Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38739685

RESUMEN

An oval to rod-shaped, Gram-stain-positive, strictly anaerobic bacterium, designated LFL-14T, was isolated from the faeces of a healthy Chinese woman. Cells of the strain were non-spore-forming, grew optimally at 37 °C (growth range 30-45 °C) and pH 7.0 (growth range 6.0-9.0) under anaerobic conditions in the liquid modified Gifu anaerobic medium (mGAM). The result of 16S rRNA gene-based analysis indicated that LFL-14T shared an identity of 94.7 0% with Eubacterium ventriosum ATCC 27560T, indicating LFL-14T represented a novel taxon. The results of genome-based analysis revealed that the average nucleotide identity (ANI), the digital DNA-DNA hybridisation (dDDH) and average amino acid identity (AAI) between LFL-14T and its phylogenetically closest neighbour, Eubacterium ventriosum ATCC 27560T, were 77.0 %, 24.6 and 70.9 %, respectively, indicating that LFL-14T represents a novel species of the genus Eubacterium. The genome size of LFL-14T was 2.92 Mbp and the DNA G+C content was 33.14 mol%. We analysed the distribution of the genome of LFL-14T in cohorts of healthy individuals, type 2 diabetes patients (T2D) and patients with non-alcoholic fatty liver disease (NAFLD). We found that its abundance was higher in the T2D cohort, but it had a low average abundance of less than 0.2 % in all three cohorts. The percentages of frequency of occurrence in the T2D, healthy and NAFLD cohorts were 48.87 %, 16.72 % and 13.10 % respectively. The major cellular fatty acids of LFL-14T were C16 : 0 (34.4 %), C17 : 0 2-OH (21.4 %) and C14 : 0 (11.7 %). Additionally, the strain contained diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE), as well as unidentified phospholipids and unidentified glycolipids. The glucose fermentation products of LFL-14T were acetate and butyrate. In summary, On the basis of its chemotaxonomic, phenotypic, phylogenetic and phylogenomic properties, strain LFL-14T (= CGMCC 1.18005T = KCTC 25580T) is identified as representing a novel species of the genus Eubacterium, for which the name Eubacterium album sp. nov. is proposed.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Eubacterium , Ácidos Grasos , Heces , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Humanos , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Femenino , Eubacterium/genética , Eubacterium/aislamiento & purificación , Eubacterium/clasificación , Heces/microbiología , Butiratos/metabolismo , Genoma Bacteriano , China , Adulto
2.
Microb Cell Fact ; 20(1): 233, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34963452

RESUMEN

BACKGROUND: Anxiety and depression are complications in Irritable bowel syndrome (IBS) patients. In this study, we recruited 18 IBS patients with mild-modest anxiety and depression behaviors, and after the screening, we defined the FMT treatment group (n = 9) and the control group (n = 9). The IBS symptom severity scale (IBS-SSS), Hamilton Anxiety Rating Scale (HAM-A), Hamilton Depression Rating Scale (HAM-D), Irritable Bowel Syndrome Quality of Life (IBS-QOL) and Bristol stool scale (BSS) were evaluated one week before FMT (baseline), one-week-, one-month-, two-month-, and three-month-following FMT. Meanwhile, we determined the SCFAs in the patient's feces and serum and continued the metagenomic analysis of the microorganisms in the patient's feces. RESULTS: The results showed that the patient's anxiety and depression behavior gradually improved with FMT treatment. Moreover, the illness and quality of life had also been relieved significantly. The content of isovaleric acid and valeric acid was significantly reduced in the FMT group compared to the Col group. Metagenomic analysis showed that FMT treatment decreased the abundance of Faecalibacterium, Eubacterium and Escherichia. From KEGG functional analysis, we confirmed that the top five abundant pathways were "bacterial chemotaxis, "flagellar assembly", "glycine, serine and threonine metabolism", "apoptosis", and "bacterial invasion of epithelial cells". CONCLUSIONS: FMT treatment can effectively alleviate the anxiety and depression behaviors of IBS-D patients and reduce the IBS-SSS score, indicating that FMT can improve patients' symptoms. The high throughput sequencing results show that Bifidobacterium and Escherichia play the most critical role in the formation and recovery of IBS-D patients. The GC/MS data indicated that faeces isovaleric acid and valeric acid might be more suitable as a metabolic indicator of IBS-D remission. Trial registration ChiCTR, ChiCTR1900024924, Registered 3 August 2019, https://www.chictr.org.cn/showproj.aspx?proj=41676 .


Asunto(s)
Ansiedad/microbiología , Ansiedad/terapia , Depresión/microbiología , Depresión/terapia , Trasplante de Microbiota Fecal , Síndrome del Colon Irritable/microbiología , Metagenoma , Adulto , Anciano , Diarrea/microbiología , Diarrea/terapia , Escherichia/clasificación , Eubacterium/clasificación , Faecalibacterium/clasificación , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Hemiterpenos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/terapia , Masculino , Persona de Mediana Edad , Ácidos Pentanoicos/metabolismo , Calidad de Vida
3.
Int J Syst Evol Microbiol ; 70(9): 5177-5181, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32812861

RESUMEN

The International Committee on Systematics of Prokaryotes has formally made final decisions, taking into account the conclusions of the Judicial Commission, on three pending Requests for an Opinion, thereby allowing the corresponding Opinions to be issued. According to Opinion 100, the request for the recognition of strain A1-86 (=DSM 17629=NCIMB 14373) as the neotype strain of Eubacterium rectale (Hauduroy et al. 1937) Prévot 1938 (Approved Lists 1980) is denied, ruling that a neotype does not need to be designated for E. rectale because strain VPI 0990 (=ATCC 33656=CIP 105953) is considered to be a duplicate isolate of the same strain as VPI 0989 (=ATCC 25578) and may serve as its nomenclatural type. Opinion 101 approves the request that strain ATCC 25946 (=DSM 14877) serves as the type strain of Melittangium lichenicola instead of strain ATCC 25944, formally correcting the Approved Lists of Bacterial Names. Opinion 102 concludes that strain Cc m8 (=DSM 14697=CIP 109128=JCM 12621) is an established neotype strain for the species Myxococcus macrosporus, replacing the designated type strain Windsor M271, and that strain Mx s8 (=DSM 14675=JCM 12634) is an established neotype strain for the species Myxococcus stipitatus, replacing the designated type strain Windsor M78, with some additional considerations about the nature of the type material replaced and about the name Corallococcus (Myxococcus) macrosporus.


Asunto(s)
Eubacterium/clasificación , Myxococcales/clasificación , Myxococcus/clasificación , Filogenia
4.
Gut Microbes ; 12(1): 1802866, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32835590

RESUMEN

Over the last two decades our understanding of the gut microbiota and its contribution to health and disease has been transformed. Among a new 'generation' of potentially beneficial microbes to have been recognized are members of the genus Eubacterium, who form a part of the core human gut microbiome. The genus consists of phylogenetically, and quite frequently phenotypically, diverse species, making Eubacterium a taxonomically unique and challenging genus. Several members of the genus produce butyrate, which plays a critical role in energy homeostasis, colonic motility, immunomodulation and suppression of inflammation in the gut. Eubacterium spp. also carry out bile acid and cholesterol transformations in the gut, thereby contributing to their homeostasis. Gut dysbiosis and a consequently modified representation of Eubacterium spp. in the gut, have been linked with various human disease states. This review provides an overview of Eubacterium species from a phylogenetic perspective, describes how they alter with diet and age and summarizes its association with the human gut and various health conditions.


Asunto(s)
Eubacterium/clasificación , Microbioma Gastrointestinal , Filogenia , Animales , Disbiosis/metabolismo , Disbiosis/microbiología , Eubacterium/genética , Eubacterium/aislamiento & purificación , Heces/microbiología , Humanos
5.
Int J Syst Evol Microbiol ; 70(6): 3656-3664, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32416738

RESUMEN

Four strains (9CBEGH2T, 9BBH35, 6BBH38 and 6EGH11) of Gram-stain-positive, obligately anaerobic, rod-shaped bacteria were isolated from faecal samples from healthy Japanese humans. The results of 16S rRNA gene sequence analysis indicated that the four strains represented members of the family Erysipelotrichaceae and formed a monophyletic cluster with 'Absiella argi' strain N6H1-5 (99.4% sequence similarity) and Eubacterium sp. Marseille-P5640 (99.3 %). Eubacterium dolichum JCM 10413T (94.2 %) and Eubacterium tortuosum ATCC 25548T (93.7 %) were located near this monophyletic cluster. The isolates, 9CBEGH2T, 'A. argi' JCM 30884 and Eubacterium sp. Marseille-P5640 shared 98.7-99.1% average nucleotide identity (ANI) with each other. Moreover, the in silico DNA-DNA hybridization (DDH) values among three strains were 88.4-90.6%, indicating that these strains represent the same species. Strain 9CBEGH2T showed 21.5-24.1 % in silico DDH values with other related taxa. In addition, the ANI values between strain 9CBEGH2T and other related taxa ranged from 71.2 % to 73.5 %, indicating that this strain should be considered as representing a novel species on the basis of whole-genome relatedness. Therefore, we formally propose a novel name for 'A. argi' strains identified because the name 'A. argi' has been effectively, but not validly, published since 2017. On the basis of the collected data, strain 9CBEGH2T represents a novel species of a novel genus, for which the name Amedibacterium intestinale gen. nov., sp. nov. is proposed. The type strain of A. intestinale is 9CBEGH2T (=JCM 33778T=DSM 110575T).


Asunto(s)
Heces/microbiología , Firmicutes/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Eubacterium/clasificación , Ácidos Grasos/química , Firmicutes/aislamiento & purificación , Humanos , Japón , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
Artículo en Inglés | MEDLINE | ID: mdl-31334136

RESUMEN

Oral supplemented nutraceuticals derived from food sources are surmised to improve the human health through interaction with the gastrointestinal bacteria. However, the lack of fundamental quality control and authoritative consensus (e.g., formulation, route of administration, dose, and dosage regimen) of these non-medical yet bioactive compounds are one of the main practical issues resulting in inconsistent individual responsiveness and confounded clinical outcomes of consuming nutraceuticals. Herein, we studied the dose effects of widely used food supplement, microalgae spirulina (Arthrospira platensis), on the colonic microbiota and physiological responses in healthy male Balb/c mice. Based on the analysis of 16s rDNA sequencing, compared to the saline-treated group, oral administration of spirulina once daily for 24 consecutive days altered the diversity, structure, and composition of colonic microbial community at the genus level. More importantly, the abundance of microbial taxa was markedly differentiated at the low (1.5 g/kg) and high (3.0 g/kg) dose of spirulina, among which the relative abundance of Clostridium XIVa, Desulfovibrio, Eubacterium, Barnesiella, Bacteroides, and Flavonifractor were modulated at various degrees. Evaluation of serum biomarkers in mice at the end of spirulina intervention showed reduced the oxidative stress and the blood lipid levels and increased the level of appetite controlling hormone leptin in a dose-response manner, which exhibited the significant correlation with differentially abundant microbiota taxa in the cecum. These findings provide direct evidences of dose-related modulation of gut microbiota and physiological states by spirulina, engendering its future mechanistic investigation of spirulina as potential sources of prebiotics for beneficial health effects via the interaction with gut microbiota.


Asunto(s)
Ciego/efectos de los fármacos , Colon/efectos de los fármacos , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Spirulina/química , Animales , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Ciego/microbiología , Clostridiales/clasificación , Clostridiales/genética , Clostridiales/aislamiento & purificación , Clostridium/clasificación , Clostridium/genética , Clostridium/aislamiento & purificación , Colon/microbiología , Mezclas Complejas/administración & dosificación , Desulfovibrio/clasificación , Desulfovibrio/genética , Desulfovibrio/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Eubacterium/clasificación , Eubacterium/genética , Eubacterium/aislamiento & purificación , Heces/microbiología , Microbioma Gastrointestinal/genética , Leptina/sangre , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
7.
Int J Syst Evol Microbiol ; 68(12): 3741-3746, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30351260

RESUMEN

A bacterial strain designated L2-7T, phylogenetically related to Eubacterium hallii DSM 3353T, was previously isolated from infant faeces. The complete genome of strain L2-7T contains eight copies of the 16S rRNA gene with only 98.0-98.5 % similarity to the 16S rRNA gene of the previously described type strain E. hallii. The next closest validly described species is Anaerostipes hadrus DSM 3319T (90.7 % 16S rRNA gene similarity). A polyphasic taxonomic approach showed strain L2-7T to be a novel species, related to type strain E. hallii DSM 3353T. The experimentally observed DNA-DNA hybridization value between strain L2-7T and E. hallii DSM 3353T was 26.25 %, close to that calculated from the genomes (34.3 %). The G+C content of the chromosomal DNA of strain L2-7T was 38.6 mol%. The major fatty acids were C16 : 0, C16 : 1cis9 and a component with summed feature 10 (C18 : 1c11/t9/t6c). Strain L2-7T had higher amounts of C16 : 0 (30.6 %) compared to E. hallii DSM 3353T (19.5 %) and its membrane contained phosphatidylglycerol and phosphatidylethanolamine, which were not detected in E. hallii DSM 3353T. Furthermore, 16S rRNA gene phylogenetic analysis advocates that E. hallii DSM 3353T is misclassified, and its reclassification as a member of the family Lachnospiraceae is necessary. Using a polyphasic approach, we propose that E. hallii (=DSM 3353T=ATCC 27751T) be reclassified as the type strain of a novel genus Anaerobutyricum sp. nov., comb. nov. and we propose that strain L2-7T should be classified as a novel species, Anaerobutyricum soehngenii sp. nov. The type strain is L2-7T (=DSM 17630T=KCTC 15707T).


Asunto(s)
Eubacterium/clasificación , Heces/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Butiratos/metabolismo , ADN Bacteriano/genética , Eubacterium/metabolismo , Ácidos Grasos/química , Humanos , Lactante , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , Propionatos/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Int J Syst Evol Microbiol ; 68(9): 3068-3075, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30058996

RESUMEN

To clarify the taxonomic position of Eubacterium combesii, the whole genome of its type strain, DSM 20696T, was sequenced. Comparison of this sequence with known sequences of other bacteria confirmed that E. combesii represented a member of the Clostridium sporogenes/Clostridium botulinum Group I clade. However, the results of phylogenetic analysis also demonstrated that the latter two species did not form the same genetic entity and that E. combesii was in the C. botulinum Group I subclade. Meanwhile, we showed that E. combesii DSM 20696T did not produce botulinum neurotoxins (BoNTs) and thus should be identified as a strain of C. sporogenes in accordance with the current nomenclature of BoNT-producing clostridia, which is based, in particular, on Opinion 69 issued by the Judicial Commission of the ICSB. However, review of the corresponding Request for an Opinion revealed that it had been based on an erroneous statement. Therefore, we request reconsideration of Opinion 69 and propose to reclassify Eubacterium combesii as a later synonym of Clostridium botulinum. The results of phylogenetic analysis of the other five groups of BoNT-producing clostridia indicated that all the groups were far distant from each other. However, the members of Groups IV-VI are classified as strains of different species, while all members of Groups I-III are designated C. botulinum. Meanwhile, similarly to Group I, Groups II and III are also polyphyletic and appear to consist of two and four species, respectively. These results demonstrate, once again, discrepancies in the nomenclature of BoNT-producing bacteria and corroborate our request for reconsideration of Opinion 69.


Asunto(s)
Eubacterium/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Toxinas Botulínicas , Clostridium/clasificación , ADN Bacteriano/genética , Eubacterium/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Int J Syst Evol Microbiol ; 67(11): 4589-4594, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28950926

RESUMEN

Strains of a Gram-stain-negative, rod-shaped and immotile bacterium were isolated from broiler chicken caecal content. The isolates required strict anaerobic conditions for growth, formed spores, were catalase-positive and oxidase-negative. They produced butyrate as the major metabolic end product in reinforced clostridial medium broth. The genomic DNA G+C content of the isolated strains was 32.5-34.6 mol%. The major cellular fatty acids were C16 : 0 FAME, C14 : 0 FAME, C19 : 0CYC 9,10DMA and C16 : 0DMA. The fatty acid composition of the cell wall showed no similarity to any strain in the midi database. 16S rRNA gene sequence analysis showed that the nearest phylogenetic neighbours were Anaerostipes hadrus and Clostridium populeti (92 % sequence similarity) within Clostridium cluster XIVa of the phylum Firmicutes. Therefore, a novel genus is proposed, with the name Caecibacterium sporoformans gen. nov., sp. nov. The type strain of Caecibacterium sporoformans is LMG 27730T=DSM 26959T.


Asunto(s)
Ciego/microbiología , Pollos/microbiología , Eubacterium/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Bélgica , Butiratos/metabolismo , ADN Bacteriano/genética , Eubacterium/genética , Eubacterium/aislamiento & purificación , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Int J Syst Evol Microbiol ; 67(8): 2711-2719, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28853681

RESUMEN

Several strictly anaerobic bacteria that are Gram-stain-positive have the ability to use uric acid as the sole source of carbon and energy. The phylogeny of three such species, Clostridium acidurici, Clostridium purinilyticum, and Eubacterium angustum, members of the Clostridium cluster XII that ferment purines, but not most amino acids or carbohydrates, has been re-examined, taking advantage of their recently sequenced genomes. Phylogenetic analyses, based on 16S rRNA gene sequences, protein sequences of RpoB and GyrB, and on a concatenated alignment of 50 ribosomal proteins, revealed tight clustering of C. acidurici and C. purinilyticum. Eubacterium angustum showed consistent association with C. acidurici and C. purinilyticum , but differed from these two in terms of the genome size, G+C content of its chromosomal DNA and its inability to form spores. We propose reassigning C. acidurici and C. purinilyticum to the novel genus Gottschalkia as Gottschalkia acidurici gen. nov. comb. nov. (the type species of the genus) and Gottschalkia purinilytica comb. nov., respectively. Eubacterium angustum is proposed to be reclassified as Andreesenia angusta gen. nov. comb. nov. Furthermore, based on the phylogenetic data and similar metabolic properties, we propose assigning genera Gottschalkia and Andreesenia to the novel family Gottschalkiaceae. Metagenomic sequencing data indicate the widespread distibution of organisms falling within the radiation of the proposed family Gottschalkiaceae in terrestrial and aquatic habitats from upstate New York to Antarctica, most likely due to their ability to metabolize avian-produced uric acid.


Asunto(s)
Clostridium/clasificación , Eubacterium/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ADN Ribosómico/genética , Ácidos Grasos/química , Genes Bacterianos , Purinas/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
11.
Anaerobe ; 48: 70-75, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28754474

RESUMEN

Gram-positive, straight or slightly curved rod-shaped bacteria, designated as strains N6H1-5T and N6H1-3, were isolated from fecal samples of old dog. The analysis of 16S rRNA gene sequences indicated that the isolates belonged to the Clostridium cluster XVI and were closely related to Eubacterium dolichum KCTC 5832T, Eubacterium tortuosum DSM 3987T, Clostridium innocuum KCTC 5183T, Allobaculum stecoricanis DSM 13633T, Eubacterium limosum KCTC 3266T, and Clostridium butyricum KCTC 1871T, with 94.0%, 93.8%, 92.0%, 84.9%, 80.7%, and 80.0% sequence similarity, respectively. Chemotaxonomic data supported placement of the strains N6H1-5T and N6H1-3 in the new taxon. The strains contained m-diaminopimelic acid cell wall peptidoglycan; the major polar lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), and glycolipids (GL); and the major fatty acids were C18:1cis 9 (30.7%) and C16:0 (17.1%). The predominant metabolic end product was lactic acid. The G + C content was 35.8 mol%. The most closely related species, E. dolichum and E. tortuosum, were also assigned to the new taxon, based on the phylogenetic analysis and phenotypic data. Thus, the type strain N6H1-5T (=KCTC 15422 = JCM 30884) represents a novel genus and species, for which the name Absiella argi gen. nov., sp. nov is proposed. It is also proposed that E. dolichum KCTC 5832T and E. tortuosum DSM 3987T be transferred to this new genus, and named Absiella dolichum comb. nov. and Absiella tortuosum comb. nov., respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana/veterinaria , Clostridium/clasificación , Eubacterium/clasificación , Firmicutes/clasificación , Intestinos/microbiología , Animales , Composición de Base/genética , Clostridium/genética , Clostridium/aislamiento & purificación , ADN Bacteriano/genética , Perros , Eubacterium/genética , Eubacterium/aislamiento & purificación , Ácidos Grasos/análisis , Firmicutes/genética , Firmicutes/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Int J Syst Evol Microbiol ; 67(5): 1219-1227, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28556772

RESUMEN

Two bacterial strains, designated EGH7T and TSAH33, were isolated from human faeces and characterized by using a polyphasic taxonomic approach that included analysis of morphology, phenotypic and biochemical features, cellular fatty acid profiles and phylogenetic position based on 16S rRNA and hsp60 gene sequence analyses. The results of 16S rRNA gene sequence analysis indicated that these strains represented members of the family Lachnospiraceae and formed a monophyletic cluster near Eubacterium contortum JCM 6483T (95 % sequence similarity), Ruminococcus gnavus JCM 6515T (95 %), Clostridium oroticum JCM 1429T (95 %), Eubacterium fissicatena JCM 31501T (95 %) and Clostridium nexile JCM 31500T (94 %). The results of a hsp60 gene sequence analysis supported the phylogenetic tree based on the 16S rRNA gene sequence, with a sequence similarity value of between 77.9 and 84.8 % to the five strains listed above. The novel strains were obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-stain-positive cocco-bacilli. The strains formed characteristic umbilicated colonies on EG agar plates. The major cellular fatty acids were C18 : 1ω9c, C16 : 0 and C18 : 1ω9c dimethyl acetal (DMA). EGH7T and TSAH33 have DNA G+C contents of 46.9 and 45.5 mol%, respectively. On the basis of these data, strains EGH7T and TSAH33 represent a novel species of a novel genus, for which the name Faecalimonas umbilicata gen. nov., sp. nov. is proposed. The type strain of F. umbilicata is EGH7T (=JCM 30896T=DSM 103426T).


Asunto(s)
Clostridiales/clasificación , Heces/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/genética , Clostridiales/aislamiento & purificación , Clostridium/clasificación , ADN Bacteriano/genética , Eubacterium/clasificación , Ácidos Grasos/química , Genes Bacterianos , Humanos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
Int J Syst Evol Microbiol ; 66(12): 5506-5513, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27902180

RESUMEN

In 1994, analyses of clostridial 16S rRNA gene sequences led to the assignment of 18 species to Clostridium cluster XI, separating them from Clostridium sensu stricto (Clostridium cluster I). Subsequently, most cluster XI species have been assigned to the family Peptostreptococcaceae with some species being reassigned to new genera. However, several misclassified Clostridium species remained, creating a taxonomic conundrum and confusion regarding their status. Here, we have re-examined the phylogeny of cluster XI species by comparing the 16S rRNA gene-based trees with protein- and genome-based trees, where available. The resulting phylogeny of the Peptostreptococcaceae was consistent with the recent proposals on creating seven new genera within this family. This analysis also revealed a tight clustering of Clostridium litorale and Eubacterium acidaminophilum. Based on these data, we propose reassigning these two organisms to the new genus Peptoclostridium as Peptoclostridium litorale gen. nov. comb. nov. (the type species of the genus) and Peptoclostridium acidaminophilum comb. nov., respectively. As correctly noted in the original publications, the genera Acetoanaerobium and Proteocatella also fall within cluster XI, and can be assigned to the Peptostreptococcaceae. Clostridium sticklandii, which falls within radiation of genus Acetoanaerobium, is proposed to be reclassified as Acetoanaerobium sticklandii comb. nov. The remaining misnamed members of the Peptostreptococcaceae, [Clostridium] hiranonis, [Clostridium] paradoxum and [Clostridium] thermoalcaliphilum, still remain to be properly classified.


Asunto(s)
Clostridium/clasificación , Eubacterium/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
14.
Int J Syst Evol Microbiol ; 66(10): 4125-4131, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27453394

RESUMEN

A Gram-positive-staining, coccoid-shaped, non-motile, asporogenous, obligately anaerobic and butyrate-producing bacterium was recovered from a healthy human's faeces. The organism was isolated by the enrichment culture technique using yeast extract-casein hydrolysate-fatty acids broth supplemented with 0.5 % mucin. Phylogenetic analysis of 16S rRNA gene sequences demonstrated that the novel strain should be classified as a member of the Eubacterium desmolans-related cluster in the family Ruminococcaceae. Furthermore, this analysis demonstrated that the type strains of Butyricicoccus pullicaecorum (95.6 %) and Eubacterium desmolans (94.7 %) were the closest phylogenetic neighbours to strain YIT 12789T. However, DNA‒DNA reassociation values with these closest strains were less than 20 %. On the basis of the phenotypic, genotypic and chemotaxonomic features, the novel coccoid-shaped bacterium should be designated as a representative of a novel species of the genus Butyricicoccus, for which the name Butyricicoccus faecihominis sp. nov. is proposed. The type strain is YIT 12789T (=JCM 31056T=DSM 100989T). It is also proposed that Eubacterium desmolans be reclassified in the genus Butyricicoccus as Butyricicoccus desmolans comb. nov.


Asunto(s)
Butiratos/metabolismo , Eubacterium/clasificación , Heces/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Eubacterium/genética , Eubacterium/aislamiento & purificación , Humanos , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
Int J Syst Evol Microbiol ; 66(9): 3656-3661, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27334534

RESUMEN

A novel bacterial strain, SR79T, was isolated from a Korean faecal sample and characterized using a polyphasic approach. SR79T was found to be a strictly anaerobic, Gram-stain-positive, non-spore-forming, non-motile, catalase- and oxidase-negative short rod with no flagella. SR79T grew optimally at 37 °C in the presence of 0.5 % (w/v) NaCl at pH 7. The NaCl range for growth was 0-1 % (w/v). The isolate produced butyric acid (>18 mM) as a major end product. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the most closely related type strains were Eubacteriumdesmolans ATCC 43058T and Butyricicoccus pullicaecorum 25-3T (96.4 and 96.0 % similarity, respectively). The DNA G+C content was determined to be 52.9 mol%. The major cellular fatty acids (>10 %) were C16 : 0, C18 : 1cis-9, C19 : 1 cyc 9,10 and C14 : 0. Meso-diaminopimelic acid was present in the cell wall peptidoglycan and the cell wall hydrolysates contained ribose, glucose and galactose. The 16S rRNA gene sequence similarity, phylogenetic analysis, chemotaxonomic and phenotypic characteristics allowed differentiation of SR79T, which represents a novel species of a new genus within the family Ruminococcaceae, for which the name Agathobaculum butyriciproducens gen. nov. sp. nov. is proposed. The type strain is SR79T (=KCTC 15532T=DSM 100391T). Based on the results of this study, it is also proposed to transfer Eubacteriumdesmolans to this new genus, as Agathobaculum desmolans comb. nov. The type strain of Agathobaculum desmolans is ATCC 43058T (=CCUG 27818T).


Asunto(s)
Eubacterium/clasificación , Heces/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Butiratos/metabolismo , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Eubacterium/genética , Eubacterium/aislamiento & purificación , Ácidos Grasos/química , Humanos , Peptidoglicano/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN
16.
PLoS One ; 11(1): e0148291, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26824357

RESUMEN

Crohn's disease, an incurable chronic inflammatory bowel disease, has been attributed to both genetic predisposition and environmental factors. A dysbiosis of the gut microbiota, observed in numerous patients but also in at least one hundred unaffected first-degree relatives, was proposed to have a causal role. Gut microbiota ß-D-glucuronidases (EC 3.2.1.33) hydrolyse ß-D-glucuronate from glucuronidated compounds. They include a GUS group, that is homologous to the Escherichia coli GusA, and a BG group, that is homologous to metagenomically identified H11G11 BG and has unidentified natural substrates. H11G11 BG is part of the functional core of the human gut microbiota whereas GusA, known to regenerate various toxic products, is variably found in human subjects. We investigated potential risk markers for Crohn's disease using DNA-sequence-based exploration of the ß-D-glucuronidase loci (GUS or Firmicute H11G11-BG and the respective co-encoded glucuronide transporters). Crohn's disease-related microbiomes revealed a higher frequency of a C7D2 glucuronide transporter (12/13) compared to unrelated healthy subjects (8/32). This transporter was in synteny with the potential harmful GUS ß-D-glucuronidase as only observed in a Eubacterium eligens plasmid. A conserved NH2-terminal sequence in the transporter (FGDFGND motif) was found in 83% of the disease-related subjects and only in 12% of controls. We propose a microbiota-pathology hypothesis in which the presence of this unique ß-glucuronidase locus may contribute to an increase risk for Crohn's disease.


Asunto(s)
Proteínas Bacterianas/genética , Enfermedad de Crohn/microbiología , Disbiosis/microbiología , Microbioma Gastrointestinal/genética , Glucuronidasa/genética , Proteínas de Transporte de Membrana/genética , Filogenia , Adulto , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Estudios de Casos y Controles , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/patología , Disbiosis/complicaciones , Disbiosis/patología , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/metabolismo , Eubacterium/clasificación , Eubacterium/genética , Eubacterium/metabolismo , Familia , Femenino , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/metabolismo , Sitios Genéticos , Ácido Glucurónico/metabolismo , Glucuronidasa/química , Glucuronidasa/metabolismo , Glucurónidos/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Plásmidos/química , Plásmidos/metabolismo , Factores de Riesgo , Alineación de Secuencia
17.
J Dent Res ; 95(1): 80-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26442950

RESUMEN

The oral microbiota was compared between Romanian adolescents with a high prevalence of caries and no dental care and Swedish caries-active and caries-free adolescents in caries prevention programs and with a low prevalence of caries. Biofilm samples were analyzed by FLX+ pyrosequencing of the V1 to V4 hypervariable regions of the 16S rRNA gene and polymerase chain reaction (PCR)/quantitative PCR (qPCR) for Streptococcus mutans and Streptococcus sobrinus. Sequences obtained blasted to 9 phyla, 66 genera, and 401 human oral taxa (HOT) in the 16S rRNA Human Oral Microbiome Database, of which 295 were represented by ≥20 sequences. The Romanian adolescents had more sequences in Firmicutes and fewer in Actinobacteria phyla and more sequences in the genera Bacteroidetes [G-3], Porphyromonas, Abiotrophia, Filifactor, Peptostreptococcaceae [11][G-4], Pseudoramibacter, Streptococcus, and Neisseria and fewer in Actinomyces, Selenomonas, Veillonella, Campylobacter, and TM7 [G-1] than the Swedish groups. Multivariate modeling employing HOT, S. sobrinus and S. mutans (PCR/qPCR), and sugar snacks separated Romanian from Swedish adolescents. The Romanian adolescents' microbiota was characterized by a panel of streptococci, including S. mutans, S. sobrinus, and Streptococcus australis, and Alloprevotella, Leptotrichia, Neisseria, Porphyromonas, and Prevotella. The Swedish adolescents were characterized by sweet snacks, and those with caries activity were also characterized by Prevotella, Actinomyces, and Capnocytophaga species and those free of caries by Actinomyces, Prevotella, Selenomonas, Streptococcus, and Mycoplasma. Eight species including Streptococcus mitis and Streptococcus species HOT070 were prevalent in Romanian and Swedish caries-active subjects but not caries-free subjects. In conclusion, S. mutans and S. sobrinus correlated with Romanian adolescents with caries and with limited access to dental care, whereas S. mutans and S. sobrinus were detected infrequently in Swedish adolescents in dental care programs. Swedish caries-active adolescents were typically colonized by Actinomyces, Selenomonas, Prevotella, and Capnocytophaga. Hence, the role of mutans streptococci as a primary caries pathogen appears less pronounced in populations with prevention programs compared to populations lacking caries treatment and prevention strategies.


Asunto(s)
Índice CPO , Caries Dental/microbiología , Microbiota , Abiotrophia/clasificación , Actinobacteria/clasificación , Actinomyces/clasificación , Adolescente , Bacteroidetes/clasificación , Biopelículas , Campylobacter/clasificación , Capnocytophaga/clasificación , Atención Odontológica , Caries Dental/prevención & control , Eubacterium/clasificación , Fusobacterias/clasificación , Bacterias Gramnegativas/clasificación , Humanos , Neisseria/clasificación , Peptostreptococcus/clasificación , Porphyromonas/clasificación , Prevotella/clasificación , Selenomonas/clasificación , Bocadillos , Streptococcus/clasificación , Streptococcus mutans/aislamiento & purificación , Streptococcus sobrinus/aislamiento & purificación , Veillonella/clasificación
18.
Sci Rep ; 5: 10948, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26077225

RESUMEN

Dental implants are commonly used to replace missing teeth. However, the dysbiotic polymicrobial communities of peri-implant sites are responsible for peri-implant diseases, such as peri-implant mucositis and peri-implantitis. In this study, we analyzed the microbial characteristics of oral plaque from peri-implant pockets or sulci of healthy implants (n = 10), peri-implant mucositis (n = 8) and peri-implantitis (n = 6) sites using pyrosequencing of the 16S rRNA gene. An increase in microbial diversity was observed in subgingival sites of ailing implants, compared with healthy implants. Microbial co-occurrence analysis revealed that periodontal pathogens, such as Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia, were clustered into modules in the peri-implant mucositis network. Putative pathogens associated with peri-implantitis were present at a moderate relative abundance in peri-implant mucositis, suggesting that peri-implant mucositis an important early transitional phase during the development of peri-implantitis. Furthermore, the relative abundance of Eubacterium was increased at peri-implantitis locations, and co-occurrence analysis revealed that Eubacterium minutum was correlated with Prevotella intermedia in peri-implantitis sites, which suggests the association of Eubacterium with peri-implantitis. This study indicates that periodontal pathogens may play important roles in the shifting of healthy implant status to peri-implant disease.


Asunto(s)
Implantes Dentales/microbiología , Genes Bacterianos , Periimplantitis/microbiología , Bolsa Periodontal/microbiología , ARN Ribosómico 16S/genética , Estomatitis/microbiología , Adulto , Técnicas de Tipificación Bacteriana , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Estudios de Casos y Controles , Eubacterium/clasificación , Eubacterium/genética , Eubacterium/aislamiento & purificación , Femenino , Humanos , Masculino , Microbiota/genética , Persona de Mediana Edad , Periimplantitis/diagnóstico , Periimplantitis/patología , Bolsa Periodontal/diagnóstico , Bolsa Periodontal/patología , Filogenia , Porphyromonas gingivalis/clasificación , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/aislamiento & purificación , Prevotella intermedia/clasificación , Prevotella intermedia/genética , Prevotella intermedia/aislamiento & purificación , Estomatitis/diagnóstico , Estomatitis/patología
19.
Int J Syst Evol Microbiol ; 64(Pt 11): 3877-3884, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25180093

RESUMEN

Strains LMG 27428(T) and LMG 27427 were isolated from the caecal content of a chicken and produced butyric, lactic and formic acids as major metabolic end products. The genomic DNA G+C contents of strains LMG 27428(T) and LMG 27427 were 40.4 and 38.8 mol%. On the basis of 16S rRNA gene sequence similarity, both strains were most closely related to the generically misclassified Streptococcus pleomorphus ATCC 29734(T). Strain LMG 27428(T) could be distinguished from S. pleomorphus ATCC 29734(T) based on production of more lactic acid and less formic acid in M2GSC medium, a higher DNA G+C content and the absence of activities of acid phosphatase and leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine arylamidases, while strain LMG 27428 was biochemically indistinguishable from S. pleomorphus ATCC 29734(T). The novel genus Faecalicoccus gen. nov. within the family Erysipelotrichaceae is proposed to accommodate strains LMG 27428(T) and LMG 27427. Strain LMG 27428(T) ( =DSM 26963(T)) is the type strain of Faecalicoccus acidiformans sp. nov., and strain LMG 27427 ( =DSM 26962) is a strain of Faecalicoccus pleomorphus comb. nov. (type strain LMG 17756(T) =ATCC 29734(T) =DSM 20574(T)). Furthermore, the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified Eubacterium cylindroides DSM 3983(T) (94.4% 16S rRNA gene sequence similarity to strain LMG 27428(T)) and Eubacterium biforme DSM 3989(T) (92.7% 16S rRNA gene sequence similarity to strain LMG 27428(T)). We present genotypic and phenotypic data that allow the differentiation of each of these taxa and propose to reclassify these generically misnamed species of the genus Eubacterium formally as Faecalitalea cylindroides gen. nov., comb. nov. and Holdemanella biformis gen. nov., comb. nov., respectively. The type strain of Faecalitalea cylindroides is DSM 3983(T) =ATCC 27803(T) =JCM 10261(T) and that of Holdemanella biformis is DSM 3989(T) =ATCC 27806(T) =CCUG 28091(T).


Asunto(s)
Bacterias Anaerobias/clasificación , Ciego/microbiología , Pollos/microbiología , Filogenia , Animales , Bacterias Anaerobias/genética , Bacterias Anaerobias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Eubacterium/clasificación , Ácidos Grasos/química , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Streptococcus/clasificación
20.
PLoS One ; 8(6): e66683, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23818957

RESUMEN

A site-specific DNA-binding protein was purified from Borrelia burgdorferi cytoplasmic extracts, and determined to be a member of the highly conserved SpoVG family. This is the first time a function has been attributed to any of these ubiquitous bacterial proteins. Further investigations into SpoVG orthologues indicated that the Staphylococcus aureus protein also binds DNA, but interacts preferentially with a distinct nucleic acid sequence. Site-directed mutagenesis and domain swapping between the S. aureus and B. burgdorferi proteins identified that a 6-residue stretch of the SpoVG α-helix contributes to DNA sequence specificity. Two additional, highly conserved amino acid residues on an adjacent ß-sheet are essential for DNA-binding, apparently by contacts with the DNA phosphate backbone. Results of these studies thus identified a novel family of bacterial DNA-binding proteins, developed a model of SpoVG-DNA interactions, and provide direction for future functional studies on these wide-spread proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Borrelia burgdorferi/metabolismo , Proteínas de Unión al ADN/metabolismo , Staphylococcus aureus/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Unión Competitiva , Borrelia burgdorferi/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Eubacterium/clasificación , Eubacterium/genética , Eubacterium/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Motivos de Nucleótidos/genética , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Staphylococcus aureus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...