to impaired insulin secretion and ß-cell function. Numerous mutations have been identified from the patients and they have been instructive as to the individual residue's role in protein structure-function and dysfunction. As a member of the nuclear receptor (NR) superfamily, HNF4α is made of characteristic modular domains and it functions exclusively as a homodimer despite its sequence homology to RXR, a common heterodimer partner of non-steroidal NRs. Transcription factors commonly dimerize to enhance their molecular functions mainly by facilitating the recognition of double helix target DNAs that display an intrinsic pseudo-2-fold symmetry and the recruitment of the remainder of the main transcriptional machinery. HNF4α is no exception and its dimerization is maintained by the ligand binding domain (LBD) mainly through the leucine-zipper-like interactions at the stalk of two interacting helices. Although many MODY1 mutations have been previously characterized, including DNA binding disruptors, ligand binding disruptors, coactivator binding disruptors, and protein stability disruptors, protein dimerization disruptors have not been formally reported. In this report, we present a set of data for the two MODY1 mutations found right at the dimerization interface (L332 P and L328del mutations) which clearly exhibit the disruptive effects of directly affecting dimerization, protein stability, and transcriptional activities. These data reinforced the fact that MODY mutations are loss-of-function mutations and HNF4α dimerization is essential for its optimal function and normal physiology.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína , Dimerización , Células HeLa , Factor Nuclear 4 del Hepatocito/química , Humanos , Mutación con Pérdida de Función/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Multimerización de Proteína/genética , Estabilidad Proteica , Estructura Cuaternaria de Proteína/genética , Activación Transcripcional/genética
13.
FEBS Lett ; 592(15): 2647-2657, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29972886

RESUMEN

Sortilin is a multifunctional sorting receptor involved in cytokine production in immune cells. To understand the mechanism of Sortilin-mediated cytokine trafficking, we determined the 2.45-Å structure of the dimerized Sortilin ectodomain (sSortilin or the Vps10-domain) crystallized at acidic pH. Substantial conformational changes upon dimerization lead to the intermolecular hydrophobic interaction between the conserved E455 and F137. Analysis of the electrostatic surface and size-exclusion chromatography revealed that sSortilin dimerization occurs due to an increase in hydrophobic interactions at the neutral dimer interface at acidic pH. The N682-attached N-glycan in the vicinity of the dimer interface implies its involvement in the dimerization. The disruption of Sortilin dimerization by mutations impairs efficient interferon-alpha secretion from cells. These results suggest the functional importance of Sortilin dimerization in cytokine trafficking.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Ácidos/farmacología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , Humanos , Concentración de Iones de Hidrógeno , Interferón-alfa/metabolismo , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/efectos de los fármacos , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína/genética , Transporte de Proteínas/genética
14.
J Biol Chem ; 293(26): 10404-10412, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29700111

RESUMEN

Ribonucleotide reductases (RNRs) convert ribonucleotides to deoxynucleotides, a process essential for DNA biosynthesis and repair. Class Ia RNRs require two dimeric subunits for activity: an α2 subunit that houses the active site and allosteric regulatory sites and a ß2 subunit that houses the diferric tyrosyl radical cofactor. Ribonucleotide reduction requires that both subunits form a compact α2ß2 state allowing for radical transfer from ß2 to α2 RNR activity is regulated allosterically by dATP, which inhibits RNR, and by ATP, which restores activity. For the well-studied Escherichia coli class Ia RNR, dATP binding to an allosteric site on α promotes formation of an α4ß4 ring-like state. Here, we investigate whether the α4ß4 formation causes or results from RNR inhibition. We demonstrate that substitutions at the α-ß interface (S37D/S39A-α2, S39R-α2, S39F-α2, E42K-α2, or L43Q-α2) that disrupt the α4ß4 oligomer abrogate dATP-mediated inhibition, consistent with the idea that α4ß4 formation is required for dATP's allosteric inhibition of RNR. Our results further reveal that the α-ß interface in the inhibited state is highly sensitive to manipulation, with a single substitution interfering with complex formation. We also discover that residues at the α-ß interface whose substitution has previously been shown to cause a mutator phenotype in Escherichia coli (i.e. S39F-α2 or E42K-α2) are impaired only in their activity regulation, thus linking this phenotype with the inability to allosterically down-regulate RNR. Whereas the cytotoxicity of RNR inhibition is well-established, these data emphasize the importance of down-regulation of RNR activity.


Asunto(s)
Sustitución de Aminoácidos , Escherichia coli/enzimología , Multimerización de Proteína/genética , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/genética , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Nucleótidos de Desoxiadenina/farmacología , Modelos Moleculares , Estructura Cuaternaria de Proteína/genética , Ribonucleótido Reductasas/química
15.
Biol Aujourdhui ; 211(3): 223-228, 2017.
Artículo en Francés | MEDLINE | ID: mdl-29412132

RESUMEN

In recent years, the comparison of protein interactomes has identified conserved modules, that could represent functional nuclei with a common ancestry. Within this context, recent analyses of protein-protein interacting networks have led to a debate on the influence of the experimental method on the quality and biological pertinence of these data. It is crucial to understand the measure in which divergence between networks of different species reflect sampling biases in respective experimental methods, as opposed to topological features dictated by biological functionality. This aspect requires novel, precise and practical mathematical tools, to quantify and compare high resolution networks. To this end, we have studied the relationship between pools of aleatory graphs and real biological signalization networks, while stressing the number of graph cycles in the networks, which represent complexes in experimental protein interactomes. By combining methods for graph and algorithm dynamics to count the loops, we evaluate the relative importance of the loops in biological networks in comparison with network analyses.


Asunto(s)
Enfermedad/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Mapas de Interacción de Proteínas/fisiología , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Algoritmos , Animales , Bases de Datos de Proteínas , Humanos , Mutación/fisiología , Polimorfismo de Nucleótido Simple/fisiología , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/genética , Estructura Cuaternaria de Proteína/genética , Proteoma/análisis
16.
Nat Commun ; 7: 12621, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581526

RESUMEN

The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes.


Asunto(s)
ADN/genética , Receptores de Glucocorticoides , Secuencia de Bases , Sitios de Unión/genética , Línea Celular Tumoral , Humanos , Dominios Proteicos/genética , Estructura Cuaternaria de Proteína/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/ultraestructura , Factores de Transcripción/genética
17.
Biochemistry ; 55(10): 1503-15, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26886069

RESUMEN

The ferric uptake regulator (Fur) belongs to the family of the DNA-binding metal-responsive transcriptional regulators. Fur is a global regulator found in all proteobacteria. It controls the transcription of a wide variety of genes involved in iron metabolism but also in oxidative stress or virulence factor synthesis. When bound to ferrous iron, Fur can bind to specific DNA sequences, called Fur boxes. This binding triggers the repression or the activation of gene expression, depending on the regulated genes. As a general view, Fur proteins are considered to be dimeric proteins both in solution and when bound to DNA. In this study, we have purified Fur from four pathogenic strains (Pseudomonas aeruginosa, Francisella tularensis, Yersinia pestis, and Legionella pneumophila) and compared them to Fur from Escherichia coli (EcFur), the best characterized of this family. By using a series of "in solution" techniques, including multiangle laser light scattering and small-angle X-ray scattering, as well as cross-linking experiments, we have shown that the Fur proteins can be classified into two groups, according to their quaternary structure. The group of dimers is represented by EcFur and YpFur and the group of very stable tetramers by PaFur, FtFur, and LpFur. Using PaFur as a case study, we also showed that the dissociation of the tetramers into dimers is necessary for binding of Fur to DNA, and that this dissociation requires the combined effect of metal ion binding and DNA proximity.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estructura Cuaternaria de Proteína/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Secuencia de Aminoácidos , ADN Bacteriano/química , ADN Bacteriano/genética , Escherichia coli/genética , Francisella tularensis/genética , Legionella pneumophila/genética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/genética , Yersinia/genética
18.
J Struct Biol ; 192(3): 336-341, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26410384

RESUMEN

Nucleoside diphosphate kinase (NDK) is a housekeeping enzyme that plays key roles in nucleotide recycling and homeostasis in trypanosomatids. Moreover, it is secreted by the intracellular parasite Leishmania to modulate the host response. These functions make NDK an attractive target for drug design and for studies aiming at a better understanding of the mechanisms mediating host-pathogen interactions. Here, we report the crystal structures of three mutants of the NDK from Leishmania major (LmNDK) that affects the stability of the hexameric biological assembly including P95S, Δ5Ct (lacking the last five residues) and the double mutant P100S/Δ5Ct. Although P95S and Δ5Ct variants conserve the hexameric structure of the wild-type protein, the double mutant becomes a dimer as shown by in solution studies. Free energy calculation of dimer-dimer interfaces and enzymatic assays indicate that P95S, Δ5Ct and P100S/Δ5Ct mutations progressively decrease the hexamer stability and enzyme activity. These results demonstrate that the mutated regions play a role in protein function through stabilizing the quaternary arrangement.


Asunto(s)
Leishmania major/enzimología , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/ultraestructura , Estructura Cuaternaria de Proteína/genética , Secuencia de Aminoácidos , Cristalografía por Rayos X , Interacciones Huésped-Patógeno , Modelos Moleculares
19.
Nat Commun ; 6: 7314, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26076669

RESUMEN

ß-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , Animales , Ensayo de Inmunoadsorción Enzimática , Humanos , Immunoblotting , Inmunohistoquímica , Células Madre Pluripotentes Inducidas , Ratones , Mutación Missense , Enfermedad de Parkinson/metabolismo , Estructura Cuaternaria de Proteína/genética , Ratas , Ratas Sprague-Dawley , alfa-Sinucleína/metabolismo
20.
Hum Genet ; 134(4): 405-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25616435

RESUMEN

Variations in proteins have very large number of diverse effects affecting sequence, structure, stability, interactions, activity, abundance and other properties. Although protein-coding exons cover just over 1 % of the human genome they harbor an disproportionately large portion of disease-causing variants. Variation ontology (VariO) has been developed for annotation and description of variation effects, mechanisms and consequences. A holistic view for variations in proteins is made available along with examples of real cases. Protein variants can be of genetic origin or emerge at protein level. Systematic names are provided for all variation types, a more detailed description can be made by explaining changes to protein function, structure and properties. Examples are provided for the effects and mechanisms, usually in relation to human diseases. In addition, the examples are selected so that protein 3D structural changes, when relevant, are included and visualized. Here, systematics is described for protein variants based on VariO. It will benefit the unequivocal description of variations and their effects and further reuse and integration of data from different sources.


Asunto(s)
Ontología de Genes , Variación Genética , Proteínas , Secuencia de Aminoácidos/genética , Animales , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Pliegue de Proteína , Procesamiento Proteico-Postraduccional/genética , Estructura Cuaternaria de Proteína/genética , Estructura Secundaria de Proteína/genética , Proteínas/química , Proteínas/genética , Proteínas/fisiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...