Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Struct Biol ; 216(2): 108090, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38548139

RESUMEN

Ethionamide (ETO) is a prodrug that is primarily used as a second-line agent in the treatment of tuberculosis. Among the bacterial ETO activators, the monooxygenase MymA has been recently identified, and its expression is regulated by the mycobacterial regulator VirS. The discovery of VirS ligands that can enhance mymA expression and thereby increase the antimycobacterial efficacy of ETO, has led to the development of a novel therapeutic strategy against tuberculosis. This strategy involves the selection of preclinical candidates, including SMARt751. We report the first crystal structure of the AraC-like regulator VirS, in complex with SMARt751, refined at 1.69 Å resolution. Crystals were obtained via an in situ proteolysis method in the requisite presence of SMARt751. The elucidated structure corresponds to the ligand-binding domain of VirS, adopting an α/ß fold with structural similarities to H-NOX domains. Within the VirS structure, SMARt751 is situated in a completely enclosed hydrophobic cavity, where it forms hydrogen bonds with Asn11 and Asn149 as well as van der Waals contacts with various hydrophobic amino acids. Comprehensive structural comparisons within the AraC family of transcriptional regulators are conducted and analyzed to figure out the effects of the SMARt751 binding on the regulatory activity of VirS.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Etionamida/metabolismo , Etionamida/química , Sitios de Unión , Unión Proteica , Ligandos
2.
Comput Biol Chem ; 98: 107677, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35397466

RESUMEN

EthA is an NADPH-specific flavin adenine dinucleotide (FAD) containing monooxygenase that activates the -second-line drug ethionamide (ETH). ETH gets converted to an active form after interaction with the EthA (monooxygenase) protein. Upon activation, ETH interacts with NAD+ to form an ETH-NAD adduct, which hampers the activity of InhA (Enoyl-[(acyl-carrier-protein) reductase (NADH)]. This, in turn, inhibits the cell wall synthesis, thus killing the Mycobacterium tuberculosis (Mtb). Mutations in the EthA gene can modulate ETH activation. The mutation at 202 position (Val202-Leu) of EthA protein has been reported frequently in ETH resistance. In this study, the effect of this mutation on the function of the EthA protein was examined through structural and functional analysis. Molecular docking of wild type and mutated EthA protein with ETH were compared to inspect the effect of mutation on molecular mechanism of drug resistant. Docking results corroborated that the lower docking score of the mutant protein, larger binding cavity, and lower affinity towards ETH resulted in a less compact and energetically less stable structure than the wild type protein. The computational outcome was authenticated by in-vitro experiments. The wild type and mutated genes were cloned and expressed in M. smegmatis, a surrogate host. Antibiotic susceptibility testing demonstrated that the mutant showed high growth and survival in the presence of the ETH drug. Overall, the results indicated that a mutation in the intergenic region of EthA protein could result in the altered conversion of ETH to the active form, resulting in differential ETH sensitivity for M. smegmatis carrying the wild type and mutant gene.


Asunto(s)
Etionamida , Mycobacterium tuberculosis , Antituberculosos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tolerancia a Medicamentos , Etionamida/metabolismo , Etionamida/farmacología , Oxigenasas de Función Mixta/genética , Simulación del Acoplamiento Molecular , Mutación , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo
3.
Proteins ; 90(5): 1142-1151, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34981576

RESUMEN

Tuberculosis is an ancient disease of mankind, and its causative bacterium is Mycobacterium tuberculosis. Isoniazid is one of the most effective first-line antituberculosis drugs. As prodrugs, it and its derivative ethionamide act on enoyl-acyl carrier protein reductase (InhA) after being oxidized in bacteria, and kill the bacteria by inhibiting the formation of M. tuberculosis cell walls. However, the S94A mutation of InhA causes M. tuberculosis to develop cross-resistance to isoniazid and ethionamide. This work is dedicated to studying the cross-resistance mechanism of isoniazid and ethionamide through theoretical calculations. First, thermodynamic integral simulations are used to accurately calculate the relative binding energy of two drugs in the mutant and wild-type system. Furthermore, through classic molecular dynamic simulations and molecular mechanics generalized-Born surface area calculation, some key residues are identified and the binding affinity of isoniazid and ethionamide reduced by 9-13 kcal/mol due to S94A mutation. The hydrogen bond between Ala94 and isoniazid (ethionamide) disappeared and the energy contribution of Ala94 decreased after the mutation. In addition, the dynamic network analysis indicated that the mutation of Ser94 also indirectly affected the conformation of key residues such as Met147, Thr196, and Leu97, resulting in a reduction in the energy contribution of these residues. Finally, the binding conformation of isoniazid and ethionamide has also undergone major changes. The obtained results could provide valuable information for the future molecular design to overcome the drug resistance.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Proteínas Bacterianas/química , Etionamida/metabolismo , Etionamida/farmacología , Humanos , Isoniazida/metabolismo , Isoniazida/farmacología , Simulación de Dinámica Molecular , Mutación , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas/metabolismo , Termodinámica
4.
Phys Chem Chem Phys ; 23(40): 23233-23241, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34623361

RESUMEN

Ethionamide (ETH) is a high-profile drug for the treatment of patients with multidrug-resistant Mycobacterium tuberculosis and, in order to produce its inhibitory effects, it needs to be bioactivated by monooxygenase EthA. This process is under the control of the transcriptional repressors EthR and EthR2, so that their inhibition results in the boosting of ethionamide activation. Herein, through crystallographic data and computer simulations, we calculated the interaction binding energies of four inhibitors with improved in vitro potency, namely BDM76060 (PDB ID: 6HS1), BDM72201 (PDB ID: 6HRX), BDM76150 (PDB ID: 6HS2) and BDM72719 (PDB ID: 6HRY), in complexes with the transcriptional repressor EthR2, using density functional theory (DFT) within the molecular fractionation with conjugated caps (MFCC) approach. It was observed that these ligands share the same binding site within a 10.0 Å radius of the EthR2 protein; however, their structural particularities have a significant impact on the global energies of systems. The BDM72201 and BDM72719 components are weakly attached to the binding site, while BDM76060 and BDM76150 components produce stronger bonds, corroborating with experimental studies demonstrating that BDM76060 and BDM76150 are more successful in producing inhibitory effects. BDM76060 and BDM76150 have many functional groups that increase the contact surface with the protein and attract a more significant number of amino acid residues, being able to produce polarities that generate stronger interactions. In the current scenario of a growing number of cases of bacterial resistance, the obtained data can be used to guide clinical trials of these inhibitors and other inhibitors that act on the alternative EthR2 pathway, focusing on improving the activity of ethionamide, its effectiveness, a reduction in the treatment time and exposure to cytotoxic effects.


Asunto(s)
Antituberculosos/química , Etionamida/química , Proteínas Represoras/química , Antituberculosos/metabolismo , Antituberculosos/uso terapéutico , Sitios de Unión , Teoría Funcional de la Densidad , Etionamida/metabolismo , Etionamida/uso terapéutico , Humanos , Ligandos , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/metabolismo , Proteínas Represoras/metabolismo , Tuberculosis/tratamiento farmacológico
5.
Chem Res Toxicol ; 34(8): 1879-1889, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34319702

RESUMEN

A chemical activation study of the thiocarbonyl-type antitubercular prodrugs, ethionamide (ETH), thioacetazone (TAZ), and isoxyl (ISO), was performed. Biomimetic oxidation of ethionamide using H2O2 (1 equiv) led to ETH-SO as the only stable S-oxide compound, which was found to occur in solution in the preferential form of a sulfine (ETH═S═O vs the sulfenic acid tautomer ETH-S-OH), as previously observed in the crystal state. It was also demonstrated that ETH-SO is capable of reacting with amines, as the putative sulfinic derivative (ETH-SO2H) was supposed to do. Unlike ETH, oxidation of TAZ did not allow observation of the mono-oxygenated species (TAZ-SO), leading directly to the more stable sulfinic acid derivative (TAZ-SO2H), which can then lose a SOxH group after further oxidation or when placed in a basic medium. It was also noticed that the unstable TAZ-SO intermediate can lead to the carbodiimide derivative as another electrophilic species. It is suggested that TAZ-SOH, TAZ-SO2H, and the carbodiimide compound can also react with NH2-containing nucleophilic species, and therefore be involved in toxic effects. Finally, ISO showed a very complex reactivity, here assigned to the coexistence of two mono-oxygenated structures, the sulfine and sulfenic acid tautomers. The mono- and dioxygenated derivatives of ISO are also highly unstable, leading to a panel of multiple metabolites, which are still reactive and likely contribute to the toxicity of this prodrug.


Asunto(s)
Antituberculosos/metabolismo , Etionamida/metabolismo , Feniltiourea/análogos & derivados , Profármacos/metabolismo , Tioacetazona/metabolismo , Antituberculosos/química , Etionamida/química , Peróxido de Hidrógeno/metabolismo , Modelos Moleculares , Oxidación-Reducción , Feniltiourea/química , Feniltiourea/metabolismo , Profármacos/química , Tioacetazona/química
6.
Eur J Med Chem ; 167: 426-438, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30784877

RESUMEN

Tuberculosis (TB) caused by the pathogen Mycobacterium tuberculosis, represents one of the most challenging threat to public health worldwide, and with the increasing resistance to approved TB drugs, it is needed to develop new strategies to address this issue. Ethionamide is one of the most widely used drugs for the treatment of multidrug-resistant TB. It is a prodrug that requires activation by mycobacterial monooxygenases to inhibit the enoyl-ACP reductase InhA, which is involved in mycolic acid biosynthesis. Very recently, we identified that inhibition of a transcriptional repressor, termed EthR2, derepresses a new bioactivation pathway that results in the boosting of ethionamide activation. Herein, we describe the identification of potent EthR2 inhibitors using fragment-based screening and structure-based optimization. A target-based screening of a fragment library using thermal shift assay followed by X-ray crystallography identified 5 hits. Rapid optimization of the tropinone chemical series led to compounds with improved in vitro potency.


Asunto(s)
Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Tropanos/farmacología , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Etionamida/metabolismo , Humanos , Mycobacterium tuberculosis/química , Tropanos/síntesis química
7.
Drug Metab Dispos ; 46(8): 1091-1095, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777023

RESUMEN

Ethionamide (ETH) plays a central role in the treatment of tuberculosis in patients resistant to the first-line drugs. The ETH, thioamide, and thiourea class of antituberculosis agents are prodrugs that are oxidatively converted to their active S-oxides by the mycobacterial flavin-dependent monooxygenase (EtaA) of Mycobacterium tuberculosis, thus initiating the chain of reactions that result in inhibition of mycolic acid biosynthesis and cell lysis. As part of a search for new lead candidates, we report here that several xanthates are oxidized by purified EtaA to S-oxide metabolites (perxanthates), which are implicated in the antimycobacterial activity of these compounds. This process, which is analogous to that responsible for activation of ETH, is also catalyzed by human flavoprotein monooxygenase 3. EtaA was not inhibited in a time-dependent manner during the reaction. Xanthates with longer alkyl chains were oxidized more efficiently. EtaA oxidized octyl-xanthate (Km = 5 µM; Vmax = 1.023 nmolP/min; kcat = 5.2 molP/min/molE) more efficiently than ETH (194 µM; 1.46 nmolP/min; 7.73 nmolP/min/molE, respectively). Furthermore, the in vitro antimycobacterial activity of four xanthates against M. tuberculosis H37Hv was higher (minimum inhibitory concentration of around 1 µM) than that of ETH (12 µM).


Asunto(s)
Antibacterianos/metabolismo , Antituberculosos/metabolismo , Etionamida/metabolismo , Flavoproteínas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Antibacterianos/farmacología , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Etionamida/farmacología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción/efectos de los fármacos , Oxigenasas/metabolismo , Profármacos/metabolismo , Profármacos/farmacología
9.
Science ; 355(6330): 1206-1211, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28302858

RESUMEN

Antibiotic resistance is one of the biggest threats to human health globally. Alarmingly, multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis have now spread worldwide. Some key antituberculosis antibiotics are prodrugs, for which resistance mechanisms are mainly driven by mutations in the bacterial enzymatic pathway required for their bioactivation. We have developed drug-like molecules that activate a cryptic alternative bioactivation pathway of ethionamide in M. tuberculosis, circumventing the classic activation pathway in which resistance mutations have now been observed. The first-of-its-kind molecule, named SMARt-420 (Small Molecule Aborting Resistance), not only fully reverses ethionamide-acquired resistance and clears ethionamide-resistant infection in mice, it also increases the basal sensitivity of bacteria to ethionamide.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Etionamida/metabolismo , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Isoxazoles/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Compuestos de Espiro/farmacología , Animales , ADN/metabolismo , Etionamida/farmacología , Humanos , Ratones , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxadiazoles/farmacología , Piperidinas/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo
10.
Chem Commun (Camb) ; 53(25): 3527-3530, 2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-28287239

RESUMEN

EthR is a transcriptional repressor that increases Mycobacterium tuberculosis resistance to ethionamide. In this study, the EthR-DNA interaction has been investigated by native electrospray-ionization mass spectrometry for the first time. The results show that up to six subunits of EthR are able to bind to its operator.


Asunto(s)
ADN Bacteriano/metabolismo , Etionamida/metabolismo , Calorimetría , ADN Bacteriano/química , Farmacorresistencia Bacteriana , Etionamida/química , Mycobacterium tuberculosis/genética , Espectrometría de Masa por Ionización de Electrospray , Termodinámica
11.
Org Biomol Chem ; 14(37): 8848-8858, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27714216

RESUMEN

Ethionamide (ETH), a second-line anti-tubercular drug that is regaining a lot of interest due to the increasing cases of drug-resistant tuberculosis, is a pro-drug that requires an enzymatic activation step to become active and to exert its therapeutic effect. The enzyme responsible for ETH bioactivation in Mycobacterium tuberculosis is a monooxygenase (EthA) that uses flavin adenine dinucleotide (FAD) as a cofactor and is NADPH- and O2-dependant to exert its catalytic activity. In this work, we investigated the activation of ETH by various oxygen-donor oxidants and the first biomimetic ETH activation methods were developed (KHSO5, H2O2, and m-CPBA). These simple oxidative systems, in the presence of ETH and NAD+, allowed the production of short-lived radical species and the first non-enzymatic formation of active and non-active ETH metabolites. The intermediates and the final compounds of the activation pathway were well characterized. Based on these results, we postulated a consistent mechanism for ETH activation, not involving sulfinic acid as a precursor of the iminoyl radical, as proposed so far, but putting forward a novel reactivity for the S-oxide ethionamide intermediate. We proposed that ETH is first oxidized into S-oxide ethionamide, which then behaves as a "ketene-like" compound via a formal [2 + 2] cycloaddition reaction with peroxide to give a dioxetane intermediate. This unstable 4-membered intermediate in equilibrium with its open tautomeric form decomposes through different pathways, which would explain the formation of the iminoyl radical and also that of different metabolites observed for ETH oxidation, including the ETH-NAD active adduct. The elucidation of this unprecedented ETH activation mechanism was supported by the application of isotopic labelling experiments.


Asunto(s)
Antituberculosos/metabolismo , Etionamida/metabolismo , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/metabolismo , Profármacos/metabolismo , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Biomimética , Etionamida/farmacología , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Oxidantes/metabolismo , Profármacos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
12.
Biochim Biophys Acta ; 1864(9): 1177-1187, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27344049

RESUMEN

BACKGROUND: Ar-BVMO is a recently discovered Baeyer-Villiger monooxygenase from the genome of Acinetobacter radioresistens S13 closely related to medically relevant ethionamide monooxygenase EtaA (prodrug activator) and capable of inactivating the imipenem antibiotic. METHODS: The co-substrate preference as well as steady-state and rapid kinetics studies of the recombinant purified protein were carried out using stopped-flow spectroscopy under anaerobic and aerobic conditions. Kd values were measured by isothermal calorimetry. Enzymatic activity was determined by measuring the amount of product formed using high pressure liquid chromatography or gas chromatography. Site-directed mutagenesis experiments were performed to decipher the role of the active site arginine-292. RESULTS: Ar-BVMO was found to oxidize ethionamide as well as linear ketones. Mechanistic studies on the wild type enzyme using stopped-flow spectroscopy allowed for the detection of the characteristic oxygenating C4a-(hydro)peroxyflavin intermediate, which decayed rapidly in the presence of the substrate. Replacement of arginine 292 in Ar-BVMO by glycine or alanine resulted in greatly reduced or no Baeyer-Villiger activity, respectively, demonstrating the crucial role of this residue in catalysis of ketone substrates. However, both the R292A and R292G mutants are capable of carrying out N- and S-oxidation reactions. CONCLUSIONS: Substrate profiling of Ar-BVMO confirms its close relationship to EtaA; ethionamide is one of its substrates. The active site Arginine 292 is required for its Baeyer-Villiger activity but not for heteroatom oxidation. GENERAL SIGNIFICANCE: A single mutation converts Ar-BVMO to a unique S- or N-monooxygenase, a useful biocatalyst for the production of oxidized metabolites of human drug metabolizing enzymes.


Asunto(s)
Acinetobacter/enzimología , Proteínas Bacterianas/química , Etionamida/química , Flavinas/química , Cetonas/química , Oxigenasas de Función Mixta/química , Microbiología del Suelo , Acinetobacter/genética , Alanina/química , Alanina/metabolismo , Secuencia de Aminoácidos , Arginina/química , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Etionamida/metabolismo , Flavinas/metabolismo , Expresión Génica , Glicina/química , Glicina/metabolismo , Cetonas/metabolismo , Cinética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
13.
Biomédica (Bogotá) ; 35(4): 541-548, oct.-dic. 2015. ilus, tab
Artículo en Español | LILACS | ID: lil-768084

RESUMEN

Introducción. Una parte de los aislamientos de Mycobacterium tuberculosis multirresistente también presenta resistencia a la etionamida. Es importante determinar si la resistencia a la isoniacida es independiente o se cruza con la resistencia a la etionamida, ya que si sucede lo segundo habría que reevaluar el tratamiento antituberculoso de segunda línea. La prueba molecular GenoType MTBDR plus ® detecta las mutaciones asociadas con la resistencia a isoniacida y podría detectar la resistencia cruzada a la etionamida. Objetivo. Evaluar la prueba GenoType MTBDR plus ® y comparar su desempeño con el de la secuenciación, en la detección de mutaciones en el gen katG y en el promotor inhA en aislamientos clínicos de M. tuberculosis multirresistente. Materiales y métodos. Se utilizaron el estuche comercial GenoType MTBDR plus 1.0 ® y la secuenciación para evaluar mutaciones en el gen katG y en el promotor inhA en 30 aislamientos de M. tuberculosis multirresistente con resistencia a la etionamida. La cepa de laboratorio H37Rv y tres aislamientos sensibles a los medicamentos de primera línea, sirvieron de control. Resultados. Al comparar los resultados de la secuenciación y de la prueba GenoType MTBDR plus ® , el índice kappa fue de 1. Todos los aislamientos resistentes a la isoniacida y la etionamida tenían las mutaciones detectadas con la prueba GenoTypeMTBDR plus ® en el gen katG, y 40 % de ellos, las detectadas en el promotor inhA. Mediante secuenciación se encontraron, además, mutaciones en katG en posiciones diferentes a las detectadas por la prueba GenoType MTBDR plus ® . Conclusión. La prueba GenoTypeMTBDR plus ® tiene la capacidad de detectar rápidamente la resistencia a isoniacida. Además, los resultados del estudio sugieren que también podría utilizarse como prueba de tamización para detectar la resistencia cruzada a etionamida.


Introduction: A variable proportion of isolates of multidrug-resistant Mycobacterium tuberculosis also presents resistance to ethionamide. It is important to determine whether resistance to isoniazid is independent or crossed with resistance to ethionamide, given that this could lead to the re-evaluation of second-line anti-tuberculosis treatment. The GenoType MTBDR plus ® molecular test is used for the detection of MDR-MTB, as it identifies mutations associated with resistance to isoniazide and could detect cross-resistance with ethionamide. Objective: To evaluate the performance of GenoType MTBDR plus ® in comparison with sequencing in the detection of mutations in gene katG and promotor inhA in clinical isolates of multidrug-resistant M. tuberculosis . Materials and methods: The GenoType MTBDR plus 1.0 ® commercial kit and sequencing were used to evaluate mutations in gene katG and promotor inhA in 30 multidrug-resistant M. tuberculosis isolates that were resistant to ethionamide. The laboratory strain H37Rv and three pan-sensitive isolates acted as controls. Results: The kappa index for the comparison between the results of sequencing and GenoType MTBDR plus ® was 1. All the isolates resistant to isoniazid and ethionamide had the mutations detected by GenoTypeMTBDR plus ® in the katG gene and 40% of them in promotor inhA. Sequencing also revealed katG mutations in positions different to those detected by GenoType MTBDR plus ® . Conclusion: GenoType MTBDR plus ® is able to detect resistance to isoniazid rapidly. Our results suggest that it could also be used to screen for cross-resistance with ethionamide.


Asunto(s)
Humanos , Oxidorreductasas/genética , Proteínas Bacterianas/genética , Catalasa/genética , Técnicas de Tipificación Bacteriana/métodos , Análisis de Secuencia de ADN/métodos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Etionamida/farmacología , Técnicas de Genotipaje , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , ADN Bacteriano/genética , Reacción en Cadena de la Polimerasa/métodos , Regiones Promotoras Genéticas/genética , Etionamida/metabolismo , Genotipo , Isoniazida/metabolismo , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Antituberculosos/metabolismo
14.
Biomedica ; 35(4): 541-8, 2015.
Artículo en Español | MEDLINE | ID: mdl-26844443

RESUMEN

INTRODUCTION: A variable proportion of isolates of multidrug-resistant Mycobacterium tuberculosis also presents resistance to ethionamide. It is important to determine whether resistance to isoniazid is independent or crossed with resistance to ethionamide, given that this could lead to the re-evaluation of second-line anti-tuberculosis treatment. The GenoType MTBDR plus ® molecular test is used for the detection of MDR-MTB, as it identifies mutations associated with resistance to isoniazide and could detect cross-resistance with ethionamide. OBJECTIVE: To evaluate the performance of GenoType MTBDR plus ® in comparison with sequencing in the detection of mutations in gene katG and promotor inhA in clinical isolates of multidrug-resistant M. tuberculosis . MATERIALS AND METHODS: The GenoType MTBDR plus 1.0® commercial kit and sequencing were used to evaluate mutations in gene katG and promotor inhA in 30 multidrug-resistant M. tuberculosis isolates that were resistant to ethionamide. The laboratory strain H37Rv and three pan-sensitive isolates acted as controls. RESULTS: The kappa index for the comparison between the results of sequencing and GenoType MTBDR plus® was 1. All the isolates resistant to isoniazid and ethionamide had the mutations detected by GenoTypeMTBDR plus® in the katG gene and 40% of them in promotor inhA. Sequencing also revealed katG mutations in positions different to those detected by GenoType MTBDR plus®. CONCLUSION: GenoType MTBDR plus ® is able to detect resistance to isoniazid rapidly. Our results suggest that it could also be used to screen for cross-resistance with ethionamide.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana/métodos , Catalasa/genética , Farmacorresistencia Bacteriana Múltiple/genética , Etionamida/farmacología , Técnicas de Genotipaje , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/genética , Análisis de Secuencia de ADN/métodos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antituberculosos/metabolismo , ADN Bacteriano/genética , Etionamida/metabolismo , Genotipo , Humanos , Isoniazida/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Regiones Promotoras Genéticas/genética
15.
Biochem Biophys Res Commun ; 446(4): 1132-8, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24667600

RESUMEN

Recent efforts have underlined the role of Serine/Threonine Protein Kinases (STPKs) in growth, pathogenesis and cell wall metabolism in mycobacteria. Herein, we demonstrated that the Mycobacterium tuberculosis EthR, a transcriptional repressor that regulates the activation process of the antitubercular drug ethionamide (ETH) is a specific substrate of the mycobacterial kinase PknF. ETH is a prodrug that must undergo bioactivation by the monooxygenease EthA to exert its antimycobacterial activity and previous studies reported that EthR represses transcription of ethA by binding to the ethA-ethR intergenic region. Mass spectrometry analyses and site-directed mutagenesis identified a set of four phosphoacceptors, namely Thr2, Thr3, Ser4 and Ser7. This was further supported by the complete loss of PknF-dependent phosphorylation of a phosphoablative EthR mutant protein. Importantly, a phosphomimetic version of EthR, in which all phosphosites were replaced by Asp residues, exhibited markedly decreased DNA-binding activity compared with the wild-type protein. Together, these findings are the first demonstration of EthR phosphorylation and indicate that phosphorylation negatively affects its DNA-binding activity, which may impact ETH resistance levels in M. tb.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Antituberculosos/metabolismo , Proteínas Bacterianas/genética , Etionamida/metabolismo , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mycobacterium tuberculosis/genética , Fosforilación , Proteínas Represoras/química , Proteínas Represoras/genética , Serina/metabolismo , Treonina/metabolismo , Tuberculosis/microbiología
16.
Curr Drug Metab ; 14(1): 151-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23215813

RESUMEN

Ethionamide (ETH) is an important second-line antituberculosis drug used for the treatment of patients infected with multidrug-resistant Mycobacterium. Although ETH is a structural analogue of isoniazid (INH), both are pro-drugs that need to be activated by mycobacterial enzymes to exert their antimicrobial activity. ETH mechanism of action is thought to be identical to INH although the pathway of activation is distinct from that of INH. ETH is activated by an EthA enzyme, leading to the formation of an Soxide metabolite that has considerably better activity than the parent drug. This review comprehensively examines the aspects related with the metabolism of ETH since its discovery up to today.


Asunto(s)
Antituberculosos/metabolismo , Etionamida/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Etionamida/farmacología , Etionamida/uso terapéutico , Salud Global , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Profármacos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
17.
Microb Biotechnol ; 5(6): 700-16, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22862894

RESUMEN

This work demonstrates that Acinetobacter radioresistens strain S13 during the growth on medium supplemented with long-chain alkanes as the sole energy source expresses almA gene coding for a Baeyer-Villiger monooxygenase (BVMO) involved in alkanes subterminal oxidation. Phylogenetic analysis placed the sequence of this novel BVMO in the same clade of the prodrug activator ethionamide monooxygenase (EtaA) and it bears only a distant relation to the other known class I BVMO proteins. In silico analysis of the 3D model of the S13 BVMO generated by homology modelling also supports the similarities with EtaA by binding ethionamide to the active site. In vitro experiments carried out with the purified enzyme confirm that this novel BVMO is indeed capable of typical Baeyer-Villiger reactions as well as oxidation of the prodrug ethionamide.


Asunto(s)
Acinetobacter/enzimología , Oxigenasas de Función Mixta/aislamiento & purificación , Oxigenasas de Función Mixta/metabolismo , Acinetobacter/genética , Alcanos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Análisis por Conglomerados , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , Metabolismo Energético , Etionamida/metabolismo , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium tuberculosis/enzimología , Oxidación-Reducción , Oxigenasas/genética , Oxigenasas/metabolismo , Filogenia , Profármacos/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
18.
Mol Microbiol ; 82(6): 1375-91, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22026918

RESUMEN

NADH pyrophosphatase (NudC) catalyses the hydrolysis of NAD(H) to AMP and NMN(H) [nicotinamide mononucleotide (reduced form)]. NudC multiple sequence alignment reveals that homologues from most Mycobacterium tuberculosis isolates, but not other mycobacterial species, have a polymorphism at the highly conserved residue 237. To elucidate the functional significance of this polymorphism, comparative analyses were performed using representative NudC isoforms from M. tuberculosis H37Rv (NudC(Rv)) and M. bovis BCG (NudC(BCG)). Biochemical analysis showed that the P237Q polymorphism prevents dimer formation, and results in a loss of enzymatic activity. Importantly, NudC(BCG) was found to degrade the active forms of isoniazid (INH), INH-NAD and ethionamide (ETH), ETH-NAD. Consequently, overexpression of NudC(BCG) in Mycobacterium smegmatis mc(2)155 and M. bovis BCG resulted in a high level of resistance to both INH and ETH. Further genetic studies showed that deletion of the nudC gene in M. smegmatis mc(2)155 and M. bovis BCG resulted in increased susceptibility to INH and ETH. Moreover, inactivation of NudC in both strains caused a defect in drug tolerance phenotype for both drugs in exposure assays. Taken together, these data suggest that mycobacterial NudC plays an important role in the inactivation of INH and ETH.


Asunto(s)
Antituberculosos/metabolismo , Proteínas Bacterianas/metabolismo , Etionamida/metabolismo , Isoniazida/metabolismo , Mycobacterium bovis/enzimología , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Antituberculosos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Etionamida/farmacología , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoniazida/farmacología , Datos de Secuencia Molecular , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pirofosfatasas/química , Pirofosfatasas/genética , Alineación de Secuencia
19.
Drug Metab Dispos ; 37(1): 178-86, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18948378

RESUMEN

The second-line antitubercular drugs thiacetazone (TAZ) and ethionamide (ETA) are bioactivated by the mycobacterial enzyme EtaA. We report here that human flavin-containing monooxygenase 2.1 (FMO2.1), which is expressed predominantly in the lung, catalyzes oxygenation of TAZ. The metabolites generated, the sulfenic acid, sulfinic acid, and carbodiimide derivatives, are the same as those produced by EtaA and human FMO1 and FMO3. Two of the metabolites, the sulfenic acid and carbodiimide, are known to be harmful to mammalian cells. FMO2.1 also catalyzes oxygenation of ETA, producing the S-oxide. We have developed a novel spectrophotometric assay for TAZ oxygenation. The assay was used to determine kinetic parameters for TAZ oxygenation catalyzed by human FMO1, FMO2.1, and FMO3 and by EtaA. Although the K(M) values for the four enzyme-catalyzed reactions are similar, k(cat) and, consequently, k(cat)/K(M) (the specificity constant) for FMO2.1-catalyzed TAZ oxygenation are much higher than those of FMO1, FMO3, or EtaA. This indicates that FMO2.1 is more effective in catalyzing TAZ oxygenation than are the other three enzymes and thus is likely to contribute substantially to the metabolism of TAZ, decreasing the availability of the prodrug to mycobacteria and producing toxic metabolites. Because of a genetic polymorphism, Europeans and Asians lack FMO2.1. However, in sub-Saharan Africa, a region in which tuberculosis is a major health problem, a substantial proportion of individuals express FMO2.1. Thus, our results may explain some of the observed interindividual differences in response to TAZ and ETA and have implications for the treatment of tuberculosis in sub-Saharan Africa.


Asunto(s)
Antituberculosos/metabolismo , Etionamida/metabolismo , Oxígeno/metabolismo , Oxigenasas/metabolismo , Tioacetazona/metabolismo , Antituberculosos/farmacocinética , Catálisis , Cromatografía Líquida de Alta Presión , Etionamida/farmacocinética , Humanos , Espectrometría de Masas , Oxidación-Reducción , Espectrofotometría Ultravioleta , Tioacetazona/farmacocinética
20.
Toxicol Appl Pharmacol ; 233(3): 420-7, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18930751

RESUMEN

Tuberculosis (TB) results from infection with Mycobacterium tuberculosis and remains endemic throughout the world with one-third of the world's population infected. The prevalence of multi-drug resistant strains necessitates the use of more toxic second-line drugs such as ethionamide (ETA), a pro-drug requiring bioactivation to exert toxicity. M. tuberculosis possesses a flavin monooxygenase (EtaA) that oxygenates ETA first to the sulfoxide and then to 2-ethyl-4-amidopyridine, presumably through a second oxygenation involving sulfinic acid. ETA is also a substrate for mammalian flavin-containing monooxygenases (FMOs). We examined activity of expressed human and mouse FMOs toward ETA, as well as liver and lung microsomes. All FMOs converted ETA to the S-oxide (ETASO), the first step in bioactivation. Compared to M. tuberculosis, the second S-oxygenation to the sulfinic acid is slow. Mouse liver and lung microsomes, as well as human lung microsomes from an individual expressing active FMO, oxygenated ETA in the same manner as expressed FMOs, confirming this reaction functions in the major target organs for therapeutics (lung) and toxicity (liver). Inhibition by thiourea, and lack of inhibition by SKF-525A, confirm ETASO formation is primarily via FMO, particularly in lung. ETASO production was attenuated in a concentration-dependent manner by glutathione. FMO3 in human liver may contribute to the toxicity and/or affect efficacy of ETA administration. Additionally, there may be therapeutic implications of efficacy and toxicity in human lung based on the FMO2 genetic polymorphism, though further studies are needed to confirm that suggestion.


Asunto(s)
Antituberculosos/metabolismo , Etionamida/metabolismo , Pulmón/metabolismo , Microsomas Hepáticos/metabolismo , Oxigenasas/metabolismo , Animales , Antituberculosos/farmacocinética , Cromatografía Líquida de Alta Presión , Etionamida/farmacocinética , Glutatión/metabolismo , Humanos , Técnicas In Vitro , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/enzimología , Espectrometría de Masas , Ratones , Microsomas/efectos de los fármacos , Microsomas/enzimología , Microsomas/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...